Advertisement

Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size

  • Mathieu Chapelle
  • Manfred Cochefert
  • Dieter KratschEmail author
  • Romain Letourneur
  • Mathieu Liedloff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)

Abstract

The input of the Tropical Connected Set problem is a vertex-colored graph \(G=(V,E)\) and the task is to find a connected subset \(S\subseteq V\) of minimum size such that each color of \(G\) appears in \(S\). This problem is known to be NP-complete, even when restricted to trees of height at most three. We show that Tropical Connected Set on trees has no subexponential-time algorithm unless the Exponential Time Hypothesis fails. This motivates the study of exact exponential algorithms to solve Tropical Connected Set. We present an \(\mathcal {O}^*(1.5359^n)\) time algorithm for general graphs and an \(\mathcal {O}^*(1.2721^n)\) time algorithm for trees.

References

  1. 1.
    Abu-Khzam, F.N., Mouawad, A.E., Liedloff, M.: An exact algorithm for connected red-blue dominating set. J. Discret. Algorithm. 9(3), 252–262 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Angles D’Auriac, J.-A., Cohen, N., El Maftouhi, A., Harutyunyan, A., Legay, S., Manoussakis, Y.: Connected tropical subgraphs in vertex-colored graphs. http://people.maths.ox.ac.uk/harutyunyan/Tropical%20sets.pdf
  4. 4.
    Betzler, N., Van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)CrossRefGoogle Scholar
  5. 5.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51, 292–302 (2008)CrossRefGoogle Scholar
  8. 8.
    Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern matching. J. Discret. Algorithm. 9(1), 82–99 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput/Syst. Sci. 62, 367–375 (2001)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)CrossRefGoogle Scholar
  17. 17.
    McMorris, F., Warnow, T., Wimer, T.: Triangulating vertex-colored graphs. SIAM J. Discret. Math. 7, 296–306 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Nederlof, J.: Fast polynomial-space algorithms using Inclusion-Exclusion. Algorithmica 65, 868–884 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mathieu Chapelle
    • 1
  • Manfred Cochefert
    • 2
  • Dieter Kratsch
    • 2
    Email author
  • Romain Letourneur
    • 3
  • Mathieu Liedloff
    • 3
  1. 1.Université Libre de BruxellesBruxellesBelgium
  2. 2.LITAUniversité de LorraineMetz Cedex 01France
  3. 3.LIFOUniversité d’OrléansOrléans Cedex 2France

Personalised recommendations