Patterns of Meaning in a Cognitive Ecosystem: Modeling Stabilization and Enculturation in Social Tagging Systems

  • Tobias LeyEmail author
  • Paul Seitlinger
  • Kai Pata
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 16)


We address the question of how shared meaning emerges in mass collaboration settings in education when it is not bound to a predefined curriculum. We take social tagging as an example where we examine how users converge to a common vocabulary and develop similar internal categories. The theoretical basis is provided by a view of a cognitive ecosystem that looks at how patterns emerge in an organism-environment system as a result of artifact-mediated collaborative human activity. First evidence for this view comes from a field experiment using a social bookmarking system where individual learning was mediated by the formation and stabilization of patterns on the group level. We then suggest a connectionist network model of categorization and verbal behavior as a means to model the processes of pattern formation and stabilization. We first show how this model predicts individual tag assignments in a dataset obtained from Using the same dataset, we then demonstrate the stabilization process in a community of simulated learners that results from feedback of the popular tags other learners have already assigned to a resource. We discuss the implications of a cognitive ecosystem view for mass collaboration in education and particularly for collaborative knowledge creation in MOOCs.


Mass collaboration Collaboration Shared artifacts Social tagging Social bookmarking Cognitive ecosystem Distributed cognition Patterns of meaning 


  1. Albrechtsen, H., Andersen, H. H. K., Bødker, S., & Pejtersen A. M. (2001). Affordances in activity theory and cognitive systems engineering. Roskilde, Denmark: Forskningscenter Risoe. Risoe-R; No. 1287(EN).Google Scholar
  2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Friksdahl-King, I., & Angel, S. (1977). A pattern language: Towns, buildings, construction. New York, NY: Oxford University Press.Google Scholar
  3. Arroyabe, E. (1984). Semiotik und Literatur: Philosophische Probleme der Literatur. Bonn, Germany: Bouvier.Google Scholar
  4. Barab, S., & Roth, W. M. (2006). Intentionally-bound systems and curricular-based ecosystems: An ecological perspective on knowing. Educational Researcher, 35, 3–13.CrossRefGoogle Scholar
  5. Barsalou, L. W. (2003). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18, 513–562.CrossRefGoogle Scholar
  6. Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  7. Bollen, D., & Halpin, H. (2009). An experimental analysis of suggestions in collaborative tagging. Web Intelligence and Agent Systems, 11, 41–53.Google Scholar
  8. Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58, 10–23.Google Scholar
  9. Cress, U., Feinkohl, I., Jirschitzka, J., & Kimmerle, J. (2016). Mass collaboration as co-evolution of cognitive and social systems. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  10. Cress, U., Held, C., & Kimmerle, J. (2013). The collective knowledge of social tags: Direct and indirect influences on navigation, learning, and information processing. Computers & Education, 60, 59–73. doi: 10.1016/j.compedu.2012.06.015.CrossRefGoogle Scholar
  11. Davis, T., Love, B. C., & Preston, A. R. (2011). Learning the exception to the rule: model-based fMRI reveals specialized representations for surprising category members. Cerebral Cortex, 22, 260–273.CrossRefGoogle Scholar
  12. Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  13. Dron, J., & Anderson, T. (2014). Teaching crowds: Learning and social media. Athabasca, Alberta, Canada: Athabasca University Press.Google Scholar
  14. Fu, W.-T. (2016). From distributed cognition to collective intelligence: Supporting cognitive search to facilitate online massive collaboration. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  15. Fu, W.-T., & Dong, W. (2012). Collaborative indexing and knowledge exploration: A social learning model. IEEE Intelligent Systems, 27, 39–46. Retrieved from
  16. Gao, F. (2013). A case study of using a social annotation tool to support collaboratively learning. The Internet and Higher Education, 17, 76–83. doi: 10.1016/j.iheduc.2012.11.002.CrossRefGoogle Scholar
  17. Gillet, D. (2013). Personal learning environments as enablers for connectivist MOOCs. Proceedings of the 12th International Conference on Information Technology Based Higher Education and Training (ITHET), Oct 2013 (pp. 1–5). Antalya, Turkey: IEEE.Google Scholar
  18. Glushko, R. J., Maglio, P. P., Matlock, T., & Barsalou, L. W. (2008). Categorization in the wild. Trends in Cognitive Science, 12, 129–135. doi: 10.1016/j.tics.2008.01.007.CrossRefGoogle Scholar
  19. Halatchliyski, I. (2016). Theoretical and empirical analysis of networked knowledge. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  20. Halatchliyski, I., Moskaliuk, J., Kimmerle, J., & Cress, U. (2013). Explaining authors’ contribution to pivotal artifacts during mass collaboration in the Wikipedia’s knowledge base. International Journal of Computer-Supported Collaborative Learning, 9, 97–115. doi: 10.1007/s11412-013-9182-3.CrossRefGoogle Scholar
  21. Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative tagging. In C. Williamson & M. E. Zurko (Eds.), Proceedings of the 16th International Conference on World Wide Web (pp. 211–220). New York, NY: ACM Press.CrossRefGoogle Scholar
  22. Held, C., Kimmerle, J., & Cress, U. (2012). Learning by foraging: The impact of individual knowledge and social tags on web navigation processes. Computers in Human Behavior, 28, 34–40.CrossRefGoogle Scholar
  23. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction, 7, 174–196. doi: 10.1145/353485.353487.CrossRefGoogle Scholar
  24. Hoppe, H. U., Harrer, A., Göhnert, T., & Hecking, T. (2016). Applying network models and network analysis techniques to the study of online communities. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  25. Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705–715.CrossRefGoogle Scholar
  26. Hutchins, E., & Hazlehurst, B. (1995). How to invent a lexicon: The development of shared symbols in interaction. In N. Gilbert & R. Conte (Eds.), Artificial societies: The computer simulation of social life (pp. 157–189). London, England: UCL Press.Google Scholar
  27. Hutchins, E., & Johnson, C. M. (2009). Modeling the emergence of language as an embodied collective cognitive activity. Topics in Cognitive Science, 1, 523–546.CrossRefGoogle Scholar
  28. Ilyenkov, E. (1977). Problems of dialectical materialism (Translated by A. Bluden). Retrieved from
  29. Järvilehto, T. (1998). The theory of the organism-environment system: I. Description of the theory. Integrative Physiological and Behavioral Science, 33, 321–334. doi: 10.1007/BF02688700.CrossRefGoogle Scholar
  30. Jäschke, R., Marinho, L. B., Hotho, A., Schmidt-Thieme, L., & Stumme, G. (2007). Tag recommendations in folksonomies. In J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, September 17–21, 2007, Proceedings (Vol. 4702, pp. 506–514). Heidelberg, Germany: Springer.Google Scholar
  31. Kang, R., Fu, W.-T., & Kannampallil, T. G. (2010). Exploiting knowledge-in-the-head and knowledge-in-the-social-web: Effects of domain expertise on exploratory search in individual and social search environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’10 (pp. 393–402). New York, NY: ACM Press.Google Scholar
  32. Kiefer, M., & Barslaou, L. W. (2013). Grounding the human conceptual system in perception, action, and internal states. In W. Priz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 381–407). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  33. Krestel, R., Fankhauser, P., & Nejdl, W. (2009). Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems (pp. 61–68). New York, NY: ACM-Press.Google Scholar
  34. Kuhn, A., McNally, B., Schmoll, S., Cahill, C., Lo, W.-T., Quintana, C., & Delen, I. (2012). How students find, evaluate and utilize peer-collected annotated multimedia data in science inquiry with zydeco. In Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems—CHI’12 (pp. 3061–3070). New York, NY: ACM Press. doi: 10.1145/2207676.2208719
  35. Law, J. (2007). Actor network theory and material semiotics. In B. S. Turner (Ed.), The new Blackwell companion to social theory (pp. 141–158). Chichester, England: Wiley-Blackwell.Google Scholar
  36. Ley, T., Cook, J., Dennerlein, S., Kravcik, M., Kunzmann, C., Pata, K., … Trattner, C. (2014). Scaling informal learning at the workplace: A model and four designs from a large-scale design-based research effort. British Journal of Educational Technology, 45, 1036–1048. doi: 10.1111/bjet.12197
  37. Ley, T., & Seitlinger, P. (2015). Dynamics of human categorization in a collaborative tagging system: How social processes of semantic stabilization shape individual sensemaking. Computers in Human Behavior, 51, 140–151. doi: 10.1016/j.chb.2015.04.053 .
  38. Love, B. C., & Gureckis, T. M. (2007). Models in search of a brain. Cognitive, Affective, & Behavioral Neuroscience, 7, 90–108.Google Scholar
  39. Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332.CrossRefGoogle Scholar
  40. Magnani, L. (2009). Abductive cognition. The epistemological and eco-cognitive dimensions of hypothetical reasoning. Berlin, Germany: Springer.Google Scholar
  41. Oeberst, A., Kimmerle, J., & Cress (2016). What is knowledge? Who creates it? Who possesses it? The need for novel answers to old questions. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  42. Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor: An emergent epistemological approach to learning. Science & Education, 14, 535–557. doi: 10.1007/s11191-004-5157-0.CrossRefGoogle Scholar
  43. Paavola, S., & Hakkarainen, K. (2014). Trialogical approach for knowledge creation. In S. C. Tan, H. J. So, & J. Yeo (Eds.), Knowledge creation in education (Springer education innovation book series). Singapore: Springer.Google Scholar
  44. Pata, K., & Bardone, E. (2014). Promoting distributed cognition at MOOC ecosystems. In P. Zaphiris & A. Ioannou (Eds.), Learning and collaboration technologies. Designing and developing novel learning experiences. First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014 (pp. 204–215). Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-07482-5_20.Google Scholar
  45. Puglisi, A., Baronchelli, A., & Loreto, V. (2008). Cultural route to the emergence of linguistic categories. Proceedings of the National Academy of Sciences of the United States of America, 105, 7936–7940.CrossRefGoogle Scholar
  46. Rabbany, R., Elatia, S., Takaffoli, M., & Zaïane, O. R. (2013). Collaborative learning of students in online discussion forums: A social network analysis perspective. In A. Peña-Ayala (Ed.), Educational data mining (pp. 441–466). Heidelberg, Germany: Springer.Google Scholar
  47. Rizzuto, D. S., & Kahana, M. J. (2001). An autoassociative neural network model of paired-associate learning. Neural Computation, 13, 2075–2092.CrossRefGoogle Scholar
  48. Rosch, E. H., Mervis, C. B., Gray, W. D., Johnson, D. M., Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.Google Scholar
  49. Seitlinger, P., Kowald, D., Trattner, C., & Ley, T. (2013). Recommending tags with a model of human categorization. In Conference on Information and Knowledge Management, CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA (pp. 2381–2386). New York, NY: ACM Press. doi: 10.1145/2505515.2505625
  50. Seitlinger, P., Ley, T., & Albert, D. (2015). Verbatim and semantic imitation in indexing resources on the Web: A fuzzy-trace account of social tagging. Applied Cognitive Psychology, 29, 32–48. doi: 10.1002/acp.3067.CrossRefGoogle Scholar
  51. Shatnawi, S., Gaber, M. M., & Cocea, M. (2014). Automatic content related feedback for MOOCs based on course domain ontology. In Intelligent data engineering and automated learning–IDEAL 2014 (pp. 27–35). Cham, Switzerland: Springer.Google Scholar
  52. Stahl, G. (2012). Traversing planes of learning. International Journal of Computer-Supported Collaborative Learning, 7, 467–473. doi: 10.1007/s11412-012-9159-7.CrossRefGoogle Scholar
  53. Stahl, G. (2013). Learning across levels. International Journal of Computer-Supported Collaborative Learning, 8, 1–12. doi: 10.1007/s11412-013-9169-0.
  54. Steels, L. (2006). Collaborative tagging as distributed cognition. Pragmatics and Cognition, 14, 287–292.CrossRefGoogle Scholar
  55. Van Overwalle, F., & Heylighen, F. (2006). Talking nets: A multi-agent connectionist approach to communication and trust between individuals. Psychological Review, 113, 606–627.CrossRefGoogle Scholar
  56. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
  57. Wagner, C., Singer, P., Strohmaier, M., & Huberman, B. (2014). Semantic stability and implicit consensus in social tagging streams. IEEE Transactions on Computational Social Systems, 1, 108–120.CrossRefGoogle Scholar
  58. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  59. Wisdom, T. N., & Goldstone, R. L. (2011). Innovation, imitation, and problem-solving in a networked group. Nonlinear Dynamics, Psychology, and Life Sciences, 15, 229–252.Google Scholar
  60. Yew, J., Gibson, F. P., & Teasley, S. D. (2006). Learning by tagging: The role of social tagging in group knowledge formation. MERLOT Journal of Online Learning and Teaching, 2, 275–285. Retrieved from
  61. Zemsky, R., & Massy, W. F. (2004, July 09). Why the e-learning boom went bust. The Chronicle of Higher Education. Retrieved from

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Educational Technology, Tallinn UniversityTallinnEstonia
  2. 2.Knowledge Technologies Institute, Graz University of TechnologyGrazAustria

Personalised recommendations