Characterization of Nanomaterials/Nanoparticles

  • Koon Gee NeohEmail author
  • Min Li
  • En-Tang Kang


In recent years, engineered nanoparticles have garnered increasing attention due to their potential for application in areas ranging from consumer and industrial products to medical diagnostics and therapeutics. This potential arises from the unique physical and chemical properties associated with the high surface-to-mass ratio and quantum phenomena of nanoparticles. Nanoparticles are in the same size range as many biomolecules such as proteins and membrane receptors, and their interactions with these biomolecules can be controlled by tuning the surface property/composition of the nanoparticles. Thus, nanoparticles can serve as useful imaging, diagnostic and therapeutic agents. On the other hand, these nanoparticles can also give rise to cytotoxic effects. Hence, it is imperative to carry out detailed characterization of engineered nanoparticles, especially those intended for medical applications, to predict their behavior in the in vivo environment. This chapter describes some methods that are useful for characterizing nanoparticles and their advantages, limitations, and challenges.


Particle size Surface charge Surface composition Protein adsorption Cellular uptake Cytotoxicity 



Auger electron spectroscopy


Atomic force microscopy


Adenosine 5′-triphosphate


Attenuated total reflectance-Fourier transform infrared spectroscopy


Confocal laser scanning microscope


Differential centrifugal sedimentation


Dynamic light scattering


Dimethyl sulfoxide


Electrophoretic light scattering


Electron spectroscopy for chemical analysis


Field emission scanning electron microscopy


Fourier-transform infrared spectroscopy


Hyperbranched polyglycerol


High resolution magic angle spinning nuclear magnetic resonance spectroscopy


Inductively coupled plasma


ICP-mass spectrometry


ICP-optical emission spectrometry


2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride


Isothermal titration calorimetry


Low-energy ion scattering


Lactate dehydrogenase


5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl) tetrazolium inner salt






Nicotinamide adenine dinucleotide


Reduced form of nicotinamide adenine dinucleotide


Nuclear magnetic resonance


Nanoparticle tracking analysis




Phosphate buffered saline


Polyethylene glycol


Polydispersity index


Parts per billion


Parts per million


Parts per trillion


Reticuloendothelial system




Scanning electron microscopy


Scanning tunneling microscopy


Single-walled carbon nanotubes


Transmission electron microscopy


Time-of-flight secondary-ion mass spectrometry




Water-soluble tetrazolium salts


x-ray photoelectron spectroscopy


2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt


  1. 1.
    European Commission (EU). Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J. 2011;L 275:38–40Google Scholar
  2. 2.
    Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583.CrossRefPubMedGoogle Scholar
  3. 3.
    Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine. 2007;2:789–803.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467–77.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42:463–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.CrossRefGoogle Scholar
  10. 10.
    Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10:2093–110.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lim JK, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett. 2013;8:381.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wiogo HTR, Lim M, Bulmus V, Yun J, Amal R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir. 2011;27:843–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res. 2012;14:920.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lim JK, Majetich SA, Tilton RD. Stabilization of superparamagnetic iron oxide-gold shell nanoparticles in high ionic strength media. Langmuir. 2009;25:13384–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Mittal V, Matsko NB. Analytical imaging techniques for soft matter characterization. Berlin: Springer; 2012. p. 13–29.Google Scholar
  16. 16.
    Li M, Neoh KG, Wang R, Zong BY, Tan JY, Kang ET. Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects. Eur J Pharm Sci. 2013;48:111–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang L, He R, Gu HC. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253:2611–17.CrossRefGoogle Scholar
  18. 18.
    Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G. Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir. 2013;29:6606–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4:5421–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirsch V, Kinnear C, Moniatte M, Rothen-Rutishauser B, Clift MJD, Fink A. Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale. 2013;5:3723–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11:77–89.CrossRefGoogle Scholar
  22. 22.
    Doane TL, Chuang CH, Hill RJ, Burda C. Nanoparticle zeta-potentials. Acc Chem Res. 2012;45:317–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaszuba M, Corbett J, Watson FM, Jones A. High-concentration zeta potential measurements using light-scattering techniques. Phil Trans R Soc A. 2010;368:4439–51.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Salgin S, Salgin U, Bahadir S. Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths. Int J Electrochem Sci. 2012;7:12404–14.Google Scholar
  25. 25.
    Kirby BJ, Hasselbrink EF. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25:187–202.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891–5.CrossRefPubMedGoogle Scholar
  28. 28.
    van der Heide P. X-ray photoelectron spectroscopy: an introduction to principles and practices. Hoboken: Wiley; 2012.Google Scholar
  29. 29.
    Chastain J, editor. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perkin-Elmer Corporation; 1992.Google Scholar
  30. 30.
    XPS Spectra [Internet]. Casa Software Ltd.; c2013 [cited 2013 Nov 10]. Available from
  31. 31.
    Sherwood PMA. Curve fitting in surface analysis and the effect of background inclusion in the fitting process. J Vac Sci Technol A. 1996;14:1424–32.CrossRefGoogle Scholar
  32. 32.
    Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG. Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem. 2010;396:983–1002.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 10815–37.Google Scholar
  34. 34.
    Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11:694–703.CrossRefPubMedGoogle Scholar
  35. 35.
    Sun LC, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv. 2011;8:2–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng ZL, Elias DR, Kamat NP, Johnston ED, Poloukhtine A, Popik V, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjugate Chem. 2011;22:2021–9.CrossRefGoogle Scholar
  37. 37.
    Shan X, Chen L, Yuan Y, Liu C, Zhang X, Sheng Y, et al. Quantitative analysis of hemoglobin content in polymeric nanoparticles as blood substitutes using Fourier transform infrared spectroscopy. J Mater Sci Mater Med. 2010;21:241–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir. 2011;27:9302–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Carey FA. Chapter 13. Spectroscopy. In: Organic chemistry, 4th ed. [Internet]. McGraw Hill; c2000 [cited 2013 Nov 10]. Available from
  40. 40.
    Zhou H, Du F, Li X, Zhang B, Li W, Yan B. Characterization of organic molecules attached to gold nanoparticle surface using high resolution magic angle spinning 1H NMR. J Phys Chem C. 2008;112:19360–6.CrossRefGoogle Scholar
  41. 41.
    Espinosa JF. High resolution magic angle spinning NMR applied to the analysis of organic compounds bound to solid supports. Curr Top Med Chem. 2011;11:74–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Polito L, Monti D, Caneva E, Delnevo E, Russo G, Prosperi D. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide–alkyne click reaction sequence. Chem Commun. 2008;621–3.Google Scholar
  43. 43.
    Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanoparticles and their applications in medicine. Nanomedicine. 2006;1:157–68.CrossRefPubMedGoogle Scholar
  44. 44.
    Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–47.CrossRefPubMedGoogle Scholar
  45. 45.
    Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir. 2006;22:8178–85.CrossRefPubMedGoogle Scholar
  46. 46.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC. Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials. 2007;28:5426–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.PubMedGoogle Scholar
  49. 49.
    Wang L, Neoh KG, Kang ET, Shuter B, Wang SC. Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: An in vitro assessment. Adv Funct Mater. 2009;19:2615–22.CrossRefGoogle Scholar
  50. 50.
    Welsch N, Lu Y, Dzubiella J, Ballauff M. Adsorption of proteins to functional polymeric nanoparticles. Polymer. 2013;54:2835–49.CrossRefGoogle Scholar
  51. 51.
    Becker AL, Welsch N, Schneider C, Ballauff M. Adsorption of RNase A on cationic polyelectrolyte brushes: a study by isothermal titration calorimetry. Biomacromolecules. 2011;12:3936–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari ZA, Singh SP, et al. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir. 2012;28:11142–52.CrossRefPubMedGoogle Scholar
  53. 53.
    Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci. 2011;11:628–38.CrossRefPubMedGoogle Scholar
  54. 54.
    Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small. 2012;8:661–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotech. 2009;4:577–80.CrossRefGoogle Scholar
  56. 56.
    Iosin M, Toderas F, Baldeck PL, Astilean S. Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct. 2009;924–926:196–200.CrossRefGoogle Scholar
  57. 57.
    Shi XJ, Li D, Xie J, Wang S, Wu ZQ, Chen H. Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chin Sci Bull. 2012;57:1109–15.CrossRefGoogle Scholar
  58. 58.
    Bell NC, Minelli C, Shard AG. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Anal Methods. 2013;5:4591–601.CrossRefGoogle Scholar
  59. 59.
    Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26:1053–61.CrossRefPubMedGoogle Scholar
  60. 60.
    Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang L, Neoh KG, Kang ET, Shuter B. Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials. 2011;32:2166–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2006;2:785–92.CrossRefPubMedGoogle Scholar
  63. 63.
    Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Lindén M. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small. 2010;6:1234–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, et al. Distribution of the folate receptor Gp38 in normal and malignant-cell lines and tissues. Cancer Res. 1992;52:3396–401.PubMedGoogle Scholar
  65. 65.
    Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-lines – physiological and clinical implications. Cancer Am Cancer Soc. 1994;73:2432–43.Google Scholar
  66. 66.
    Lu S, Neoh KG, Huang C, Shi Z, Kang ET. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. J Colloid Interface Sci. 2013;412:46–55.CrossRefPubMedGoogle Scholar
  67. 67.
    Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol. 2013;10:2.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Lerch S, Dass M, Musyanovych A, Landfester K, Mailänder V. Polymeric nanoparticles of different sizes overcome the cell membrane barrier. Eur J Pharm Biopharm. 2013;84:265–74.CrossRefPubMedGoogle Scholar
  69. 69.
    Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules. 2011;12:2440–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Gottstein C, Wu G, Wong BJ, Zasadzinski JA. Precise quantification of nanoparticle internalization. ACS Nano. 2013;7:4933–45.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 2002;233:51–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine. 2007;3:111–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27:653–70.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Hou X, Jones BT. Inductively coupled plasma/optical emission spectrometry. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 9468–85.Google Scholar
  75. 75.
    Perkin Elmer Technical note. The 30-minute guide to ICP-MS [Internet]. Waltham: PerkinElmer, Inc.; c2004–2011 [cited 2013 Nov 10]. Available from
  76. 76.
    Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.CrossRefPubMedGoogle Scholar
  77. 77.
    Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 2011;8:9.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L. Cell viability assays. In: Sittampalam GS, Gal-Edd N, Arkin M, Auld D, Austin C, Bejcek B, et al., editors. Assay guidance manual [Internet]. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. [cited 2013 Nov 10]. Available from:
  79. 79.
    Niles AL, Moravec RA, Riss TL. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov. 2008;3:655–69.CrossRefPubMedGoogle Scholar
  80. 80.
    Wörle-Knirsch J, Pulskamp K, Krug H. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6:1261–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations