Skip to main content

Enhancing the Degree of Autonomy by Creating Automated Components within a Multi-Agent System Framework

  • Chapter
Knowledge-Based Information Systems in Practice

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 30))

Abstract

Humans have used machines to do more with less physical control and/or interaction (by increasing the Level of Automation (LoA)). Engineers have been tasked with progressively automating functions previously completed manually. Industry continues promoting a mechanized workforce in order to minimise business variations in human performance and maximise their productivity. Researchers also continue to pursue this goal using Artificial Intelligence (AI), Computational Intelligence (CI) and Machine Intelligence (MI) techniques. This process of transforming cognitive functionality into machine actionable form has encountered bottlenecks, such as scalability and inconsistent performance. More recently, Multi-Agent Systems (MASs) have been employed to provide a flexible framework for research and development, because of their ability to easily embody system complexity. The proposed framework should facilitate the development of components, their interoperability, coordination and cooperation techniques needed to solve complex, realworld problems within a dangerous and/or dynamic environment. Based on the effort to seek or facilitate human-like decision making within machines, the lack of success indicates that further research is required. This chapter discusses one possible avenue. It involves future research, aimed at achieving a cognitive sub-system for use on-board platforms. The framework introduced in this chapter is aimed at embedding traditional heuristic knowledge and higher order cognitive computation techniques. This conceptual mechanism could ultimately be used to implement a virtual mind when technology facilitates a real-time implementation and could be used to progressively enhance automation, achieve greater independence and enable more autonomous behaviour within control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delbridge, A. (ed.): The Macquarie Dictionary. Macquarie Library, St. Leonards, Australia (1981)

    Google Scholar 

  2. Tweedale, J.W.: Fuzzy control loop in an autonomous landing system for unmanned air vehicles. In: WCCI 2012: 2012 IEEE World Congress on Computational Intelligence (2012)

    Google Scholar 

  3. Tweedale, J.W., Jain, L.C.: Embedded Automation in Human-Agent Environment. Adaptation, Learning, and Optimization, vol. 10. Springer, Heidelberg (2011)

    Google Scholar 

  4. Tweedale, J.W.: Using multi-agent systems to enhance the level of autonomy in unmanned vehicles. In: Tweedale, J.W., Jain, L.C. (eds.) KES 2012. CCIS, vol. 246, pp. 189–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Andresen, S.L.: John mccarthy: Father of AI. IEEE Intelligent Systems 17, 84–85 (2002)

    Article  Google Scholar 

  6. Coram, R.: Boyd: The Fighter Pilot who changed the Art of War, Boston-New York-London. Little Brown and Company (2002)

    Google Scholar 

  7. Elfes, A.: Why the australian manufacturing industry needs the next generation of robots. The Conversation, CSIRO, Canberra, 1–4 (February 2013)

    Google Scholar 

  8. Fujimoto, T.: Evolution of manufacturing systems and ex-post dynamic capability - a case study of Toyota’s final assembly operations. In: Euro-Asia Centre, Faculty of Economics. Research Series 48. University of Tokyo (1997)

    Google Scholar 

  9. Yen, J., Yin, J., Ioerger, T.R., Miller, M.S., Xu, D., Volz, R.A.: CAST: Collaborative agents for simulating teamwork. In: International Joint Conferences on Artificial Intelligence, pp. 1135–1144. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  10. Wallis, P., Rönnquist, R., Jarvis, D., Lucas, A.: The automated wingman: Using jack for unmanned autonomous vehicles. In: IEEE Aerospace Conference Proceedings, vol. 5, pp. 2615–2622 (March 2002)

    Google Scholar 

  11. Lab, T.I.: JADE - java agent development framework (June 25, 2007)

    Google Scholar 

  12. Cohen, P.R., Levesque, H.J.: Teamwork. Nous, Special Issue on Cognitive Science and Artificial Intelligence 254(4), 487–512 (1991)

    Google Scholar 

  13. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Strohband, P.S., Dupont, C., Jendrossek, L., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA grand challenge. Journal of Field Robotics, Wiley InterScience 23(9), 661–692 (2006)

    Article  Google Scholar 

  14. Hylton, T.: Darpa SYNAPSE project. Arlington, VA (2009)

    Google Scholar 

  15. Versace, M., Chandler, B.: The brain of a new machine. In: IEEE Spectrum, vol. 47(12), pp. 28–35. Institute of Electrical and Electronics Engineers, New York (December 2010)

    Google Scholar 

  16. Munson, G.E.: The rise and fall of unimation, inc. – story of robotics innovation and triumph that changed the world! Robot Magazine. Maplegate Media, Danbury, CT 24, 1–10 (2010)

    Google Scholar 

  17. Johnson, G.: The advance of the robots: Helping manufacturers become more competitive. Whats New in Process Technology 26(9), 4–7 (2013)

    Google Scholar 

  18. Samuels, A.: Studies in machine learning using the game of checkers. IBM Journal of Research & Development 3, 211–229 (1959)

    Google Scholar 

  19. Samuels, A.: Quote from an interview. Stanford University Press Office (1983)

    Google Scholar 

  20. Nwana, H.S.: Software agents: An overview. In: McBurney, P. (ed.) The Knowledge Engineering Review, vol. 11(3), pp. 205–244. City University of New York, USA (October/November 1996)

    Google Scholar 

  21. Hall, D.L., Llinas, J.: Introduction to multisensor data fusion. Proc. of IEEE 85 (1), 6–23 (1997)

    Article  Google Scholar 

  22. Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.E.: Innovations in multi-agent systems. J. Network and Computer Applications 30(3), 1089–1115 (2007)

    Article  Google Scholar 

  23. Ruff, H.A., Calhoun, G.L., Draper, M.H., Fontejon, J.V., Guilfoos, B.J.: Exploring automation issues in supervisory control of multiple UAVs. In: 2nd Human Performance, Situation Awareness, and Automation Technology Conference, Daytona Beach, FL, pp. 218–222 (2004)

    Google Scholar 

  24. Calhoun, G., Ruff, H., Draper, M., Wright, N., Mullins, B.: Levels of automation in multi-UAV control allocation and router tasks. In: AIAA Infotech @ Aerospace Conference, April 6 - 9, pp. 1–13. American Association for Artificial Intelligence, Seattle (2009)

    Google Scholar 

  25. Calhoun, G., Ruff, H., Draper, M., Wright, N., Mullins, B.: Effects of levels of automation in unmanned aerial vehicle routing task. In: Procedings of the Human Factors and Ergonomics Society Annual Meeting, HFES, vol. 53, pp. 197–201. Sage Publications, Thousand Oaks (2009)

    Google Scholar 

  26. Lange, D.B., Oshima, M., Karjoth, G., Kosaka, K.: Aglets: Programming mobile agents in java. In: Masuda, T., Tsukamoto, M., Masunaga, Y. (eds.) WWCA 1997. LNCS, vol. 1274, pp. 253–266. Springer, Heidelberg (1997)

    Google Scholar 

  27. Fisher, M., Wooldridge, M.: Specifying and verifying distributed intelligent systems, Porto, Portugal, pp. 13–28 (1993); distributed intelligent systems;formal specification;formal verification;temporal belief logics;Concurrent METATEM;programming language;reasoning

    Google Scholar 

  28. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 56–70. Springer, Heidelberg (1995)

    Google Scholar 

  29. Wooldridge, M., Muller, J., Tambe, M.: Agent theories, architectures, and languages: a bibliography. In: IJCAI 1995 Workshop (ATAL) Proceedings. Intelligent Agents II. Agent Theories, Architectures, and Languages, pp. 408–431. IEEE Press, New York (1996)

    Chapter  Google Scholar 

  30. Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The Belief-Desire-Intention Model of Agency. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Vivek 12(3-4), 38–66 (1999); research and development;autonomous agents;multi-agent systems;historical context;agent-based computing

    Google Scholar 

  32. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons Ltd, Chichester (2002)

    Google Scholar 

  33. Vaucher, J., Ncho, A.: JADE tutorial and primer. In: Department d’informatique. Université de Montréal, Canada (April 2003)

    Google Scholar 

  34. Tambe, M., Pynadath, D., Chauvat, C., Das, C., Kaminka, G.: Adaptive agent architectures for heterogeneous team members. In: International Conference on Multi-Agents Systems (ICMAS 2000), Boston, MA (July 2000)

    Google Scholar 

  35. Gherbi, T., Borne, I., Meslati, D.: Mde and mobile agents: Another reflection on the agent migration. In: Proceedings of the UKSim 2009: 11th International Conference on Computer Modelling and Simulation, pp. 468–473. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  36. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. In: 2nd, Addison-Wesley, London (2002)

    Google Scholar 

  37. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, New York (1995)

    Google Scholar 

  38. Grand, M.: Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with Uml, vol. 1. John Wiley & Sons, Inc., New York (2002)

    Google Scholar 

  39. Schmidt, D.C.: Patterns for Concurrent, Parallel, and Distributed Systems. Washington State University, St. Louis, School of Engineering & Applied Science, Missouri (2005)

    Google Scholar 

  40. Venners, B.: Leading-Edge Java - How to Use Design Patterns: A Conversation with Erich Gamma. Artima Developer (May 23, 2005), http://www.artima.com/lejava/articles/gammadpP.html (last accessed March 29, 2007)

  41. Lange, D.B., Oshima, M.: Mobile agents with java: The aglet api. World Wide Web 1(3), 111–121 (1998)

    Article  Google Scholar 

  42. Lange, D.B.: Java aglet application programming interface (J-AAPI) white paper - draft 2. Technical report, IBM Tokyo Research Laboratory (1997)

    Google Scholar 

  43. Lange, D.B.: Mobile agents: environments, technologies, and applications. In: Third International Conference and Exhibition on The Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM 1998), pp. 11–14. The Practical Application Company, London (April 1998)

    Google Scholar 

  44. Yamamoto, G., Nakamura, Y.: Architecture and performance evaluation of a massive multi-agent system. In: 3rd Annual Conference on Autonomous Agents. ACM, Washington (1999)

    Google Scholar 

  45. Grosz, B., Kraus, S.: Collaborative plans for complex group activity. In: Leake, D. (ed.) Artificial Intelligence, vol. 86(2), pp. 269–357. AAAI, Menlo Park (1996)

    Google Scholar 

  46. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.: LISP 1.5 Programmer’s Manual, vol. 2. MIT Press, Boston (1962)

    Google Scholar 

  47. Fan, X., Yen, J., Miller, M.S., Volz, R.A.: The semantics of mallet–an agent teamwork encoding language. Declarative Agent Languages and Technologies II, 69–91 (2005)

    Google Scholar 

  48. AOS: JACK intelligent agents teams manual 4.1 (March 2006), http://www.agent-software.com.au/shared/resources/index.html (accessed 2nd March)

  49. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents: Summary of an agent infrastructure. In: 5th International Conference on Autonomous Agents, Agents 2001, Montreal, Canada (May 2001)

    Google Scholar 

  50. Hritcu, C., Buraga, S.: A reference implementation of ADF (Agent Developing Framework): semantic web-based agent communication. In: Seventh International Symposium on Symbolic and Numerical Algorithms for Scientific Computing, Timisoara, Romania, vol. 8 (2006)

    Google Scholar 

  51. Laird, J., Newell, A., Rosenbloom, P.: Soar: architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)

    Article  MathSciNet  Google Scholar 

  52. Oliva, E., Viroli, M., Omicini, A.: Minority game: A logic-based approach in tucson. In: Paoli, F.D., Stefano, A.D., Omicini, A., Santoro, C. (eds.) 7th WOA 2006 Workshop, From Objects to Agents, Catania, Italy, September 26-27 (2006)

    Google Scholar 

  53. Smith, I.A., Smith, I.A., Cohen, P.R., Bradshaw, J.M., Greaves, M.A.G.M., Holmback, H.A.H.H.: Designing conversation policies using joint intention theory. In: Cohen, P.R. (ed.) Proceedings. International Conference on Multi Agent Systems, pp. 269–276 (1998)

    Google Scholar 

  54. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124 (1997)

    Google Scholar 

  55. Weng, J., McClelland, J., Pentland, A., Sporns, O.: Autonomous mental development by robots and animals. Science, American Association for the Advancement of Science 291(5504), 599–600 (2001)

    Article  Google Scholar 

  56. Newell, A.: Physical symbol systems. Cognitive Science: A Multidisciplinary Journal 4(2), 135–183 (1980)

    Article  Google Scholar 

  57. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10, 141–160 (2009)

    Article  Google Scholar 

  58. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation 11(2), 151–180 (2007)

    Article  Google Scholar 

  59. Krichmar, J., Edelman, G.: Brain-based devices for the study of nervous systems and the development of intelligent machines. Artificial Life 11, 63–77 (2005)

    Article  Google Scholar 

  60. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: Where do we go from here? In: Wang, P., Goertzel, B., Franklin, S. (eds.) AGI, vol. 171, pp. 122–136. IOS Press, Amsterdam (2008)

    Google Scholar 

  61. Vree, J.K.D.: A note on information, order, stability and adaptability. Biosystems 38(2/3), 221–227 (1996)

    Article  Google Scholar 

  62. Sendhoff, B., Pötter, C., von Seelen, W.: The role of information in simulated evolution. In: Proceedings from the International Conference on Complex Systems on Unifying Themes in Complex Systems, pp. 453–472. Perseus Books, Cambridge (2000)

    Google Scholar 

  63. Sporns, O.: From complex networks to intelligent systems. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 15–30. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  64. Deco, G., Rolls, E.T., Romo, R.: Stochastic dynamics as a principle of brain function. Progress in Neurobiology 88(1), 1–16 (2009)

    Article  Google Scholar 

  65. Kang, J., Wu, J., Smerieri, A., Feng, J.: European Journal of Neuroscience 31, 1006–1018 (2010)

    Google Scholar 

  66. Grimes, D.B., Rao, R.P.N.: Learning actions through imitation and exploration: Towards humanoid robots that learn from humans. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 103–138. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  67. Wrede, B., Rohlfing, K.J., Hanheide, M., Sagerer, G.: Towards learning by interacting. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 139–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  68. Sagan, C., Reddy, R., Heer, E., Albus, J.S., Balzer, R.M., Binford, T.O., Gonzalez, R.C., Hart, P., Hill, J., Lee, G., Levinthal, E.C., Minker, J., Minsky, M., Norman, D.A., Rieger, C.J., Sheridan, T.B., Whitney, W.M., Winston, P.H., Yerazunis, S., Gevarter, W.B., Sadin, R.: Machine intelligence and robotics. Report of the NASA Study Group 1273, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California (1979)

    Google Scholar 

  69. Langley, P.: The changing science of machine learning. Machine Learning, 275–279 (2011)

    Google Scholar 

  70. Galway, L., Charles, D., Black, M.: Machine learning in digital games: a survey. Artif. Intell. Rev. 29, 123–161 (2008)

    Article  Google Scholar 

  71. Guha, R.V., Lenat, D.B.: Cyc: a mid-term report. AI Magazine 11(3), 32–59 (1990)

    Google Scholar 

  72. Nilsson, N.J.: The physical symbol system hypothesis: Status and prospects. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 9–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  73. Georgeff, M., Lansky, A.: Procedural knowledge. In: Leveson, N.G. (ed.) IEEE (Special Issue on Knowledge Representation), vol. 74, pp. 1383–1398 (1986)

    Google Scholar 

  74. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: PRODIGY: an integrated architecture for planning and learning. Intelligence/sigart Bulletin 2, 51–55 (1991)

    Google Scholar 

  75. Langley, P., McKusick, K.B., Allen, J.A., Iba, W., Thompson, K.: A design for the icarus architecture. In: SIGART Bulletin, pp. 104–109 (1991)

    Google Scholar 

  76. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dmars. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 155–176. Springer, Heidelberg (1998)

    Google Scholar 

  77. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale (1993)

    Google Scholar 

  78. Dart, P., Harris, E., Malkin, P., Selvestrel, M., Tidhar, G.: Guidelines for integrating a model with the BattleModel architecture. Technical report, Defence Science and Technology Organisation, Fishermans Bend, Australia (2002)

    Google Scholar 

  79. Rao, A., Georgeff, M.: BDI Agents: From theory to practice. In: 1st International Conference on Multi-Agent Systems (ICMAS 1995), San Francisco, CA, pp. 312–319 (June 1995)

    Google Scholar 

  80. Shapiro, D., Shachter, R.: Convergent reinforcement learning algorithms for hierarchical reactive plans (an unpublished manuscript). In: Department of Management Science and Engineering, pp. 1–7. Stanford University, Stanford (2000)

    Google Scholar 

  81. Naur, P., Randell, B.: Software enginering:report on a conference sponsored by the NATO science committee. Technical report, Scientific Affairs Division, NATO, Brussels, Belgium (1969)

    Google Scholar 

  82. Minsky, M.: Society of Mind. Simon and Schuster, Pymble, Australia (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Tweedale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tweedale, J.W. (2015). Enhancing the Degree of Autonomy by Creating Automated Components within a Multi-Agent System Framework. In: Tweedale, J., Jain, L., Watada, J., Howlett, R. (eds) Knowledge-Based Information Systems in Practice. Smart Innovation, Systems and Technologies, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-13545-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13545-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13544-1

  • Online ISBN: 978-3-319-13545-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics