Skip to main content

Thermophiles as a Promising Source of Exopolysaccharides with Interesting Properties

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Thermophilic niches offer diversity of prokaryotic microorganisms enormous part of which is still unknown. Thermophiles represent a vast natural resource of various bioactive compounds, among which exopolysaccharides (EPSs) attracted major interest and attention in last two decades due to the significant variety in their structural and functional properties despite of the limited knowledge in the field. Thermophilic EPS producers were isolated from both, Bacteria (Thermotoga, Thermus, Bacillus Geobacillus, Brevibacillus, Aeribacillus) and Archaea (Thermococcus, Sulfolobus) domains. Advantages in using thermophilic processes for EPS production and potential use of the synthesized EPSs are discussed. Their biotechnologically interesting properties, like high molecular weight, stability of their molecules, good synergism with other hydrocolloids, biological activity against cytotoxic compounds, antiviral and immunostimulating activities determine their possible future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeynayaka A, Visvanathan C (2011) Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater. Bioresour Technol 102:5345–5352

    Article  CAS  PubMed  Google Scholar 

  • Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6:8–13

    Article  CAS  PubMed  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: Antiviral activity on immunocompetent cells. Immunol Lett 123:132–137

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14:485–491

    Article  PubMed  Google Scholar 

  • Belsito MD, Hill RA, Klaassen CD, Liebler D, Marks Jr JG, Ronald C (2012) Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics. http://www.cir-safety.org/sites/default/files/microb092012rep.pdf

  • Chhabra RP (2003) Fluid mechanics and heat transfer with non-Newtonian liquids in mechanically agitated vessels. Adv Heat Transfer 37:77–176

    Article  CAS  Google Scholar 

  • Cojoc R, Merciu S, Oancea P, Pincu E, Dumitru L, Enache M (2009) Highly thermostable exopolysaccharide produced by the moderately halophilic bacterium isolated from a man-made young salt lake in Romania. Pol J Microbiol 58:289–294

    CAS  PubMed  Google Scholar 

  • Conti E, Flaibani A, O’Regan M, Sutherland IW (1994) Alginate from Pseudomonas fluorescence and P. putida: production and properties. Microbiology 140:1125–1132

    Article  CAS  Google Scholar 

  • Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A (2014) Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLos One 9(4), e94965

    Article  PubMed  PubMed Central  Google Scholar 

  • Czaczyk K, Wojciechowska K (2003) Formation of bacterial biofilms—the essence of the matter and mechanisms of interactions. Biotechnologia 3:180–192

    Google Scholar 

  • Dan T, Fukuda K, Sugai-Bannai M, Takakuwa N, Motoshima H, Urashima T (2009) Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603. Biosci Biotechnol Biochem 73:2656–2664

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    Article  Google Scholar 

  • Delcour J, Ferain T, Hols P (2000) Advances in the genetics of thermophilic lactic acid bacteria. Curr Opin Biotech 11:497–504

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436

    Article  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011a) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Torres CAV, Cruz M, Sousa I, Melo MJ, Ramos AM, Reis MAM (2011b) Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM23139. Carbohydr Polym 1:159–165

    Article  Google Scholar 

  • Freitas F, Alves VD, Reis M, Crespo J, Coelhoso I (2014) Microbial polysaccharide-based membranes: Current and future applications. J Appl Polym Sci 131: doi:10.1002/app.40047

    Google Scholar 

  • Gandhi HP, Ray RM, Patel RM (1997) Exopolymer production by Bacillus species. Carbohydr Polym 34:323–327

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotech Adv 27:153–176

    Article  CAS  Google Scholar 

  • Gugliandolo C, Spanò A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appl Microbiol 116:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Hartzell PL, Millstein J, Lapaglia C (1999) Biofilm formation in hyperthermophilic archaea. Methods Enzymol 310:335–349

    Article  CAS  PubMed  Google Scholar 

  • Harutoshi T (2013) Exopolysaccharides of lactic acid bacteria for food and colon health applications. In: Kongo M (ed) Exopolysaccharides of lactic acid bacteria for food and colon health applications. INTECH Open Access Publisher, pp 515–538

    Google Scholar 

  • Herget S, Toukach P, Ranzinger R, Hull W, Knirel Y, Von Der Lieth C-W (2008) Statistical analysis of the bacterial carbohydrate structure data base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Struct Biol 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Jaiswal P, Sharma R, Sanodiya BS, Bisen PS (2014) Microbial exopolysaccharides: natural modulators of dairy products. J Appl Pharm Sci 4:105–109

    CAS  Google Scholar 

  • Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55:664–674

    Article  CAS  PubMed  Google Scholar 

  • Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77:338–343

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2013) In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment, vol. 4: Springer Science & Business Media, Dordrecht, pp 47–98

    Google Scholar 

  • Khalikova TA, Korolenko TA, Zhanaeva SY, Kaledin VI, Kogan G (2006) Enhancing effect of new biological response modifier sulfoethylated (1→3)- beta-d-glucan on antitumor activity of cyclophosphamide in the treatment of experimental murine leukoses. Exp Oncol 28:308–313

    CAS  PubMed  Google Scholar 

  • Kikani BA, Shukla RJ, Singh SP (2010) Biocatalytic potential of thermophilic bacteria and actinomycetes. In: Méndez-Vilas A (ed) Current research, technology and education. Topics in applied microbiology and microbial biotechnology, FORMATEX C/ Zurbarán 1, 2º - Oficina 1 06002 Badajoz Spain vol 2, pp 1000–1007

    Google Scholar 

  • Koerdt A, Gödeke J, Berger J, Thormann KM, Albers S-V (2010) Crenarchaeal biofilm formation under extreme conditions. PLos One 5(11), e14104

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolter R, Losick R (1998) One for all and all for one. Science 280:226–227

    Article  CAS  PubMed  Google Scholar 

  • Kralj S, van Geel-Schutten GH, Dondorff MMG, Kirsanovs S, van der Maarel MJEC, Dijkhuizen L (2004) Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150:3681–3690

    Article  CAS  PubMed  Google Scholar 

  • Krebs JE, Vaishampayan P, Probst AJ, Tom LM, Marteinsson VG, Andersen GL, Venkateswaran K (2014) Microbial community structures of novel icelandic hot spring systems revealed by PhyloChip G3 Analysis. Astrobiology 14:229–240

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Blumenberg M, Kasten S, Wieland A, Känel L, Klock JH, Michaelis W, Seifert R (2008) A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environ Microbiol 10:1934–1947

    Article  PubMed  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides: A perception. J Basic Microbiol 47:103–117

    Article  CAS  PubMed  Google Scholar 

  • Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10:121–135

    Article  CAS  Google Scholar 

  • Lapaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M-H, Yan Y-L, Chen Y-P, Hua K-F, Lu C-P, Sheu F, Lin G-H, Tsay S-S, Liang S-M, Wu S-H (2011) A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through toll-like receptor 2. J Biol Chem 286:17736–17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3:308–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  CAS  PubMed  Google Scholar 

  • Lowell RP, Seewald JS, Metaxas A, Perfit MR (2008) In: Lowell RP, Seewald JS, Metaxas A, Perfit, MR (eds) Modeling hydrothermal processes at ocean spreading centers: magma to microbe–an overview. Magma to Microbe. American Geophysical Union, Washington, DC. doi:10.1029/178GM02

    Google Scholar 

  • Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996) Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol 62:3265–3269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus B (2002) A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24:515–519

    Article  CAS  Google Scholar 

  • Milas M, Shi X, Rinaudo M (1990) On the physicochemical properties of gellan gum. Biopolymers 30:451–464

    Article  CAS  PubMed  Google Scholar 

  • Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168

    Article  CAS  PubMed  Google Scholar 

  • Morris GA, Harding SE (2014) Production of polysaccharides. In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges. Taylor & Francis Group CRC Press, Boca Raton, Fl. pp 355–386

    Google Scholar 

  • Muralidharan V, Rinker KD, Hirsh IS, Bouwer EJ, Kelly RM (1997) Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. Biotechnol Bioeng 56:268–278

    Article  CAS  PubMed  Google Scholar 

  • Näther DJ, Rachel R, Wanner G, Wirth R (2006) Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J Bacteriol 188:6915–6923

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaus B, Manca MC, Romano I, Lama L (1993) Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol Lett 109:203–206

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T, Gugliandolo C, Caccamo D (2000) A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent, able to produce exopolysaccharides. Syst Appl Microbiol 23:426–432

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Lama L, Panico A, Gambacorta A (2002) Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of Flegrean areas (Italy). Syst Appl Microbiol 25:319–325

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Moriello V, Maugeri T, Gugliandolo C, Gambacorta A (2003) Bacilli from shallow mediterranean marine vents producers of exopolysaccharides. Recent Res Devel Microbiol 7:197–208

    CAS  Google Scholar 

  • Nicolaus B, Schiano Moriello V, Lama L, Poli A, Gambacorta A (2004) Polysaccharides from extremophilic microorganisms. Orig Life Evol Biosph 34:159–169

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Nwodo UU, Green E, Okoh AL (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Polysaccharides from probiotics: new developments as food additives. Food Technol Biotechnol 48:451–463

    CAS  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea, Article ID 693253

    Google Scholar 

  • Postec A, Pignet P, Cueff-Gauchard V, Schmitt A, Querellou J, Godfroy A (2005) Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Res Microbiol 156:82–87

    Article  CAS  PubMed  Google Scholar 

  • Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM (2004) Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 70:6098–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radchenkova N, Vassilev S, Panchev I, Anzelmo G, Tomova I, Nicolaus B, Kuncheva M, Petrov K, Kambourova M (2013) Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol 171:31–43

    Article  CAS  PubMed  Google Scholar 

  • Radchenkova N, Vassilev S, Martinov M, Kuncheva M, Panchev I, Vlaev S, Kambourova M (2014) Optimization of the aeration and agitation speed of Aeribacillus palidus 418 exopolysaccharide production and the emulsifying properties of the product. Process Biochem 49:576–582

    Article  CAS  Google Scholar 

  • Raguénès G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Guezennec J (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73

    PubMed  PubMed Central  Google Scholar 

  • Raguénès G, Christen R, Guezennec J, Pignet P, Barbier G (1997) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47:989–995

    Article  PubMed  Google Scholar 

  • Raguénès G, Cambon-Bonavita MA, Lohier JF, Boisset C, Guezennec J (2003) A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr Microbiol 46:0448–0452

    Article  Google Scholar 

  • Rau U, Gure E, Olszewski E, Wagner F (1992) Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol 9:19–26

    Article  CAS  Google Scholar 

  • Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62:4478–4485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinker KD, Kelly RM (2000) Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng 69:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rozanov AS, Bryanskaya AV, Malup TK, Meshcheryakova IA, Lazareva EV, Taran OP, Ivanisenko TV, Ivanisenko VA, Zhmodik SM, Kolchanov NA, Peltek SE (2014) Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics 15(Suppl 12):S12

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 59:84–89

    Article  CAS  PubMed  Google Scholar 

  • Sam S, Kucukasik F, Yenigun O, Nicolaus B, Toksoy Öner E, Yukselen MA (2011) Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Biores Technol 102:1788–1794

    Article  CAS  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Schopf S, Wanner G, Rachel R, Wirth R (2008) An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Arch Microbiol 190:371–377

    Article  CAS  PubMed  Google Scholar 

  • Sharp RJ, Raven NDH (1997) In: Rhodes PM, Stanbury PF (eds) Isolation and growth of hyperthermophiles. Applied microbial physiology. IRL Press, New York, pp 23–52

    Google Scholar 

  • Shih TW, Pan TM (2011) Stress responses of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol Res 166:346–359

    Article  CAS  PubMed  Google Scholar 

  • Spanò A, Concetta Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29

    Article  PubMed  Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotech Adv 12:393–448

    Article  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma C, Frank M, Rachel R, Schmid S, Näther D, Wanner G, Wirth R (2008) The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ Microbiol 10:2785–2795

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:1–23

    Article  Google Scholar 

  • Van Groenestijn JW, Hazewinkel JHO, Nienoord M, Bussmann PJT (2002) Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 27:1141–1147

    Article  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  Google Scholar 

  • Węgrzyn A, Żukrowski K (2014) Biotechnological applications of archaeal extremozymes. Chemik 68:717–722

    Google Scholar 

  • Wiegel J, Canganella F (2001) Extreme thermophiles. In: Encyclopedia of life sciences, article 392. Wiley, Chichester. http://www.els.net/WileyCDA/ElsArticle/refId-a0000392.html

  • Xiao Z, Zhang Y, Xi L, Huo F, Zhao JY, Li J (2015) Thermophilic production of polyhydroxyalkanoates by a novel Aneurinibacillus strain isolated from Gudao oilfield. China J Basic Microbiol doi:. doi:10.1002/jobm.201400843

    Google Scholar 

  • Yasar Yildiz S, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol 116(2):314–324. ISSN: 1364–5072.

    Google Scholar 

  • Yildiz SY, Radchenkova N, Arga KY, Kambourova M, Toksoy Oner E (2015) Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential. Appl Microbiol Biotechnol 99:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M (2012) Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113:44–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Kambourova .

Editor information

Editors and Affiliations

Ethics declarations

Margarita Kambourova, Nadja Radchenkova, Iva Tomova, and Ivanka Bojadjieva declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kambourova, M., Radchenkova, N., Tomova, I., Bojadjieva, I. (2016). Thermophiles as a Promising Source of Exopolysaccharides with Interesting Properties. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_4

Download citation

Publish with us

Policies and ethics