Skip to main content

Biodiversity, Adaptation and Biotechnological Importance of Bacteria Occurring in Cold Climates

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

This review deals with the biodiversity of cold-tolerant bacteria, also known as psychrophiles, from Antarctica, Arctic and Himalayas, strategies used by them to survive and grow at low temperature and their biotechnological potential. Bacterial abundance (5.2 × 104 to 30.7 × 108 cfu/g soil) is highest in soil (Himalayas > Antarctica > Arctic) followed by that in sediment and water. Studies involving cultivation independent methods revealed the occurrence of all major groups viz, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria and Verrucomicrobia in three locations, albeit with different frequencies. Firmicutes and Acidobacterium were the dominant communities in the Himalayan soils, whereas Alphaproteobacteria and Deltaproteobacteria were found to be predominant in the Antarctic and Arctic samples. Use of cultivation-dependent methods confirmed the presence of the aforementioned groups of bacteria and led to the discovery of many new species of bacteria in the Antarctic, Arctic and Himalayan habitats. Investigations based on functional genes in conjunction with phylogenetic analysis indicate diversity in the functional genes in the bacterial taxa. The ability of psychrophilic bacteria to survive and divide at low temperature can be attributed to strategies unique to these microorganism such as the ability to catalyse reactions and continue metabolism with cold-tolerant enzymes; ability to maintain optimum membrane fluidity at low temperature; occurrence of specific genes required for survival at low temperatures; alteration in the RNA degradosome; presence of antifreeze–activity; increase in intracellular levels of ATP and alterations in DNA replication. The recently reported genome sequences of a number of novel cold-tolerant isolates are likely to provide some more insights into the mechanism of bacterial cryotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahman HA, Fritze D, Spröer C, Claus D (2002) Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov., which contain ornithine in their cell walls. Int J Syst Evol Microbiol 52:2127–2133

    PubMed  Google Scholar 

  • Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA (2013) Molybdate reduction to molybdenum blue by an Antarctic bacterium. Biomed Res Int 2013:871–941

    Article  CAS  Google Scholar 

  • Aislabie J, Balks M, Foght J, Waterhouse E (2004) Hydrocarbon spills on Antarctic soils: Effects and management. Environ Sci Technol 38:1265–1274

    Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36

    Article  CAS  PubMed  Google Scholar 

  • Aislabie JM, Lau A, Dsouza M, Shepherd C, Rhodes P, Turner SJ (2013) Bacterial composition of soils of the Lake Wellman area, Darwin Mountains, Antarctica. Extremophiles 17:775–786

    Article  PubMed  Google Scholar 

  • Al Khudary R, Stösser NI, Qoura F, Antranikian G (2008) Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 58:2018–2024

    Article  CAS  PubMed  Google Scholar 

  • Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan CJ, Logan NA (2005) Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 55:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718

    Article  CAS  PubMed  Google Scholar 

  • Antibus DE, Leff LG, Hall BL, Baeseman JL, Blackwood CB (2012) Cultivable bacteria from ancient algal mats from the McMurdo Dry alleys, Antarctica. Extremophiles 16:105–114

    Article  CAS  PubMed  Google Scholar 

  • Archer SD, McDonald IR, Herbold CW, Cary SC (2014) Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiol Ecol 89:451–464

    Article  CAS  PubMed  Google Scholar 

  • Arunasri K, Venkata Ramana V, Spröer C, Sasikala C, Ramana CV (2008) Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth. Int J Syst Evol Microbiol 58:1792–1796

    Article  CAS  PubMed  Google Scholar 

  • Aschenbach K, Conrad R, Reháková K, Doležal J, Janatková K, Angel R (2013) Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Schumann P, Barnes CR, Kämpfer P, Staley JT (2010) Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core. Int J Syst Evol Microbiol 60:84–92

    Article  CAS  PubMed  Google Scholar 

  • Ayub ND, Tribelli PM, Lopez NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Bajerski F, Wagner D (2013) Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiol Ecol 85:128–142

    Article  PubMed  Google Scholar 

  • Ball MM, Gómez W, Magallanes X, Rosales R, Melfo A, Yarzábal LA (2014) Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes. World J Microbiol Biotechnol 30:931–941

    Article  CAS  PubMed  Google Scholar 

  • Bano N, Hollibaugh JT (2000) Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl Environ Microbiol 66:1960–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum Z, Srinivas TN, Manasa P, Sailaja B, Sunil B, Prasad S, Shivaji S (2013) Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 63:1646–1652

    Article  CAS  PubMed  Google Scholar 

  • Bienhold C, Boetius A, Ramette A (2012) The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J 6:724–773

    Article  CAS  PubMed  Google Scholar 

  • Boeuf D, Cottrell MT, Kirchman DL, Lebaron P, Jeanthon C (2013) Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiol Ecol 85:417–432

    Article  CAS  PubMed  Google Scholar 

  • Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 10:950–966

    Article  CAS  PubMed  Google Scholar 

  • Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC (2014) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67:120–128

    Article  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwe/lia demingiae sp. nov., Colwe/lia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexanoic acid (22:6 omega 3). Int J Syst Bacterial 48:1171–1180

    Article  CAS  Google Scholar 

  • Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237

    Article  CAS  PubMed  Google Scholar 

  • Boyd WL (1962) Comparison of soil bacteria and their metabolic activities in Arctic and Antarctic regions. Polar Rec 11:319

    Google Scholar 

  • Boyd WL, Boyd JW (1962a) Presence of Azotobacter species in polar regions. J Bacterial 85:1121–1123

    Google Scholar 

  • Boyd WL, Boyd JW (1962b) Viability of thermophiles and coliform bacteria in arctic soils and water. Can J Microbiol 8:189–192

    Article  CAS  PubMed  Google Scholar 

  • Bozal N, Montes MJ, Mercadé E (2007) Pseudomonas guinea sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612

    Article  CAS  PubMed  Google Scholar 

  • Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  CAS  PubMed  Google Scholar 

  • Campbell IB, Claridge GGC (2000) Soil temperature, moisture and salinity patterns in Transantarctic Mountain cold desert ecosystems. In: Davidson W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Canterbury University, Christchurch, New Zealand, pp 233–240

    Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr SA, Vogel SW, Dunbar RB, Brandes J, Spear JR, Levy R, Naish TR, Powell RD, Wakeham SG, Mandernack KW (2013) Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica. Geobiology 11:377–395

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Austin JJ, Sanderson K (1996) Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacterial 46:841–848

    Article  Google Scholar 

  • Cavicchioli R (2007) Antarctic metagenomics. Microbiol Aust 28:98–103

    Google Scholar 

  • Cavicchioli R, Thomas T (2000) Extremophiles. In: Lederberg J (ed) Encyclopedia of microbiology, 2nd edn. vol 2. Academic Press, San Diego, pp 317–337

    Google Scholar 

  • Chaparro MAE, Nunez H, Lirio JM, Gogorza CSG, Sinito AM (2007) Magnetic screening and heavy metal pollution studies in soils from Marambio Station, Antarctica. Antarctic Sci 19:379–393

    Article  Google Scholar 

  • Chattopadhyay MK (2008) Cryotolerance in bacteria: Interlink with adaptation to other stress factors. Trends Microbiol 16:455

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388

    Article  Google Scholar 

  • Chattopadhyay MK, Uma Devi K, Gopisankar Y, Shivaji S (1995) Thermolabile alkaline phosphatase from Sphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica. Polar Biol 15:215–219

    Article  Google Scholar 

  • Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MVR, Shivaji S (2011) Increase in oxidative stress at low temperature in an Antarctic bacterium. Curr Microbiol 62:544–546

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Reddy GSN, Shivaji S (2014) Psychrophilic bacteria: Biodiversity, Molecular basis of cold adaptation and biotechnological implications. Curr Biotech 3:100–116

    Article  CAS  Google Scholar 

  • Chaturvedi P, Shivaji S (2007) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges in India. Int J Syst Evol Microbiol 56:2765–2770

    Article  CAS  Google Scholar 

  • Chaturvedi P, Reddy GSN, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta Glacier, Himalayas, India. Int J Syst Evol Microbiol 55:2113–2117

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yu H, Li L, Hu S, Dong X (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641

    CAS  PubMed  Google Scholar 

  • Chessa JP, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274

    Article  CAS  PubMed  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50:631–642

    CAS  Google Scholar 

  • Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Claridge GGC, Campbell IB (1977) The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci 123:377–384

    Article  CAS  Google Scholar 

  • Claridge GGC, Campbell IB, Powell HKJ, Amin ZH, Balks MR (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarctic Sci 7:9–14

    Article  Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristóbal HA, López MA, Kothe E, Abate CM (2011) Diversity of protease-producing marine bacteria from sub-antarctic environments. J Basic Microbiol 51:590–600

    Article  PubMed  CAS  Google Scholar 

  • De Domenico M, Lo Giudice A, Michaud L, Saitta M, Bruni V (2004) Diesel oil and PCB-degrading psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova Bay, Ross Sea). Polar Res 23:141–146

    Article  Google Scholar 

  • De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D (2014) A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol 172:3054–3068

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Gleizon F (2003) Distribution of enteric bacteria in Antarctic seawater surrounding the Port-aux-Français permanent station (Kerguelen Island). Mar Pollut Bull 46:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Lagarde E (1974) Contribution al'etude ecologique des Milieux subantarctiques. V Rev lnst Pasteur Lyon 7:149–165

    CAS  Google Scholar 

  • Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL (2014) Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthusnanus enhances cold tolerance in Escherichia coli and tobacco. Gene 539:132–140

    Article  CAS  PubMed  Google Scholar 

  • Denner EBM, Mark B, Busse HJ, Turkiewicz M, Lubitz W (2001) Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53

    Article  CAS  PubMed  Google Scholar 

  • Deslippe JR, Egger KN (2006) Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs. Microb Ecol 51:516–525

    Article  CAS  PubMed  Google Scholar 

  • Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P (2012) High cyanobacterial nifH gene diversity in Arctic seawater and sea ice brine. Environ Microbiol Rep 4:360–366

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Yang J, Zhang XY, Shi M, Song XY, Chen XL, Zhang YZ (2012) Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria. Mar Drugs 10:2481–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle SM, Montross SN, Skidmore ML, Christner BC (2013) Characterizing microbial diversity and the potential for metabolic function at -15 °c in the Basal ice of Taylor Glacier, antarctica. Biology (Basel) 2:1034–1053

    Google Scholar 

  • Dyurgerov MB, Meier MF (1997) Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arctic Alpine Res 29:379–391

    Article  Google Scholar 

  • Dziewit L, Bartosik D (2014) Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol 5:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  • Ekelof E (1908a) Bakteriologische studien wahrend der Schwedishen Sudpolar expedition 1901–1903. In: Wissenschaftiche Ergebnisse der Schwedischen sudpolar Expedition 1901–1903. 0. Nordenskjold (ed) Lithogr. lnst. Generalstabs, Stockholm, p 210

    Google Scholar 

  • Ekelof E (1908b) Studien uber den Bakteriengehalt der luft und des Erdbodeus der antarktishen Gegenden, ausgefiihrt wahrend der schwedischen sudpolar expedition 1901–1903. Zhyg lnfekt 56:344–370

    Google Scholar 

  • Friedman E (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10:223–235

    Article  Google Scholar 

  • Ewert M, Deming JW (2014) Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiol Ecol 89:476–489

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Orlandini V, Perrin E, Maida I, Bosi E, Papaleo MC, Michaud L, Lo Giudice A, de Pascale D, Tutino ML, Liò P, Fani R (2014) Draft genomes of three Antarctic Psychrobacter strains producing antimicrobial compounds against Burkholderiacepacia complex, opportunistic human pathogens. Mar Genomics 13:37–38

    Google Scholar 

  • Forschner SR, Sheffer R, Rowley DC, Smith DC (2009) Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin. Environ Microbiol 11:630–639

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Dobson SJ (1992) Cell wall-less, free-living spirochetes in Antarctica. FEMS Microbiol Lett 76:289–292

    Article  CAS  PubMed  Google Scholar 

  • Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55:564–577

    Article  CAS  PubMed  Google Scholar 

  • Ganzert L, Bajerski F, Wagner D (2014) Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol Ecol 89:426–441

    Article  CAS  PubMed  Google Scholar 

  • Gibson JAE (2006) Limnology of Epiglacial Lakes of the Framnes Mountains, Antarctica: insights into a widespread but poorly Studied Lake Type. Scientific Committee on Antarctic Research (SCAR), vol XXIX, Hobart, 11–15 July, p 422

    Google Scholar 

  • Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov., and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235

    Article  PubMed  Google Scholar 

  • Green WJ, Angle MP, Chave KE (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochim Cosmochim Acta 52:1265–1274

    Article  CAS  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  CAS  PubMed  Google Scholar 

  • Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M (2012) Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb Ecol 64:605–616

    Article  CAS  PubMed  Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K et al (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884

    Article  CAS  PubMed  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria-occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    Google Scholar 

  • Herbert RA, Bell CR (1977) Growth characteristics of an obligately psychrophilic Vibrio sp. Arch Microbiol 113:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004) Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hoover RB, Swain A, Murdock C, Bej AK (2013) Comparison of the microbial diversity and abundance between the freshwater land-locked lakes of Schirmacher Oasis and the perennially ice-covered Lake Untersee in East Antarctica. In: Proceedings of International Society for Optical Engineering, Instruments, Methods and Mission for Astrobiology (SPIE) 7819, 78190W

    Google Scholar 

  • Imperio T, Viti C, Marri L (2008) Alicyclobacillus pohliae sp. nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica). Int J Syst Evol Microbiol 58:221–225

    Article  CAS  PubMed  Google Scholar 

  • Jang GI, Hwang CY, Choi HG, Kang SH, Cho BC (2011) Description of Spongiibacter borealis sp. nov., isolated from Arctic seawater, and reclassification of Melitea salexigens Urios et al. 2008 as a later heterotypic synonym of Spongiibacter marinus Graeber et al. 2008 with emended descriptions of the genus Spongiibacter and Spongiibacter marinus. Int J Syst Evol Microbiol 61:2895–2900

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Jeong J, Kim J (2015) Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions. J Hazard Mater 286C:164–170

    Article  CAS  Google Scholar 

  • Jiang F, Li W, Xiao M, Dai J, Kan W, Chen L, Li W, Fang C, Peng F (2012) Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 62:2259–2263

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Xiao M, Chen L, Kan W, Peng F, Dai J, Chang X, Li W, Fang C (2013) Huanghella arctica gen. nov., sp. nov., a bacterium of the family Cytophagaceae isolated from Arctic tundra soil. Int J Syst Evol Microbiol 63:696–702

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at –2 to –20 °C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothsna TSS, Sasikala C, Ramana CV (2008) Desulfovibrio psychrotolerans sp. nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing deltaproteobacterium from the Himalayas. Int J Syst Evol Microbiol 58:821–825

    Article  CAS  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    Article  CAS  PubMed  Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara H, Iwanaka Y, Higa S, Muryoi N, Sato M, Honda M, Omura H, Obata H (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryo Lett 28:39–49

    CAS  Google Scholar 

  • Kelly CD, Layne S (1957) Bacteria found in the air over Canada and the American Arctic. Can J Microbiol 3:447–455

    Article  CAS  PubMed  Google Scholar 

  • Kelly MD, Lukaschewsky S, Anderson CG (1978) Bacterial flora of Antarctic krill and some of their enzymatic properties. J Food Sci 43:1196–1197

    Article  CAS  Google Scholar 

  • Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 58:817–820

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Park SJ, Yoon DN, Park BJ, Choi BR, Lee DH, Roh Y, Rhee SK (2009) Marinobacterium maritimum sp. nov., a marine bacterium isolated from Arctic sediment. Int J Syst Evol Microbiol 59:3030–3034

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Park SJ, Oh YS, Lee SA, Shin KS, Roh DH, Rhee SK (2012) Shewanella arctica sp. nov., an iron-reducing bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 62:1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Park SJ, Quan ZX, Jung MY, Cha IT, Kim SJ, Kim KH, Yang EJ, Kim YN, Lee SH, Rhee SK (2014) Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in Amundsen Sea, Antarctica. Environ Microbiol 16:566–578

    Google Scholar 

  • Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 5:603

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12:1132–1143

    Article  CAS  PubMed  Google Scholar 

  • Kishore KH, Begum Z, Pathan AAK, Shivaji S (2009) Paenibacillus glacialis sp. nov. isolated from Kafni glacier of Himalayas, India. Int J Syst Evol Microbiol 60:1909–1913

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R, Brinkhoff T (2005) Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55:781–786

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch C, Sahm K, Jørgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Li W, Romancova I, Prášil O, Morgan-Kiss RM (2014) An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 89:293–302

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Ptacek T, Crowley M, Swain AK, Osborne JD, Bej AK, Andersen DT (2014) Draft genome sequence of Hymenobacter sp. Strain IS2118, Isolated from a freshwater lake in Schirmacher Oasis, Antarctica, reveals diverse genes for adaptation to cold ecosystems. Genome Announc 2:e00739–14

    PubMed  PubMed Central  Google Scholar 

  • Kriss AE (1945) Microorganisms of the eastern part of the Arctic Ocean. Mikrobiologiia 14:268–276

    CAS  PubMed  Google Scholar 

  • Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Environ Microbiol 11:669–673

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E, Ichimura AS, Peng V, Fritsen CH, Trubl G, Doran PT, Murray AE (2014) Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Appl Environ Microbiol 80:3687–3698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar PA, Sreenivas A, Singh A, Shivaji S (2013a) Draft genome sequence of Winogradskyella psychrotolerans RS-3 T, isolated from the marine transect of Kongsfjorden, Ny-Ålesund, Svalbard, Arctic. Genome Announc 1:e00630–13

    Google Scholar 

  • Kumar PA, Singh A, Sreenivas A, Begum Z, Reddy GSN, Shivaji S (2013b) Draft genome sequence of Leifsoniarubra CMS 76R T, isolated from a cyanobacterial mat sample from a pond in Wright Valley, McMurdo, Antarctica. Genome Announc 1:e00633–13

    Google Scholar 

  • Labrenz M, Tindall BJ, Lawson PA, Collins MD, Schumann P, Hirsch P (2000) Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbial 50:303–313

    Article  CAS  Google Scholar 

  • Lama L, Nicolaus B, Calandrelli V, Esposito E, Gambacorta A (1996) Xylanase produced by Bacillus thermoantarcticus, a new thermophilic bacillus. Enzyme Eng XIII:284–286

    Google Scholar 

  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic ice sheet. Environ Microbiol 11:609–615

    Article  CAS  PubMed  Google Scholar 

  • Larkin JM, Stokes JL (1967) Taxonomy of psychrophilic strains of Bacillus. J Bacteriol 94:889–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laucks ML, Sengupta A, Junge K, Davis EJ, Swan-son BD (2005) Comparison of psychro-active Arctic marine bacteria and common mesophilic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc 10:1222–1228

    Article  Google Scholar 

  • Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J (1997) The microbial loop in Antarctic Lakes. In: Howards-Williams C, Lyons WB, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam/Brookfield, pp 231–240

    Google Scholar 

  • Lee K, Lee HK, Choi TH, Kim KM, Cho JC (2007) Granulosicoccaceae fam. nov., to include Granulosicoccus antarcticus gen. nov., sp. nov., a non-phototrophic, obligately aerobic chemoheterotroph in the order Chromatiales, isolated from Antarctic seawater. J Microbiol Biotechnol 17:1483–1490

    CAS  PubMed  Google Scholar 

  • Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2012) The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J 6:1046–1057

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xiao X, Yin X, Wang F (2006a) Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles 10:461–467

    Article  CAS  PubMed  Google Scholar 

  • Li HR, Yu Y, Zeng YX, Chen B, Ren DM (2006b) Phylogenetic analysis of bacterial diversity in Pacific Arctic sediments. Wei Sheng Wu Xue Bao 46:177–183

    PubMed  Google Scholar 

  • Li H, Yu Y, Luo W, Zeng Y, Chen B (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13:233–246

    Article  CAS  PubMed  Google Scholar 

  • Li AH, Liu HC, Xin YH, Kim SG, Zhou YG (2013) Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 64:579–587

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microbiol Ecol 57:25–35

    Article  Google Scholar 

  • Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265:98–105

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Yao TD, Jiao NZ, Kang SC, Xu BQ, Zeng YH, Huang SJ, Liu XB (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13:411–423

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yao T, Jiao N, Tian L, Hu A, Yu W, Li S (2011) Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles 15:411–421

    Article  PubMed  Google Scholar 

  • Liu JT, Lu XL, Liu XY, Gao Y, Hu B, Jiao BH, Zheng H (2013) Bioactive natural products from the antarctic and arctic organisms. Mini Rev Med Chem 13:617–626

    Article  PubMed  Google Scholar 

  • Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012) Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb Ecol 63:210–223

    Article  PubMed  Google Scholar 

  • Lohan MC, Statham PJ, Peck L (2001) Trace metals in the Antarctic soft-shelled clam Laternulaelliptica: implications for metal pollution from Antarctic research stations. Polar Biol 24:808–817

    Article  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465

    Article  CAS  PubMed  Google Scholar 

  • Maas EW, Simpson AM, Martin A, Thompson S, Koh EY, Davy SK, Ryan KG, O’Toole RF (2012) Phylogenetic analyses of bacteria in sea ice at Cape Hallett, Antarctica. N Z J Mar Freshw Res 46:3–12

    Article  CAS  Google Scholar 

  • Magalhães CM, Machado A, Frank-Fahle B, Lee CK, Cary SC (2014) The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol 5:515

    Google Scholar 

  • Maida I, Fondi M, Papaleo MC, Perrin E, Orlandini V, Emiliani G, de Pascale D, Parrilli E, Tutino ML, Michaud L, Lo Giudice A, Romoli R, Bartolucci G, Fani R (2014) Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18:35–49

    Article  CAS  PubMed  Google Scholar 

  • Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundrasoil. Int J Syst Evol Microbiol 62:2097–2106

    Article  PubMed  CAS  Google Scholar 

  • Marcos MS, Lozada M, Dionisi HM (2009) Aromatic hydrocarbon degradation genes from chronically polluted subantarctic marine sediments. Lett Appl Microbiol 49:602–608

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Margini RA, Castrelos OD (1963) Examenes bacteriologicos de aire, rieve ysuelo de carbo primaruera y Estacion cientifica Ellsworth. Inst Antarcti Argent Pub 76:1–15

    Google Scholar 

  • Marshall BJ, Ohye DF (1966) Bacillus macquariensis sp. nov, a psychrotrophic bacterium from sub-antarctic soil. J Gen Microbiol 44:41–46

    Article  CAS  PubMed  Google Scholar 

  • Martineau C, Pan Y, Bodrossy L, Yergeau E, Whyte LG, Greer CW (2014) Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol Ecol 89:257–269

    Article  CAS  PubMed  Google Scholar 

  • Master ER, Mohn WW (1998) Psychrotolerant bacteria Isolated from Arctic Soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64:4823–4829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer GH, Morrow MB, Wyss O, Berg TE, Littlepage JL (1962) Antarctica: the microbiology of an unfrozen saline pond. Science 138:1103–1104

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V, Lo Giudice A (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 82:391–404

    Article  CAS  PubMed  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    Article  CAS  PubMed  Google Scholar 

  • Miwa T (1975) Clostridia in soil of the Antarctica. Jpn J Med Sci Biol 28:201–213

    Article  CAS  PubMed  Google Scholar 

  • Møller AK, Barkay T, Abu Al-Soud W, Sørensen SJ, Skov H, Kroer N (2011) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiol Ecol 75:390–401

    Article  PubMed  CAS  Google Scholar 

  • Moreno R, Rojo F (2014) Features of pseudomonads growing at low temperatures: another facet of their versatility. Environ Microbiol Rep 6:417–426

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2014) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res 22:4725–4735

    Article  CAS  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724

    Article  CAS  PubMed  Google Scholar 

  • Pady SM, Kelly CD, Polunin N (1948) Arctic aerobiology; preliminary report on fungi and bacteria isolated from the air in 1947. Nature 162:379–381

    Article  CAS  PubMed  Google Scholar 

  • Peeters K, Hodgson DA, Convey P, Willems A (2011) Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microb Ecol 62:399–413

    Article  PubMed  Google Scholar 

  • Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl Environ Microbiol 73:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfiser RM, Burkholder PR (1965) Numerical taxonomy of some bacteria isolated from Antarctic and tropical sea waters. J Bacterial 90:863–872

    Google Scholar 

  • Pindi PK, Hara Kishore K, Reddy GSN, Shivaji S (2009) Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int J Syst Evol Microbiol 59:1348–1352

    Article  CAS  PubMed  Google Scholar 

  • Pirie JHH (1904) First Antarctic voyage of the Scotia. J Bacterial Scot Geogr Mag 20:129–132

    Google Scholar 

  • Pirie JHH (1912) Notes on Antarctic bacteriology. Rep Sci Res SY Scotia 3:157–168

    Google Scholar 

  • Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, de Appolonia F, Gambacorta A, Nicolaus B (2006) Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307

    Article  CAS  PubMed  Google Scholar 

  • Polunin N, Kelly CD (1952) Arctic aerobiology; fungi and bacteria, etc., caught in the air during flights over the geographical North Pole. Nature 170:314–316

    Article  CAS  PubMed  Google Scholar 

  • Pöntinen A, Markkula A, Lindström M, Korkeala H (2015) Two-component system histidine kinases involved in growth of Listeria monocytogenes EGD-e at low temperatures. Appl Environ Microbiol 81:3994–4004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532

    Article  CAS  PubMed  Google Scholar 

  • Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59:342–355

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Srinivas TNR, Pindi PK, Hara Kishore K, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GSN, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14:377–395

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z, Bandi S, Tirunagari P, Shivaji S (2013) Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol 63:1627–1632

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S (2014) Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial Fjord, Kongsfjorden. Curr Microbiol 68:233–238

    Article  CAS  PubMed  Google Scholar 

  • Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    CAS  PubMed  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Prüss BM, Francis KP, von Stetten F, Scherer S (1999) Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181:2624–2630

    PubMed  PubMed Central  Google Scholar 

  • Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, The Wissard Science Team (2014) Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front Microbiol 5:594

    Google Scholar 

  • Purusharth RI, Madhuri B, Ray MK (2007) Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3′- end processing of 16 and 5 S ribosomal RNA. J Biol Chem 282:16267–16277

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Jiang F, Chang X, Qiu X, Ren L, Fang C, Peng F (2014) Psychroglaciecola arctica gen. nov., sp. nov., isolated from Arctic glacial foreland soil. Int J Syst Evol Microbiol 64:1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Raiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC, López NI (2015) Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 19:207–220

    Article  CAS  PubMed  Google Scholar 

  • Ray MK, Kumar GS, Shivaji S (1994) Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiology 140:3217–3723

    Article  CAS  PubMed  Google Scholar 

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray MK, Kumar GS, Janiyani K, Kannan K, Jagtap P, Basu MK, Shivaji S (1998) Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J Biosci 23:423–435

    Article  CAS  Google Scholar 

  • Reddy GSN, Rajagopalan G, Shivaji S (1994) Thermolabile ribonuclease from Antarctic psychrotropic bacteria: detection of the enzyme in various bacteria and purification from Pseudomonas fluorescens. FEMS Microbiol Lett 122:211–216

    Article  CAS  Google Scholar 

  • Reddy GSN, Agarwal RK, MatsumotoGI SS (2000) Arthrobacter flavussp. nov., a psychrotropic bacterium isolated from a pond in Mc Murdo dry valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Prakash JSS, Matsumoto GI, Stackebrandt E, Shivaji S (2002a) Arthrobacter roseus sp. nov., a psychrotropic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021

    CAS  PubMed  Google Scholar 

  • Reddy GSN, Prakash JSS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002b) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Matsumoto GI, Shivaji S (2003a) Sporosarcina macmurdoensis sp. nov. from a cyanobacterial mat samples from a pond in the McMurdo dry valley, Antarctica. Int J Syst Evol Microbiol 53:1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Prakash JSS, Srinivas R, Matsumoto GI, Shivaji S (2003b) Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov. psychrophiles from a Pond in Antarctica. Int J Syst Evol Microbiol 53:977–984

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Raghavan PMU, Sarita NB, Prakash JSS, Nagesh N, Delille D, Shivaji S (2003c) Halomonas glacies sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7:55–61

    CAS  PubMed  Google Scholar 

  • Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S (2003d) Kocuria polaris sp. nov., an orange pigmented psychrotrophic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Matsumoto GI, Shuman P, Stackebrandt E, Shivaji S (2004) Psychrophilic Pseudomonas from Antarctica: Pseudomonasantarctica sp. nov., Pseudomonas meridianae sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Uttam A, Shivaji S (2008) Bacillus cecembensis sp. nov., a bacterium isolated from the Pindari glacier of the Himalayan mountain ranges, India. Int J Syst Evol Microbiol 58:2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Pradhan S, Manorama R, Shivaji S (2009a) Cryobacterium roopkundensis sp. nov., a psychrophilic bacterium from Roopkund Glacier of the Himalayan mountain ranges. Int J Syst Evol Microbiol 60:866–870

    Article  PubMed  Google Scholar 

  • Reddy PVV, Shiva Nageswara Rao SS, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Radha Srinivas TN, Shivaji S (2009b) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovenbreen glacier, an Arctic glacier. Res Microbiol 160:538–546

    Article  CAS  Google Scholar 

  • Reddy GSN, Poorna Manasa B, Singh SK, Shivaji S (2013a) Paenisporosarcina indica sp. nov., a psychrophilic bacterium from Pindari Glacier of the Himalayan mountain ranges and reclassification of Sporosarcina antarctica Yu et al., 2008 as Paenisporosarcina antarctica comb. nov. and emended description of the genus Paenisporosarcina. Int J Syst Evol Microbiol IJS/2012/047514

    Google Scholar 

  • Reddy GSN, Ara S, Singh A, Kumar Pinnaka A, Shivaji S (2013b) Draft genome sequence of Psychrobacter aquaticus CMS 56T, isolated from a cyanobacterial mat sample collected from water bodies in the McMurdo Dry Valley region of Antarctica. Genome Announc 1:e00918–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy GSN, Sreenivas A, Shivaji S (2014) Draft genome sequence Cryobacterium roopkundensis strain RuGl7, isolated from a soil sample in the vicinity of Roopkund Lake, Himalayas, India. Genome Announc 2:e01206–e01214

    Google Scholar 

  • Ren L, Chang X, Jiang F, Kan W, Qu Z, Qiu X, Fang C, Peng F (2015) Parablastomonas arctica gen. nov., sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 65:260–266

    Article  CAS  PubMed  Google Scholar 

  • Ruberto L, Dias R, Lo Balbo A, Vazquez SC, Hernandez EA, Mac Cormack WP (2009) Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol 106:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Ruckert G (1985) Myxobacteria from Antarctic soils. Biol Fert Soil 1:215–216

    Article  Google Scholar 

  • Sahay H, Babu BK, Singh S, Kaushik R, Saxena AK, Arora DK (2013) Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes. J Basic Microbiol 53:703–714

    Article  CAS  PubMed  Google Scholar 

  • Schütte UM, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 1:54–66

    Article  Google Scholar 

  • Sengupta D, Chattopadhyay MK (2013) Metabolism in bacteria at low temperature: a recent report. J Biosci 38:409–12

    Google Scholar 

  • Shivaji S, Prakash JS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy GSN (2009) Chapter 2. Bacterial biodiversity of Antarctica: conventional polyphasic and rRNA approaches. In: Bej AK, Aislabie J, Atlas RM (eds) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. Taylor & Francis, Boca Raton

    Google Scholar 

  • Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GSN, Bhargava PM (1988) Isolation and identification of Micrococcus roseus and Planococcus sp. from Schirmacher Oasis, Antarctica. J Biosci 113:409–414

    Article  Google Scholar 

  • Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GSN, Bhargava PM (1989a) Isolation and identification of Pseudomonas sp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Rao NS, Saisree L, Reddy GSN, Seshu Kumar G, Bhargava PM (1989b) Isolates of Arthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229

    Article  Google Scholar 

  • Shivaji S, Reddy GSN, Prasad RA, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    CAS  PubMed  Google Scholar 

  • Shivaji S, Chaturvedi P, Reddy GSN, Suresh K (2005) Pedobacter himalayensis sp. nov. from Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund lake of the Himalayan mountain ranges, India. Extremophiles 12:375–381

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Kumari K, Kishore KH, Pindi PK, Rao PS, Radha Srinivas TN, Asthana R, Ravindra R (2011a) Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Res Microbiol 162:191–203

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Pratibha MS, Sailaja B, Hara Kishore K, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GSN, Srinivas TN (2011b) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15:1–22

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy PV, Rao SS, Begum Z, Manasa P, Srinivas TN (2012a) Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 62:2133–2139

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Ara S, Singh SK, Bandi S, Singh A, Pinnaka AK (2012b) Draft genome sequence of Bacillus isronensis strain B3W22 isolated from the upper atmosphere. J Bacteriol 194:6624–6625

    Google Scholar 

  • Shivaji S, Ara S, Singh A, Kumar Pinnaka A (2013a) Draft genome sequence of Cyclobacterium qasimii M12-11B T, isolated from an Arctic marine sediment. Genome Announc 1:e00642–13

    PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Ara S, Prasad S, Manasa BP, Begum Z, Singh A, Kumar Pinnaka A (2013b) Draft genome sequence of Arcticibacter svalbardensis MN12-7 T, a member of the family Sphingobacteriaceae isolated from an Arctic soil sample. Genome Announc 1:e00484–13

    PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Begum Z, Shiva Nageswara Rao SS, Vishnu Vardhan Reddy PV, Manasa P, Sailaja B, Prathiba MS, Thamban M, Krishnan KP, Singh SM, Srinivas TN (2013c) Antarctic ice core samples: culturable bacterial diversity. Res Microbiol 164:70–82

    Google Scholar 

  • Shukor MY, Hassan NA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, Syed MA (2009) Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. J Environ Biol 30:1–6

    CAS  PubMed  Google Scholar 

  • Singh AK, Shivaji S (2010) A cold-active and a heat-labile t-RNA modification GTPase from a psychrophilic bacterium Pseudomonas syringae (Lz4W). Res Microbiol 161:46–50

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Pindi PK, Dube S, Sundareswaran VR, Shivaji S (2009) In the psychrophilic Pseudomonas syringae, trmE is important for low temperature growth. Appl Environ Microbiol 75:4419–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Singh SM, Dhakephalkar P (2014) Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18:229–242

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK, Pavankumar TL, Kamisetty S, Mittal P, Ray MK (2013) Replication arrest is a major threat to growth at low temperature in Antarctic Pseudomonas syringae Lz4W. Mol Microbiol 89:792–810

    Article  CAS  PubMed  Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7:275–282

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Prezelin, BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Google Scholar 

  • Søgaard DH, Kristensen M, Rysgaard S, Glud RN, Hansen PJ, Hilligsøe KM (2010) Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Mar Ecol Prog Ser 419:31–45

    Google Scholar 

  • Söller R, Hirsch P, Blohm D, Labrenz M (2000) Differentiation of newly described antarctic bacterial isolates related to Roseobacter species based on 16S-23S rDNA internal transcribed spacer sequences. Int J Syst Evol Microbiol 50:909–915

    Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov., and Clostridium psychrophilum sp. nov., and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Sreenivas A, Reddy GSN, Shivaji S (2014) Draft genome sequence of a psychrophilic bacterium Sphingomonas antarcticum 4BY, isolated from the soils of Schirmacher Oasis, Antarctica. Genome Announc 2:e00696–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivas TN, Nageswara Rao SS, Vishnu Vardhan Reddy P, Pratibha MS, Sailaja B, Kavya B, Hara Kishore K, Begum Z, Singh SM, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic. Curr Microbiol 59:537–547

    Google Scholar 

  • Srinivas TN, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GSN, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15:673–690

    Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  CAS  PubMed  Google Scholar 

  • Steinsbu BO, Tindall BJ, Torsvik VL, Thorseth IH, Daae FL, Pedersen RB (2011) Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid-Ocean Ridge. Int J Syst Evol Microbiol 61:2197–2204

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008a) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Chen MQ, Greer CW, Whyte LG, Niederberger TD (2008b) Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. Int J Syst Evol Microbiol 58:1497–1501

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Lionard M, Kuske CR, Vincent WF (2013) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. PLoS One 8, e71489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stibal M, Hasan F, Wadham JL, Sharp MJ, Anesio AM (2012) Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles 16:255–265

    Article  PubMed  Google Scholar 

  • Stokes JL, Reymond ML (1966) Quantitative ecology of psychrophilic microorganisms. Appl Microbiol 14:74–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storesund JE, Øvreås L (2013) Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek 104:569–584

    Article  CAS  PubMed  Google Scholar 

  • Sundareswaran VR, Singh AK, Dube S, Shivaji S (2010) Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol 192:663–672

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68:543–550

    Article  CAS  PubMed  Google Scholar 

  • Takii S, Kondal T, Hiraishi A, Matsumoto GI, Kawano T, Torii T (1986) Vertical distribution in and isolation of bacteria from Lake Vanda: an Antarctic lake. Hydrobiologia 135:15–21

    Article  Google Scholar 

  • Tamura T, Ishida Y, Otoguro M, Yamamura H, Hayakawa M, Suzuki K (2010) Angustibacter luteus gen. nov., sp. nov., isolated from subarctic forest soil. Int J Syst Evol Microbiol 60:2441–2445

    Article  CAS  PubMed  Google Scholar 

  • Tanner AC (1985) The role of bacteria in the cycling of nutrients within the maritime Antarctic environment. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 123–127

    Google Scholar 

  • Tanner AC, Herbert RA (1981) Nutrient regeneration in Antarctic marine sediments. Kiel Meeresforsch Sanderh 5:390–395

    CAS  Google Scholar 

  • Tiao G, Lee CK, McDonald IR, Cowan DA, Cary SC (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nat Commun 3:660

    Article  PubMed  CAS  Google Scholar 

  • Timmis KN, McGenity TJ, Meer JR, deLorenzo V (eds) (2010) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. doi:10.1007/978-3-540-77587-4

  • Tsiklinsky M (1908) La flore microbieene dans les regions due pole Sud. In: Expedition Antarctique Francais 1903–1905. 3:1–33

    Google Scholar 

  • Tsyganov VA (1970) Detection and morphological cultural characteristics of Actinomycetes from the antarctic. Mikrobiologia 39:821–826

    CAS  Google Scholar 

  • van Dorst J, Bissett A, Palmer AS, Brown M, Snape I, Stark JS, Raymond B, McKinlay J, Ji M, Winsley T, Ferrari BC (2014) Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 89:316–330

    Article  PubMed  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  PubMed  Google Scholar 

  • Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J (2004) Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of the genus Glaciecola. Int J Syst Evol Microbiol 54:1765–1771

    Article  PubMed  CAS  Google Scholar 

  • Vandieken V, Mussmann M, Niemann H, Jørgensen BB (2006) Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Vincent CF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, p 303

    Google Scholar 

  • Voytek MA, Ward BB (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61:1444–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wartiainen I, Hestnes AG, Svenning MM (2003) Methanotrophic diversity in high Arctic wetlands on the islands of Svalbard (Norway) – denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can J Microbiol 49:602–612

    Google Scholar 

  • Watanabe T, Kojima H, Takano Y, Fukui M (2013) Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 36:436–443

    Article  CAS  PubMed  Google Scholar 

  • Wery N, Gerike U, Sharman A, Chaudhuri JB, Hough DW, Danson MJ (2003) Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from antarctic soil. Appl Environ Microbiol 69:1457–1464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315

    Article  CAS  PubMed  Google Scholar 

  • Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F (2005) Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microbiol 71:7904–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yau S, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Rich J, Gibson JA, Cavicchioli R (2013) Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. ISME J 7:1944–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007a) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AH, Boschker HT, Aerts R, Kowalchuk GA (2007b) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Chun J (2006) Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 56:1239–1244

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li HR, Chen B, Zeng YX, He JF (2006) Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Arctic. Wei Sheng Wu Xue Bao 46:184–190

    PubMed  Google Scholar 

  • Yu Y, Li HR, Zeng YX, Chen B (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar Drugs 9:184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DC, Yu Y, Chen B, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006) Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 56:2867–2869

    Article  CAS  PubMed  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Liu HC, Chen B, Chi ZM, Zhou PJ, Yu Y (2008) Marinomonas arctica sp. nov., a psychrotolerant bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Cao T, Ying J, Yang Y, Ma L (2014) Diversity and novelty of actinobacteria in Arctic marine sediments. A Van Leeuw 105:743–754

    Article  CAS  Google Scholar 

  • Zhao J, Yang N, Zeng R (2008) Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles 12:97–105

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Yang W, Sun X, Wang SP, Rui YC, Luo CY, Guo LD (2012) Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3535-5

    Google Scholar 

  • Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Council for Scientific and industrial research (CSIR), Department of Biotechnology (DBT) and Department of science and technology, Govt of India for funding various projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisinthy Shivaji .

Editor information

Editors and Affiliations

Ethics declarations

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sathyanarayana Reddy, G., Chattopadhyay, M.K., Shivaji, S. (2016). Biodiversity, Adaptation and Biotechnological Importance of Bacteria Occurring in Cold Climates. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_2

Download citation

Publish with us

Policies and ethics