A Parameterized Study of Maximum Generalized Pattern Matching Problems

  • Sebastian OrdyniakEmail author
  • Alexandru Popa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)


The generalized function matching (GFM) problem has been intensively studied starting with [7]. Given a pattern p and a text t, the goal is to find a mapping from the letters of p to non-empty substrings of t, such that applying the mapping to p results in t. Very recently, the problem has been investigated within the framework of parameterized complexity [9].

In this paper we study the parameterized complexity of the optimization variant of GFM (called Max-GFM), which has been introduced in [1]. Here, one is allowed to replace some of the pattern letters with some special symbols “?”, termed wildcards or don’t cares, which can be mapped to an arbitrary substring of the text. The goal is to minimize the number of wildcards used.

We give a complete classification of the parameterized complexity of Max-GFM and its variants under a wide range of parameterizations, such as, the number of occurrences of a letter in the text, the size of the text alphabet, the number of occurrences of a letter in the pattern, the size of the pattern alphabet, the maximum length of a string matched to any pattern letter, the number of wildcards and the maximum size of a string that a wildcard can be mapped to.


Parameterized Complexity Optimization Variant Parameterized Problem Computable Function Partite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amir, A., Nor, I.: Generalized function matching. J. Discrete Algorithms 5(3), 514–523 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Finding patterns common to a set of strings (extended abstract). In: Proceedings of the 11h Annual ACM Symposium on Theory of Computing, 30 April–2 May, Atlanta, Georgia, USA, pp. 130–141 (1979)Google Scholar
  3. 3.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21(1), 46–62 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 295–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Clifford, R., Popa, A.: (In)approximability results for pattern matching problems. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference 2010, Prague, Czech Republic, 30 August–1 September, pp. 52–62. Prague Stringology Club, Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague (2010)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Ehrenfreucht, A., Rozenberg, G.: Finding a homomorphism between two words in np-complete. Inf. Process. Lett. 9(2), 86–88 (1979)CrossRefGoogle Scholar
  8. 8.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate complexity analysis. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 83–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. In: Seth, A., Vishnoi, N.K. (eds). IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013. LIPIcs, 12–14 December 2013, Guwahati, India, vol. 24, pp. 55–66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  11. 11.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 248–259. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. Int. J. Comput. Math. 50(3–4), 147–163 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. Inform. Théorique et Appl. 28(3–4), 233–253 (1994)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the pattern languages from positive data. Theor. Comput. Sci. 397(13), 150–165 (2008). Forty Years of Inductive Inference: Dedicated to the 60th Birthday of Rolf WiehagenCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ordyniak, S., Popa, A.: A parameterized study of maximum generalized pattern matching problems. CoRR, abs/1402.6109 (2014)
  16. 16.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Reidenbach, D.: A non-learnable class of e-pattern languages. Theor. Comput. Sci. 350(1), 91–102 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397(13), 166–193 (2008). Forty Years of Inductive Inference: Dedicated to the 60th Birthday of Rolf WiehagenCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Schmid, M.L.: A note on the complexity of matching patterns with variables. Inf. Process. Lett. 113(19–21), 729–733 (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Takeshi, S.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations