Improved Parameterized Algorithms for Network Query Problems

  • Ron Y. Pinter
  • Hadas Shachnai
  • Meirav ZehaviEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)


In the Partial Information Network Query (PINQ) problem, we are given a host graph \(H\), and a pattern \(\mathcal P\) whose topology is partially known. We seek a subgraph of \(H\) that resembles \(\mathcal{P}\). PINQ is a generalization of Subgraph Isomorphism, where the topology of \(\mathcal P\) is known, and Graph Motif, where the topology of \(\mathcal P\) is unknown. This generalization has important applications to bioinformatics, since it addresses the major challenge of analyzing biological networks in the absence of certain topological data. In this paper, we use a non-standard part-algebraic/part-combinatorial hybridization strategy to develop an exact parameterized algorithm as well as an FPT-approximation scheme for PINQ, allowing near resemblance between \(H\) and \(\mathcal P\). We thus unify and significantly improve previous results related to network queries.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Betzler, N., Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)CrossRefGoogle Scholar
  3. 3.
    Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bj\({\ddot{\rm o}}\)rklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182 (2010)Google Scholar
  5. 5.
    Bj\({\ddot{\rm o}}\)rklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR (2010). arxiv:1007.1161
  6. 6.
    Bj\({\ddot{\rm o}}\)rklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS, pp. 20–31 (2013)Google Scholar
  7. 7.
    Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions networks using feedback vertex set. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(4), 628–635 (2010)CrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)Google Scholar
  9. 9.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang, F.: Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM J. Comput. 38(6), 2526–2547 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: CPM, pp. 388–401 (2011)Google Scholar
  13. 13.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: a tool for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Com. Sys. Sci. 77(4), 799–811 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fionda, V., Palopoli, L.: Biological network querying techniques: Analysis and comparison. J. Comput. Biol. 18(4), 595–625 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Com. Sys. Sci. 78(3), 698–706 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Garey, M.R., Johnson, D.S.: Computers And Intractability: A Guide To The Theory Of Np-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  19. 19.
    Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett. 112(22), 889–892 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: Application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)CrossRefGoogle Scholar
  25. 25.
    Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)CrossRefGoogle Scholar
  27. 27.
    Pinter, R.Y., Zehavi, M.: Partial information network queries. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 362–375. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Pinter, R.Y., Zehavi, M.: Algorithms for topology-free and alignment network queries. J. Discrete Algorithms 27, 29–53 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction networks. BMC Bioinform. 7, 199 (2006)CrossRefGoogle Scholar
  31. 31.
    Sikora, F.: An (almost complete) state of the art around the graph motif problem. Universit\({\acute{\rm e}}\) Paris-Est Technical reports (2012)Google Scholar
  32. 32.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations