Parameterized Inapproximability of Degree Anonymization

  • Cristina Bazgan
  • André NichterleinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)


The Degree Anonymity  problem arises in the context of combinatorial graph anonymization. It asks, given a graph \(G\) and two integers \(k\) and \(s\), whether \(G\) can be made k-anonymous with at most \(s\) modifications. Here, a graph is k-anonymous if the graph contains for every vertex at least \(k-1\) other vertices of the same degree. Complementing recent investigations on its computational complexity, we show that this problem is very hard when studied from the viewpoints of approximation as well as parameterized approximation. In particular, for the optimization variant where one wants to minimize the number of either edge or vertex deletions there is no factor-\(n^{1-\varepsilon }\) approximation running in polynomial time unless P = NP, for any constant \(0 < \varepsilon \le 1\). For the variant where one wants to maximize \(k\) and the number \(s\) of either edge or vertex deletions is given, there is no factor-\(n^{{1}/{2}-\varepsilon }\) approximation running in time \(f(s) \cdot n^{O(1)}\) unless W[1] = FPT, for any constant \(0 < \varepsilon \le {1}/{2}\) and any function \(f\). On the positive side, we classify the general decision version as fixed-parameter tractable with respect to the combined parameter solution size \(s\) and maximum degree.


  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon, N.: The complexity of degree anonymization by vertex addition. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 44–55. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: The complexity of finding a large subgraph under anonymity constraints. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 152–162. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Chester, S., Kapron, B., Srivastava, G., Venkatesh, S.: Complexity of social network anonymization. Soc. Netw. Anal. Min. 3(2), 151–166 (2013)CrossRefGoogle Scholar
  5. 5.
    Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh, S.: Why Waldo befriended the dummy? \(k\)-anonymization of social networks with pseudo-nodes. Soc. Netw. Anal. Min. 3(3), 381–399 (2013)CrossRefGoogle Scholar
  6. 6.
    Clarkson, K.L., Liu, K., Terzi, E.: Towards identity anonymization in social networks. In: Yu, P., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, pp. 359–385. Springer, New York (2010)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)CrossRefGoogle Scholar
  10. 10.
    Hartung, S., Hoffmann, C., Nichterlein, A.: Improved upper and lower bound heuristics for degree anonymization in social networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 376–387. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’08), pp. 93–106. ACM (2008)Google Scholar
  13. 13.
    Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRefGoogle Scholar
  14. 14.
    Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, pp. 421–453. Springer, Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PSL, Université Paris-DauphineParisFrance
  2. 2.Institut für Softwaretechnik und Theoretische Informatik, TU BerlinBerlinGermany
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations