Skip to main content

Advanced Nanomaterials: Promises for Improved Dental Tissue Regeneration

  • Chapter
  • First Online:
Book cover Nanotechnology in Endodontics

Abstract

Nanotechnology is emerging as an interdisciplinary field that is undergoing rapid development and has become a powerful tool for various biomedical applications such as tissue regeneration, drug delivery, biosensors, gene transfection, and imaging. Nanomaterial-based design is able to mimic some of the mechanical and structural properties of native tissue and can promote biointegration. Ceramic-, metal-, and carbon-based nanoparticles possess unique physical, chemical, and biological characteristics due to the high surface-to-volume ratio. A range of synthetic nanoparticles such as hydroxyapatite, bioglass, titanium, zirconia, and silver nanoparticles are proposed for dental restoration due to their unique bioactive characteristic. This review focuses on the most recent development in the field of nanomaterials with emphasis on dental tissue engineering that provides an inspiration for the development of such advanced biomaterials. In particular, we discuss synthesis and fabrication of bioactive nanomaterials, examine their current limitations, and conclude with future directions in designing more advanced nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–60.

    Article  Google Scholar 

  2. Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. TRENDS Biotechnol. 2001;19(3):97–101.

    Article  PubMed  Google Scholar 

  3. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–53.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Venugopal J, Prabhakaran MP, Low S, Choon AT, Zhang Y, Deepika G, et al. Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des. 2008;14(22):2184–200.

    Article  PubMed  Google Scholar 

  5. Carrow JK, Gaharwar AK. Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromolecular Chemistry and Physics. 2015; 261(3):248–64.

    Google Scholar 

  6. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6. PubMed PMID: 8493529.

    Article  PubMed  Google Scholar 

  7. Schexnailder P, Schmidt G. Nanocomposite polymer hydrogels. Colloid Polym Sci. 2009;287(1):1–11.

    Article  Google Scholar 

  8. Thomas J, Peppas N, Sato M, Webster T. Nanotechnology and biomaterials. Boca Raton: CRC Taylor and Francis; 2006.

    Google Scholar 

  9. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    Article  PubMed  Google Scholar 

  10. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science. 2006;314(5802):1107–10.

    Article  PubMed  Google Scholar 

  11. Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK. Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach. ACS Nano. 2015; DOI: 10.1021/nn507488s.

    Google Scholar 

  12. Gaharwar AK, Rivera C, Wu C-J, Chan BK, Schmidt G. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Mater Sci Eng C. 2013;33(3):1800–7.

    Article  Google Scholar 

  13. Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu CJ, Akkus O, et al. Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci. 2012;12(6):779.

    Article  PubMed  Google Scholar 

  14. Gaharwar AK, Rivera CP, Wu C-J, Schmidt G. Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater. 2011;7(12):4139–48.

    Article  PubMed  Google Scholar 

  15. Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G. Assessment of using Laponite cross-linked poly (ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater. 2011;7(2):568–77.

    Article  PubMed  Google Scholar 

  16. Yen AH, Yelick PC. Dental tissue regeneration – a mini-review. Gerontology. 2011;57(1):85–94.

    Article  PubMed  Google Scholar 

  17. Ratner BD. Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ. 2001;65(12):1340–7.

    PubMed  Google Scholar 

  18. Lavenus S, Louarn G, Layrolle P. Nanotechnology and dental implants. Int J Biomater. 2010;915327:9.

    Google Scholar 

  19. Piva E, Silva AF, Nor JE. Functionalized scaffolds to control dental pulp stem cell fate. J Endod. 2014;40(4 Suppl):S33–40. PubMed PMID: 24698691.

    Article  PubMed  Google Scholar 

  20. Mendonça G, Mendonca D, Aragao FJL, Cooper LF. Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials. 2008;29(28):3822–35.

    Article  PubMed  Google Scholar 

  21. Thesleff I, Tummers M. Tooth organogenesis and regeneration. StemBook. Cambridge, UK: Harvard Stem Cell Institute; 2008–2009.

    Google Scholar 

  22. Baldassarri M, Margolis HC, Beniash E. Compositional determinants of mechanical properties of enamel. J Dent Res. 2008;87(7):645–9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lee SK, Krebsbach PH, Matsuki Y, Nanci A, Yamada KM, Yamada Y. Ameloblastin expression in rat incisors and human tooth germs. Int J Dev Biol. 1996;40(6):1141–50.

    PubMed  Google Scholar 

  24. Brookes SJ, Robinson C, Kirkham J, Bonass WA. Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Arch Oral Biol. 1995;40(1):1–14.

    Article  PubMed  Google Scholar 

  25. Chen P-Y, McKittrick J, Meyers MA. Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci. 2012;57(8):1492–704.

    Article  Google Scholar 

  26. Sebdani MM, Fathi MH. Novel hydroxyapatite-forsterite-bioglass nanocomposite coatings with improved mechanical properties. J Alloys Compd. 2011;509(5):2273–6.

    Article  Google Scholar 

  27. Shima T, Keller JT, Alvira MM, Mayfield FH, Dunsker SB. Anterior cervical discectomy and interbody fusion: an experimental study using a synthetic tricalcium phosphate. J Neurosurg. 1979;51(4):533–8.

    Article  PubMed  Google Scholar 

  28. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22(6):493–507.

    Article  Google Scholar 

  29. Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett. 2007;61(18):3978–83.

    Article  Google Scholar 

  30. Sung Y-M, Lee J-C, Yang J-W. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J Crystal Growth. 2004;262(1):467–72.

    Article  Google Scholar 

  31. Sung Y-M, Kim D-H. Crystallization characteristics of yttria-stabilized zirconia/hydroxyapatite composite nanopowder. J Crystal Growth. 2003;254(3):411–7.

    Article  Google Scholar 

  32. Brostow W, Estevez M, Lobland HEH, Hoang L, Rodriguez JR, & Vargar S. Porous hydroxyapatite-based obturation materials for dentistry. Journal of Materials Research 2008;23(06):1587–96.

    Google Scholar 

  33. Cottrell DA, Wolford LM. Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery. J Oral Maxillofac Surg. 1998;56(8):935–41.

    Article  PubMed  Google Scholar 

  34. Ozgür Engin N, Tas AC. Manufacture of macroporous calcium hydroxyapatite bioceramics. J Eur Ceramic Soc. 1999;19(13):2569–72.

    Article  Google Scholar 

  35. González-Rodríguez A, de Dios L-GJ, del Castillo JD, Villalba-Moreno J. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci. 2011;26(3):317–24.

    Article  PubMed  Google Scholar 

  36. Uezono M, Takakuda K, Kikuchi M, Suzuki S, Moriyama K. Hydroxyapatite/collagen nanocomposite‐coated titanium rod for achieving rapid osseointegration onto bone surface. J Biomed Mater Res B Appl Biomater. 2013;101(6):1031–8.

    Article  PubMed  Google Scholar 

  37. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34(18):4404–17.

    Article  PubMed  Google Scholar 

  38. Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12(5):1641–50.

    Article  PubMed  Google Scholar 

  39. Kudo K, Miyasawa M, Fujioka Y, Kamegai T, Nakano H, Seino Y, et al. Clinical application of dental implant with root of coated bioglass: short-term results. Oral Surg Oral Med Oral Pathol. 1990;70(1):18–23.

    Article  PubMed  Google Scholar 

  40. Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7(3):25–42.

    Article  PubMed  Google Scholar 

  41. Stanley HR, Hench L, Going R, Bennett C, Chellemi SJ, King C, et al. The implantation of natural tooth form bioglasses in baboons: a preliminary report. Oral Surg Oral Med Oral Pathol. 1976;42(3):339–56.

    Article  PubMed  Google Scholar 

  42. Piotrowski G, Hench LL, Allen WC, Miller GJ. Mechanical studies of the bone bioglass interfacial bond. J Biomed Mater Res. 1975;9(4):47–61.

    Article  PubMed  Google Scholar 

  43. Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res. 1999;44(1):31–43.

    Article  PubMed  Google Scholar 

  44. Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass. Dent Mater. 2012;28(11):1134–45.

    Article  PubMed  Google Scholar 

  45. Ananth KP, Suganya S, Mangalaraj D, Ferreira J, Balamurugan A. Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation. Mater Sci Eng C. 2013;33(7):4160–6.

    Article  Google Scholar 

  46. Varanasi VG, Owyoung JB, Saiz E, Marshall SJ, Marshall GW, Loomer PM. The ionic products of bioactive glass particle dissolution enhance periodontal ligament fibroblast osteocalcin expression and enhance early mineralized tissue development. J Biomed Mater Res A. 2011;98(2):177–84. PubMed PMID: 21548068.

    Article  PubMed  Google Scholar 

  47. Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, et al. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater. 2009;5(9):3536–47. PubMed PMID: 19497391.

    Article  PubMed  Google Scholar 

  48. Varanasi VG, Leong KK, Dominia LM, Jue SM, Loomer PM, Marshall GW. Si and Ca individually and combinatorially target enhanced MC3T3-E1 subclone 4 early osteogenic marker expression. J Oral Implantol. 2012;38(4):325–36. PubMed PMID: 22913306.

    Article  PubMed  Google Scholar 

  49. Tousi NS, Velten MF, Bishop TJ, Leong KK, Barkhordar NS, Marshall GW, et al. Combinatorial effect of Si4+, Ca2+, and Mg2+ released from bioactive glasses on osteoblast osteocalcin expression and biomineralization. Mat Sci Eng C Mater. 2013;33(5):2757–65. PubMed PMID: WOS:000319630100037. English.

    Article  Google Scholar 

  50. Jiang P, Liang J, Lin C. Construction of micro–nano network structure on titanium surface for improving bioactivity. Appl Surf Sci. 2013;280:373–80.

    Article  Google Scholar 

  51. Wang H, Lin C, Hu R. Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Appl Surf Sci. 2009;255(7):4074–81.

    Article  Google Scholar 

  52. Albrektsson TO, Johansson CB, Sennerby L. Biological aspects of implant dentistry: osseointegration. Periodontol 2000. 1994;4(1):58–73.

    Article  PubMed  Google Scholar 

  53. Suska F, Svensson S, Johansson A, Emanuelsson L, Karlholm H, Ohrlander M, et al. In vivo evaluation of noble metal coatings. J Biomed Mater Res B Appl Biomater. 2010;92(1):86–94.

    Article  PubMed  Google Scholar 

  54. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3):49–121.

    Article  Google Scholar 

  55. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25(7):889–902.

    Article  PubMed  Google Scholar 

  56. Petrie TA, Reyes CD, Burns KL, García AJ. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med. 2009;13(8b):2602–12.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cochran DL. A comparison of endosseous dental implant surfaces. J Periodontol. 1999;70(12):1523–39.

    Article  PubMed  Google Scholar 

  58. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85(6):496–500.

    Article  PubMed  Google Scholar 

  59. Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S. Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res. 2002;59(1):84–99.

    Article  PubMed  Google Scholar 

  60. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. Clin Oral Implants Res. 2006;17(3):251–7.

    Article  PubMed  Google Scholar 

  61. Sowa M, Piotrowska M, Widziołek M, Dercz G, Tylko G, Gorewoda T, Osyczka AM, Simka W. “Bioactivity of coatings formed on Ti–13Nb–13Zr alloy using plasma electrolytic oxidation.” Materials Science and Engineering: C 49 (2015):159–173.

    Google Scholar 

  62. Wang XX, Hayakawa S, Tsuru K, Osaka A. A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. J Biomed Mater Res. 2001;54(2):172–8.

    Article  PubMed  Google Scholar 

  63. Uchida M, Kim H-M, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials. 2002;23(1):313–7.

    Article  PubMed  Google Scholar 

  64. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res. 1998;40(2):324–35.

    Article  PubMed  Google Scholar 

  65. Liu D-M, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials. 2001;22(13):1721–30.

    Article  PubMed  Google Scholar 

  66. Xu W-P, Zhang W, Asrican R, Kim H-J, Kaplan DL, Yelick PC. Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A. 2008;14(4):549–57.

    Article  PubMed  Google Scholar 

  67. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B Appl Biomater. 2005;72(2):239–45.

    Article  PubMed  Google Scholar 

  68. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27(4):535–43.

    Article  PubMed  Google Scholar 

  69. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1–25.

    Article  PubMed  Google Scholar 

  70. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004;25(24):5539–45.

    Article  PubMed  Google Scholar 

  71. Piconi C, Burger W, Richter HG, Cittadini A, Maccauro G, Covacci V, et al. Y-TZP ceramics for artificial joint replacements. Biomaterials. 1998;19(16):1489–94.

    Article  PubMed  Google Scholar 

  72. Bao L, Liu J, Shi F, Jiang Y, Liu G. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci. 2014;290:48–52.

    Article  Google Scholar 

  73. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1–32.

    Article  Google Scholar 

  74. Marshall DB, Evans AG, Drory M. Transformation toughening in ceramics. Fract Mech Ceram. 1983;6:289–307.

    Google Scholar 

  75. Uzun G. An overview of dental CAD/CAM systems. Biotechnol Biotechnol Equip. 2008;22(1):530.

    Article  Google Scholar 

  76. Oetzel C, Clasen R. Preparation of zirconia dental crowns via electrophoretic deposition. J Mater Sci. 2006;41(24):8130–7.

    Article  Google Scholar 

  77. Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland H-D, et al. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomaterialia. 2010;6(12):4539–46.

    Google Scholar 

  78. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):1–10.

    Article  Google Scholar 

  79. García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C, Jiménez-Martínez R, Cuevas-Guajardo S, Sánchez-Reyna P, et al. Perspectives for the use of silver nanoparticles in dental practice. Int Dent J. 2011;61(6):297–301.

    Article  PubMed  Google Scholar 

  80. Chladek G, Barszczewska-Rybarek I, Lukaszczyk J. Developing the procedure of modifying the denture soft liner by silver nanoparticles. Acta Bioeng Biomech. 2012;14(1):23–9.

    PubMed  Google Scholar 

  81. Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143–51.

    Article  Google Scholar 

  82. Magalhães APR, Santos LB, Lopes LG, Estrela CRA, Estrela C, Torres ÉM, et al. Nanosilver application in dental cements. ISRN Nanotechnol. 2012;2012(365438):6.

    Google Scholar 

  83. Espinosa-Cristóbal LF, Martínez-Castañón GA, Téllez-Déctor EJ, Niño-Martínez N, Zavala-Alonso NV, Loyola-Rodríguez JP. Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles. Mater Sci Eng C. 2013;33(4):2197–202.

    Article  Google Scholar 

  84. Chladek G, Mertas A, Barszczewska-Rybarek I, Nalewajek T, Żmudzki J, Król W, et al. Antifungal activity of denture soft lining material modified by silver nanoparticles—a pilot study. Int J Mol Sci. 2011;12(7):4735–44.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, Cajero-Juárez M, Castano VM. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 2012;7:4777.

    PubMed Central  PubMed  Google Scholar 

  86. Uno M, Kurachi M, Wakamatsu N, Doi Y. Effects of adding silver nanoparticles on the toughening of dental porcelain. J Prosthet Dent. 2013;109(4):241–7.

    Article  PubMed  Google Scholar 

  87. Lezhnina MM, Grewe T, Stoehr H, Kynast U. Laponite blue: dissolving the insoluble. Angewandte Chemie. 2012;51(42):10652–5. PubMed PMID: 22952053.

    Article  PubMed  Google Scholar 

  88. Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329–36.

    Article  PubMed  Google Scholar 

  89. Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S, et al. Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Funct Mater. 2010;20(3):429–36.

    Article  Google Scholar 

  90. Gaharwar AK, Schexnailder PJ, Dundigalla A, White JD, Matos-Pérez CR, Cloud JL, et al. Highly extensible bio-nanocomposite fibers. Macromol Rapid Commun. 2011;32(1):50–7.

    Article  PubMed  Google Scholar 

  91. Gaharwar AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K, et al. Nanoclay-enriched poly (ɛ-caprolactone) electrospun Scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Engineering Part A. 2014;20(15–16):2088–2101.

    Google Scholar 

  92. Shinmura Y, Tsuchiya S, Hata K, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol. 2008;217(3):728–38. PubMed PMID: 18663726.

    Article  PubMed  Google Scholar 

  93. Guo WH, He Y, Zhang XJ, Lu W, Wang CM, Yu H, et al. The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials. 2009;30(35):6708–23. PubMed PMID: WOS:000271665300004. English.

    Article  PubMed  Google Scholar 

  94. Bartold P, McCulloch CAG, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000. 2000;24(1):253–69.

    Article  PubMed  Google Scholar 

  95. Ferreira CF, Magini RS, Sharpe PT. Biological tooth replacement and repair. J Oral Rehabil. 2007;34(12):933–9. PubMed PMID: 18034675.

    Article  PubMed  Google Scholar 

  96. Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H, et al. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Scientific reports. 2014;4:3896.

    Google Scholar 

  97. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh K. Gaharwar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xavier, J.R., Desai, P., Varanasi, V.G., Al-Hashimi, I., Gaharwar, A.K. (2015). Advanced Nanomaterials: Promises for Improved Dental Tissue Regeneration. In: Kishen, A. (eds) Nanotechnology in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-13575-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13575-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13574-8

  • Online ISBN: 978-3-319-13575-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics