Advertisement

On the Parameterized Complexity of Associative and Commutative Unification

  • Tatsuya AkutsuEmail author
  • Jesper Jansson
  • Atsuhiro Takasu
  • Takeyuki Tamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)

Abstract

This paper studies the unification problem with associative, commutative, and associative-commutative functions. The parameterized complexity is analyzed with respect to the parameter “number of variables”. It is shown that both the associative and associative-commutative unification problems are \(W[1]\)-hard. For commutative unification, a polynomial-time algorithm is presented in which the number of variables is assumed to be a constant. Some related results for the string and tree edit distance problems with variables are also presented.

Keywords

Function Symbol Edit Distance Edit Operation Input Term Unification Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Aikou, K., Suzuki, Y., Shoudai, T., Uchida, T., Miyahara, T.: A polynomial time matching algorithm of ordered tree patterns having height-constrained variables. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 346–357. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Akutsu, T.: Approximate string matching with don’t care characters. Inf. Process. Lett. 55, 235–239 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Akutsu, T.: Approximate string matching with variable length don’t care characters. IEICE Trans. Inf. Syst. E79–D, 1353–1354 (1996)Google Scholar
  5. 5.
    Benanav, D., Kapur, D., Narendran, P.: Complexity of matching problems. J. Symbolic Comput. 3, 203–216 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 447–533. Elsevier, Amsterdam (2001)Google Scholar
  7. 7.
    Bille, P.: A survey on tree edit distance and related problem. Theoret. Comput. Sci. 337, 217–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameterized complexity of sequence alignment and consensus. Theoret. Comput. Sci. 147, 31–54 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    de Champeaux, D.: About the paterson-wegman linear unification algorithm. J. Comput. Syst. Sci. 32, 79–90 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Eker, S.: Single elementary associative-commutative matching. J. Autom. Reasoning 28, 35–51 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity analysis. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 83–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)Google Scholar
  13. 13.
    Gilbert, D., Schroeder, M.: FURY: fuzzy unification and resolution based on edit distance. In: Proceedings of 1st IEEE International Symposium on Bioinformatics and Biomedical Engineering, pp. 330–336 (2000)Google Scholar
  14. 14.
    Iranzo, P.J., Rubio-Manzano, C.: An efficient fuzzy unification method and its implementation into the Bousi\(\sim \)Prolog system. In: Proceedings of 2010 IEEE International Conference on Fuzzy Systems, pp. 1–8 (2010)Google Scholar
  15. 15.
    Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2004)Google Scholar
  16. 16.
    Kamali, S., Tompa, F.W.: A new mathematics retrieval system. In: Proceedings of ACM Conference on Information and Knowledge Management, pp. 1413–1416 (2010)Google Scholar
  17. 17.
    Kapur, D., Narendran, P.: Complexity of unification problems with associative-commutative operators. J. Autom. Reasoning 28, 35–51 (2002)CrossRefGoogle Scholar
  18. 18.
    Knight, K.: Unification: a multidisciplinary survey. ACM Comput. Surv. 21, 93–124 (1989)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nguyen, T.T., Chang, K., Hui, S.C.: A math-aware search engine for math question answering system. In: Proceedings of ACM Conference on Information and Knowledge Management, pp. 724–733 (2012)Google Scholar
  20. 20.
  21. 21.
    Paterson, M.S., Wegman, M.N.: Linear unification. J. Comput. Syst. Sci. 16, 158–167 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tatsuya Akutsu
    • 1
    Email author
  • Jesper Jansson
    • 1
    • 2
  • Atsuhiro Takasu
    • 3
  • Takeyuki Tamura
    • 1
  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityKyotoJapan
  2. 2.The Hakubi ProjectKyoto UniversityKyotoJapan
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations