Advertisement

A \(14k\)-Kernel for Planar Feedback Vertex Set via Region Decomposition

  • Marthe Bonamy
  • Łukasz KowalikEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)

Abstract

We show a kernel of at most \(14k\) vertices for the Planar Feedback Vertex Set problem. This improves over the previous kernel of size bounded by \(97k\). Our algorithm has a few new reduction rules. However, our main contribution is an application of the region decomposition technique in the analysis of the kernel size.

Keywords

Planar Graph Maximal Chain Kernel Size Internal Vertex Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abu-Khzam, F.N., Bou Khuzam, M.: An improved kernel for the undirected planar feedback vertex set problem. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 264–273. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Festa, P., Pardalos, P., Resende, M.: Feedback Set Problems. Encyclopedia of Optimization, pp. 1005–1016. Springer, New York (2009)Google Scholar
  7. 7.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010)Google Scholar
  8. 8.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  9. 9.
    Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 8th edn. Wiley Publishing, New York (2008)Google Scholar
  10. 10.
    Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 1–8 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Xiao, M.: A new linear kernel for undirected planar feedback vertex set: smaller and simpler. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 288–298. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LIRMMMontpellierFrance
  2. 2.University of WarsawWarsawPoland

Personalised recommendations