Advertisement

The Complexity of Bounded Length Graph Recoloring and CSP Reconfiguration

  • Paul BonsmaEmail author
  • Amer E. Mouawad
  • Naomi Nishimura
  • Venkatesh Raman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8894)

Abstract

In the first part of this work we study the following question: Given two \(k\)-colorings \(\alpha \) and \(\beta \) of a graph \(G\) on \(n\) vertices and an integer \(\ell \), can \(\alpha \) be modified into \(\beta \) by recoloring vertices one at a time, while maintaining a \(k\)-coloring throughout and using at most \(\ell \) such recoloring steps? This problem is weakly PSPACE-hard for every constant \(k \ge 4\). We show that the problem is also strongly NP-hard for every constant \(k \ge 4\) and W[1]-hard (but in XP) when parameterized only by \(\ell \). On the positive side, we show that the problem is fixed-parameter tractable when parameterized by \(k+\ell \). In fact, we show that the more general problem of \(\ell \)-length bounded reconfiguration of constraint satisfaction problems (CSPs) is fixed-parameter tractable parameterized by \(k+\ell +r\), where \(r\) is the maximum constraint arity and \(k\) is the maximum domain size. We show that for parameter \(\ell \), the latter problem is W[2]-hard, even for \(k=2\). Finally, if \(p\) denotes the number of variables with different values in the two given assignments, we show that the problem is W[2]-hard when parameterized by \(\ell -p\), even for \(k=2\) and \(r=3\).

References

  1. 1.
    Bonsma, P.: Rerouting shortest paths in planar graphs. In: FSTTCS 2012. LIPIcs, vol. 18, pp. 337–349. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  2. 2.
    Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Cereceda, L.: Mixing graph colourings. Ph.D. thesis, London School of Economics (2007)Google Scholar
  6. 6.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(56), 913–919 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theor. 67(1), 69–82 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Diestel, R.: Graph Theory, Electronic Edition. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Downey, R.G., Fellow, M.R.: Parameterized Complexity. Springer, New York (1997)Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    van den Heuvel, J.: The complexity of change. Surv. Combinatorics 2013, 127–160 (2013)Google Scholar
  14. 14.
    Jacob, R.: Standortplanung mit blick auf online-strategien. Graduate thesis, Universität Würzburg (1997)Google Scholar
  15. 15.
    Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding shortest paths between graph colourings. In: Proceedings of IPEC 2014(2014)Google Scholar
  16. 16.
    Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    Marcotte, O., Hansen, P.: The height and length of colour switching. In: Graph Colouring and Applications, pp. 101–110. AMS, Providence (1999)Google Scholar
  19. 19.
    Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. arXiv:1403.0359. Accepted for ISAAC 2014 (2014)
  20. 20.
    Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paul Bonsma
    • 1
    Email author
  • Amer E. Mouawad
    • 2
  • Naomi Nishimura
    • 2
  • Venkatesh Raman
    • 3
  1. 1.Faculty of EEMCSUniversity of TwenteEnschedeThe Netherlands
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations