Applying Network Models and Network Analysis Techniques to the Study of Online Communities

  • H. Ulrich HoppeEmail author
  • Andreas Harrer
  • Tilman Göhnert
  • Tobias Hecking
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 16)


“Network science” has evolved as a new overarching paradigm for studying the structure and evolution of networks of various natures providing a rich set of techniques for modeling and analysis. Related to online learning and knowledge-building communities, there is a specific interest in methods of social network analysis (SNA) including also the analysis of actor-artifact networks. The application of network models and network analysis techniques to online communities and collaboration in masses can serve various purposes such as the identification of central actors and roles, the detection and tracking of subcommunities, and the tracing of ideas in knowledge-building communities. This chapter focuses on describing the corresponding approaches in such a way as to demonstrate the basic ideas without actually going into mathematical details. The different approaches will be exemplified with recent applications to the study of networked collaboration, especially in learning and teaching contexts.


Collaboration Mass collaboration Network science Network analysis 


  1. Backstrom, L., Huttenlocher, D., Kleinberg, J., & Lan, X. (2006). Group formation in large social networks: Membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 44–54), Philadelphia, PA. doi: 10.1145/1150402.1150412.
  2. Batagelj, V. (2003). Efficient algorithms for citation network analysis. In arXiv preprint cs/0309023. Retrieved from
  3. Batagelj, V., & Zaveršnik, M. (2003). An o(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049. Retrieved from
  4. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.CrossRefGoogle Scholar
  5. Bròdka, P., Saganowski, S., & Kazienko, P. (2013). GED: The method for group evolution discovery in social networks. Social Network Analysis and Mining, 3, 1–14.CrossRefGoogle Scholar
  6. de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149, 510–515.CrossRefGoogle Scholar
  7. Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. Cambridge, England: Cambridge University Press.Google Scholar
  8. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.CrossRefGoogle Scholar
  9. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99, 7821–7826.CrossRefGoogle Scholar
  10. Göhnert, T., Harrer, A., Hecking, T., & Hoppe, H. U. (2013, August). A workbench to construct and re-use network analysis workflows: Concept, implementation, and example case. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 1464–1466). New York, NY: ACM.Google Scholar
  11. Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolution of communities in dynamic social networks. In International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 176–183).Google Scholar
  12. Halatchliyski, I. (2016). Theoretical and empirical analysis of networked knowledge. In U. Cress, J. Moskaliuk, & H. Jeong (Eds.), Mass collaboration and education. Cham, Switzerland: Springer.Google Scholar
  13. Halatchliyski, I., Hecking, T., Göhnert, T., & Hoppe, H. U. (2014). Analyzing the path of ideas and activity of contributors in an open learning community. Journal of Learning Analytics, 1, 72–93.Google Scholar
  14. Harrer, A., & Schmidt, A. (2013). Blockmodeling and role analysis in multi-relational networks. Social Network Analysis and Mining, 3, 701–719.CrossRefGoogle Scholar
  15. Harrer, A., Zeini, S., & Pinkwart, N. (2006). Evaluation of communication in web-supported learning communities—An analysis with triangulation research design. International Journal of Web Based Communities, 2, 428–446.CrossRefGoogle Scholar
  16. Haythornthwaite, C. (2001). Exploring multiplexity: Social network structures in a computer-supported distance learning class. The Information Society, 17, 211–226.CrossRefGoogle Scholar
  17. Hecking, T., Göhnert, T., Zeini, S., & Hoppe, H. U. (2013). Task and time aware community detection in dynamically evolving social networks. Procedia Computer Science, 18, 2066, Proceedings of the International Conference on Computational Science, 2013, Barcelona, Spain, 5–7 June, 2013.CrossRefGoogle Scholar
  18. Hecking, T., Ziebarth, S., & Hoppe, H. U. (2014). Analysis of dynamic resource access patterns in a blended learning course. Journal of Learning Analytics, 1, 34–60.Google Scholar
  19. Hoppe, H. U., Göhnert, T., Steinert, L., & Charles, C. (2014). A web-based tool for communication flow analysis of online chats. LAK 2014Workshop Proceedings (CEUR Vol-1137 urn:nbn:de:0074-1137-8). Retrieved from
  20. Hoppe, U., Pinkwart, N., Oelinger, M., Zeini, S., Verdejo, F., Barros, B., & Mayorga, J. I. (2005). Building bridges within learning communities through ontologies and thematic objects. In Proceedings of the 2005 Conference on Computer Support for Collaborative Learning (CSCL 2005) (pp. 211–220), Taipei, Taiwan, June 2005.Google Scholar
  21. Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11, 39–63.CrossRefGoogle Scholar
  22. Krempel, L. (2005). Visualisierung komplexer Strukturen—Grundlagen der Darstellung mehr-dimensionaler Netzwerke. Frankfurt, Germany: Campus.Google Scholar
  23. Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford, England: Oxford University Press.Google Scholar
  24. Lehmann, S., Schwartz, M., & Hansen, L. K. (2008). Biclique communities. Physical Review E, 78, 016108. doi: 10.1103/PhysRevE.78.016108.CrossRefGoogle Scholar
  25. Leydesdorff, L. (2001). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Leiden, The Netherlands: Universal.Google Scholar
  26. Lipponen, L., Rahikainen, M., Lallimo, J., & Hakkarainen, K. (2003). Patterns of participation and discourse in elementary students’ computer-supported collaborative learning. Learning and Instruction, 13, 487–509.CrossRefGoogle Scholar
  27. Martínez Monés, A., Dimitriadis, Y., Rubia Avi, B., Gómez Sánchez, E., & de la Fuente Redondo, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41, 353–368.CrossRefGoogle Scholar
  28. Newman, M. E. J., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks (Princeton studies in complexity). Princeton, NJ: Princeton University Press.Google Scholar
  29. Nguyen, N. P., Dinh, T. N., Xuan, Y., & Thai, M. T. (2011). Adaptive algorithms for detecting community structure in dynamic social networks. In INFOCOM, 2011 Proceedings IEEE (pp. 2282–2290). doi: 10.1109/INFCOM.2011.5935045.
  30. Palla, G., Barabasi, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446, 664–667.CrossRefGoogle Scholar
  31. Palla, G., Derenyi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435, 814–818.CrossRefGoogle Scholar
  32. Reffay, C., & Chanier, T. (2003). How social network analysis can help to measure cohesion in collaborative distance-learning. In B. Wasson, S. Ludvigsen, & H. U. Hoppe (Eds.), Designing for change in networked learning environments (pp. 343–352). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  33. Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. The Journal of the Learning Sciences, 3, 265–283.CrossRefGoogle Scholar
  34. Suthers, D. D., & Desiato, C. (2012). Exposing chat features through analysis of uptake between contributions. In Proceedings of HICSS 2012 (pp. 3368–3377). New Brunswick, NJ: IEEE Computer Society.Google Scholar
  35. Suthers, D. D., Dwyer, N., Medina, R., & Vatraou, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5, 5–42.CrossRefGoogle Scholar
  36. Takaffoli, M., Sangi, F., Fagnan, J., & Zâiane, O. R. (2011). Community evolution mining in dynamic social networks. Procedia: Social and Behavioral Sciences, 22, 49–58.Google Scholar
  37. Vedres, B., & Stark, D. (2010). Structural folds: Generative disruption in overlapping groups. American Journal of Sociology, 115, 1150–1190.CrossRefGoogle Scholar
  38. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  39. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  40. Wu, T., Khan, F. M., Fisher, T. A., Shuler, L. A., & Pottenger, W. M. (2005). Posting act tagging using transformation-based learning. In T. Y. Lin, S. Ohsuga, C.-J. Liau, X. Hu, & S. Tsumoto (Eds.), Foundations of data mining and knowledge discovery (Vol. 6, pp. 319–331). Berlin, Germany: Springer.Google Scholar
  41. Zeini, S., Göhnert, T., Hecking, T., Krempel, L., & Hoppe, H. U. (2014). The impact of measurement time on subgroup detection in online communities. In F. Can, T. Özyer, & F. Polat (Eds.), State of the art applications of social network analysis (pp. 249–268). Cham, Switzerland: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • H. Ulrich Hoppe
    • 1
    Email author
  • Andreas Harrer
    • 2
  • Tilman Göhnert
    • 1
  • Tobias Hecking
    • 1
  1. 1.Department of Computer Science and Applied Cognitive ScienceUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of Computer ScienceTechnical University of ClausthalClausthal-ZellerfeldGermany

Personalised recommendations