Skip to main content

Halophilic Bacteria and Archaea as Producers of Lipolytic Enzymes

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

Among the extremophiles, halophiles constitute an interesting group of microorganisms as producers of lipolytic enzymes with potential biotechnological interest since these extremozymes are not only active in a wide range of salt concentrations but they are also tolerant to organic solvents and high temperature, offering new possibilities for different industrial processes operating at extreme conditions. Thus, although halophilic enzymes have not been studied in deep, if compared with their heat-stable counterparts, the unique characteristics exhibited by these enzymes have increased the interest in them and their biotechnological applications are likely to increase. In this chapter we review the diversity of halophilic microorganisms from saline and hypersaline environments producing lipolytic enzymes. We focus in the description of the most important characteristics of the lipolytic enzymes from halophilic bacteria and archaea, including a summary of the screening methods and the substrates used for detecting these enzymes. Moreover, we highlight the potential biotechnological applications of the characterized enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008a) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48:160–167

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR (2008b) Salinivibrio proteolyticus sp. nov. a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Microbiol 58:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    CAS  PubMed  Google Scholar 

  • Ardakini MR, Roayaie M, Poshtkouhian A, Amozeegar MA, Zolgharnein H (2012) Isolation of moderately halophilic Pseudoalteromonas producing extracellular hydrolytic enzymes from Persian Gulf. Indian J Microbiol 52:94–98

    Article  CAS  Google Scholar 

  • Arpigny LL, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babavalian H, Amoozegar MA, Zahraei S, Rohban R, Shakeri F, Moghaddam MM (2014) Comparison of bacterial biodiversity and enzyme production in three hypersaline lakes; Urmia, Howz-Soltan and Aran-Bidgol. Indian J Microbiol 54:444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassegoda A, Pastor FI, Diaz P (2012) Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar T, Boutaiba S, Hacěne H, Cayol JL, Fardeau ML, Ollivier B, Baratti JC (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248:133–140

    Article  CAS  PubMed  Google Scholar 

  • Birbir M, Ogan A, Calli B, Mertoglu B (2004) Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy salt mine, Turkey. World J Microbiol Biotechnol 20:613–621

    Article  CAS  Google Scholar 

  • Bonete MJ, Martínez-Espinosa RM (2011) Enzymes from halophilic archaea: open questions. In: Ventosa A, Oren A, Ma Y (eds) Halophiles hypersaline environments. Springer, Berlin/Heidelberg, pp 359–371

    Chapter  Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacěne H, Mitchell DA, Baratti JC (2006) Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B: Enzym 41:21–26

    Article  CAS  Google Scholar 

  • Britton KL, Stillman TJ, Yip KS, Forterre P, Engel PC, Rice DW (1998) Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. J Biol Chem 273:9023–9030

    Article  CAS  PubMed  Google Scholar 

  • Brockerhoff J, Jensen RG (1974) Lipolytic enzymes. In: Brockerhoff J, Jensen RG (eds) Lipases. Academic, New York, pp 25–175

    Google Scholar 

  • Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36:901–909

    Article  CAS  PubMed  Google Scholar 

  • Camacho RM, Mateos-Díaz JC, Diaz-Montaño DM, González-Reynoso O, Córdova J (2010) Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1. Extremophiles 14:99–106

    Article  CAS  PubMed  Google Scholar 

  • Ceylan S, Yilan G, Akbulut BS, Poli A, Kazan D (2012) Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. J Biosci Bioeng 114:45–52

    Article  CAS  PubMed  Google Scholar 

  • Chauhan M, Chauhan RS, Garlapati VK (2013) Modelling and optimization studies on a novel lipase production by Staphylococcus arlettae through submerged fermentation. Enzyme Res 2013:353954, 8 p

    Google Scholar 

  • Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, Ventosa A (2000) The α-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146:861–868

    Article  CAS  PubMed  Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312

    Article  Google Scholar 

  • Daoud L, Kamoun J, Ali MB, Jallouli R, Bradai R, Mechichi T, Gargouri Y, Ali YB, Aloulou A (2013) Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int J Biol Macromol 57:232–237

    Article  CAS  PubMed  Google Scholar 

  • De la Haba RR, Márquez MC, Papke RT, Ventosa A (2012) Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 62:520–538

    Article  PubMed  CAS  Google Scholar 

  • Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Microbiology 76:511–522

    Article  CAS  Google Scholar 

  • Ribeiro BD, de Castro AM, Coelho MA, Freire DM (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res 2011:615803, 16 p

    Google Scholar 

  • Díaz-Rubio ME, Pérez-Jiménez J, Martínez-Bartolomé MA, Álvarez I, Saura-Calixto F (2014) Regular consumption of an antioxidant-rich juice improves oxidative status and causes metabolome changes in healthy adults. Plant Foods Hum Nutr 70:9–14

    Article  CAS  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Ebel C, Zaccai G (2004) Crowding in extremophiles: linkage between solvation and weak protein-protein interactions, stability and dynamics, provides insight into molecular adaptation. J Mol Recognit 17:382–389

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem 43:1–6

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    CAS  PubMed  Google Scholar 

  • Esakkiraj P, Prabakaran G, Maruthiah T, Immanuel G, Palavesam A (2014) Purification and characterization of halophilic alkaline lipase from Halobacillus sp. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-014-0437-1

    Google Scholar 

  • Esteves AM, Chandrayan SK, McTernan PM, Borges N, Adams MWW, Santos H (2014) Mannosylglycerate and Di-myo-Inositol phosphate have interchangeable roles during adaptation of Pyrococcus furiosus to heat stress. Appl Environ Microbiol 80:4226–4233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ewis HE, Abdelal AT, Lu CD (2004) Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene 329:187–195

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Leiros HK, de Pascale D, Johnson KA, Blencke HM, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97:3965–3978

    Article  CAS  PubMed  Google Scholar 

  • Gandbhir M, Rasched I, Marliere P, Mutzel R (1995) Convergent evolution of amino acid usage in archaebacterial and eubacterial lineages adapted to high salt. Res Microbiol 146:113–120

    Article  CAS  PubMed  Google Scholar 

  • Ghamesi Y, Rasoul-Amini S, Kazemi A, Zarrinic G, Morowvat MH, Kargar M (2011) Isolation and characterization of some moderately halophilic bacteria with lipase activity. Mikrobiologiia 80:477–481

    Google Scholar 

  • Goh F, Jeon YJ, Barrow K, Neilan BA, Burns BP (2011) Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 6:529–536

    Article  CAS  Google Scholar 

  • Grant WD, Gemmel RT, GcGenity TJ (1998) Halophiles. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss Inc., New York, pp 93–132

    Google Scholar 

  • Graziano G, Merlino A (2014) Molecular bases of protein halotolerance. Biochim Biophys Acta 4:850–858

    Article  CAS  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29:44–54

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Kagliwal LD, Singhal RS (2013) Biotransformation of polyphenols for improved bioavailability and processing stability. Adv Food Nutr Res 69:183–217

    Article  PubMed  Google Scholar 

  • Hacěne H, Rafaa F, Chebhounia N, Boutaibaa S, Bhatnagarb T, Baratti JC, Ollivier B (2004) Biodiversity of prokaryotic microflora in El Golea Salt Lake, Algerian Sahara. J Arid Environ 58:273–284

    Article  Google Scholar 

  • Hama S, Kondo A (2013) Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresour Technol 135:386–395

    Article  CAS  PubMed  Google Scholar 

  • Handrick R, Reinhardt S, Focarete ML, Scandola M, Adamus G, Kowalczuk M, Jendrossek D (2001) A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acids. J Biol Chem 276:36215–36224

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microbiol Technol 39:235–251

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  CAS  PubMed  Google Scholar 

  • Howe JD, Smith N, Lee MJ, Ardes-Guisot N, Vauzeilles B, Désiré J, Baron A, Blériot Y, Sollogoub M, Alonzi DS, Butters TD (2013) Novel imino sugar α-glucosidase inhibitors as antiviral compounds. Bioorg Med Chem 21:4831–4838

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH, Monk CR, Morgan HW (1994) A thermophilic, lipolytic Bacillus sp., and continuous assay of its p-nitro-phenyl-palmitate esterase activity. FEMS Microbiol Lett 120:195–200

    Google Scholar 

  • Jiang X, Huo Y, Cheng H, Zhang X, Zhu X, Wu M (2012) Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T. Extremophiles 16:427–435

    Article  CAS  PubMed  Google Scholar 

  • Johnsen U, Schonheit P (2004) Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 186:6198–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo WA, Kim CW (2005) Proteomics of halophilic archaea. J Chromatogr B Analyt Technol Biomed Life Sci 815:237–250

    Article  CAS  PubMed  Google Scholar 

  • Jordan SN, Mullen GJ (2007) Enzymatic hydrolysis of organic waste materials in a solid-liquid system. Waste Manag 27:1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Joris B, Ghuysen JM, Dive G, Renard A, Dideberg O, Charlier P, Frère JM, Kelly JA, Boyington JC, Moews PC, Knox JR (1988) The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J 250:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpushova A, Brümmer F, Barth S, Lange S, Schmid RD (2005) Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba. Appl Microbiol Biotechnol 67:59–69

    Article  CAS  PubMed  Google Scholar 

  • Kharroub K, Gomri MA, Aguilera M, Monteoliva-Sánchez M (2014) Diversity of hydrolytic enzymes in haloarchaea isolated from Algerian sabkhas. Afr J Microbiol Res 8:3992–4001

    Google Scholar 

  • Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH (2009) Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 75:257–260

    Article  CAS  PubMed  Google Scholar 

  • Kirsh D (1935) Lipase production by Penicillium oxalicum and Aspergillus flavus. Bot Gaz 97:321–333

    Article  Google Scholar 

  • Knox JR, Moews PC, Frere JM (1996) Molecular evolution of bacterial β-lactam resistance. Chem Biol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming alpha-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116:247–251

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of protein from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, Kim YS, Tao W, Lee SW (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Yim KJ, Song HS, Nam YD, Choi HJ, Seo MJ, Kim KN, Kim D, Roh SW, Rhee JK (2014) Draft genome sequence of Halorubrum halophilum B8T, an extremely halophilic archaeon isolated from salt-fermented seafood. Mar Genomics 18:117–118

    Article  PubMed  Google Scholar 

  • Li X, Yu H-Y (2012) Characterization of a novel extracellular lipase from a halophilic isolate, Chromohalobacter sp. LY7-8. Afr J Microbiol Res 14:3516–3522

    Google Scholar 

  • Li X, Yu H-Y (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 59:455–463

    Article  CAS  Google Scholar 

  • Li X, Yu H-U, Lin Y-F (2012) Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY5. Afr J Biotechnol 23:6327–6334

    Google Scholar 

  • Li X, Qian P, Wu SG, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18:171–178

    Article  PubMed  CAS  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38:1635–1647

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97:6113–6127

    Article  CAS  PubMed  Google Scholar 

  • López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15:445–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucas R, Comelles F, Alcántara D, Maldonado OS, Curcuroze M, Parra JL, Morales JC (2010) Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. J Agric Food Chem 14:8021–8026

    Article  CAS  Google Scholar 

  • Lv X-Y, Guo L-Z, Song L, Fu Q, Zhao K, Li A-X, Luo X-L, Lu W-D (2011) Purification and characterization of a novel extracellular carboxylesterase from the moderately halophilic bacterium Thalassobacillus sp. strain DF-E4. Ann Microbiol 61:281–290

    Article  CAS  Google Scholar 

  • Madern D, Pfister C, Zaccai G (1995) Mutation at behaviour of malate deshydrogenase from Haloarcula marismortui in physiological salts. Eur J Biochem 230:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Martín S, Márquez MC, Sánchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Mellado E, Martín S, Sánchez-Porro C, Ventosa A (2005) Lipolytic enzymes from extremophilic microorganisms. In: Mellado E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, Kerala/India, pp 25–43

    Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Moreno ML, Garcia MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase- and protease producing extreme halophile. FEMS Microbiol Ecol 68:59–71

    Article  CAS  Google Scholar 

  • Moreno ML, García MT, Ventosa A, Iglesias-Guerra F, Mellado E (2010) The extremely halophilic bacterium Salicola marasensis IC10 accumulates the compatible solute betaine. Syst Appl Microbiol 33:308–310

    Article  CAS  Google Scholar 

  • Moreno ML, Piubeli F, Bonfá MRL, García MT, Durrant LR, Mellado E (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113:550–559

    Article  CAS  PubMed  Google Scholar 

  • Moreno ML, Pérez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A, Supuran CT, Pouyssegur J, Poulsen S-A (2011) Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. J Med Chem 54:6905–6918

    Article  CAS  PubMed  Google Scholar 

  • Müller-Santos M, de Souza EM, Pedrosa Fde O, Mitchell DA, Longhi S, Carrière F, Canaan S, Krieger N (2009) First evidence for the salt- dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 1791:719–729

    Article  PubMed  CAS  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, May J, Dahl TA, Welti R, Goo YA, Leithauser B, Séller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niño de Guzman M, Virginia A, Antezana H, Svoboda M (2008) Lipolytic enzyme production by halophilic/halotolerant microorganisms isolated from Laguna Verde, Bolivia. Rev Boliv Quim 25:14–23

    Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6:217–223

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Rodríguez-Valera F, Antón J, Benlloch S, Rosselló-Mora R, Amann R, Coleman J, Russell NJ (2003) Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin/Heidelberg, pp 63–76

    Google Scholar 

  • Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36:105–110

    Article  CAS  PubMed  Google Scholar 

  • Ozcan B, Ozyilmaz G, Cihan A, Cokmus C, Caliskan M (2012) Phylogenetic analysis and characterization of lipolytic activity of halophilic archaeal isolates. Mikrobiologiia 81:205–213

    CAS  PubMed  Google Scholar 

  • Papke RT, de la Haba R, Infante-Domínguez C, Pérez D, Sánchez-Porro C, Lapierre P, Ventosa A (2013) Draft genome sequence of the moderately halophilic bacterium Marinobacter lipolyticus strain SM19. Genome Announc 1:e00379–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez D, Martin S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, Garcia MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6, e23325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez D, Kovacic F, Wilhelm S, Jaeger KE, Garcia MT, Ventosa A, Mellado E (2012) Identification of amino acids involved in hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 158:2192–2203

    Article  PubMed  CAS  Google Scholar 

  • Peri F (2013) Clustered carbohydrates in synthetic vaccines. Chem Soc Rev 42:4543–4556

    Article  CAS  PubMed  Google Scholar 

  • Pieper U, Kapadia G, Mevarech M, Herzberg O (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6:75–88

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Pire C, Esclapez J, Ferrer J, Bonete MJ (2001) Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family. FEMS Microbiol Lett 200:221–227

    Article  CAS  PubMed  Google Scholar 

  • Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, Ma Y (2011) A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochim Biophys Acta 1814:1695–1702

    Article  CAS  PubMed  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  CAS  PubMed  Google Scholar 

  • Salameh M, Wiegel L (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283

    Article  CAS  PubMed  Google Scholar 

  • Sana BGD, Saha M, Mukherjee J (2007) Purification and characterization of an extremely dimethylsulfoxide tolerant esterase from a salt-tolerant Bacillus species isolated from the marine environment of the Sundarbans. Process Biochem 42:1571–1578

    Article  CAS  Google Scholar 

  • Sánchez-Porro C, Martín S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    Article  PubMed  Google Scholar 

  • Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC, Müller V, Oesterhelt D (2013) Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus. Environ Microbiol 15:1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extramophiles. Enzyme Microbiol Technol 25:471–482

    Article  CAS  Google Scholar 

  • Sher J, Elevi R, Mana L, Oren A (2004) Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 232:211–215

    Article  CAS  PubMed  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Khare SK (2013) Thermostable proteases. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 859–880

    Chapter  Google Scholar 

  • Sinha R, Khare SK (2014) Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 5:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Studdert CA, Herrera-Seitz MK, Plasencia-Gil MI, Sanchez JJ, De Castro RE (2001) Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol 41:375–383

    Article  CAS  PubMed  Google Scholar 

  • Turki S (2013) Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 35:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Uratani JM, Kumaraswamy R, Rodriguez J (2014) A systematic strain selection approach for halotolerant and halophilic bioprocess development: a review. Extremophiles 18:629–639

    Article  CAS  PubMed  Google Scholar 

  • Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspectives of producing biodiesel like compounds by biotechnology. Microb Biotechnol 2:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valero F (2012) Heterologous expression systems for lipases: a review. In: Sandoval G (ed) Lipases and phospholipases, Methods in molecular biology. Humana Press, New York, pp 161–178

    Chapter  Google Scholar 

  • Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253

    Chapter  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa A, Sánchez-Porro C, Martin S, Mellado E (2005) Halophilic achaea and bacteria as a source of extracellular hydrolytic enzymes. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation of life at high salt concentrations in Archaea, Bacteria and Eukarya. Springer, Berlin/Heidelberg, pp 337–355

    Chapter  Google Scholar 

  • Ventosa A, Mellado E, Sánchez-Porro C, Márquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology. Springer, Berlin/Heidelberg, pp 87–115

    Chapter  Google Scholar 

  • Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–824

    Article  CAS  PubMed  Google Scholar 

  • Webb KM, DiRuggiero J (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea 2012:845756, 11 p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin L, Hui-Ying Y (2013) Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19. BMC Biotechnol 13:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaccai G (2004) The effect of water on protein dynamics. Philos Trans R Soc Lond B Biol Sci 359:1269–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H (1989) Stabilization of halophilic malate dehydrogenase. J Mol Biol 208:491–500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Junta de Andalucía (P08-RMN-3515 and P11-CVI-7427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarnación Mellado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moreno, M.d.L., Márquez, M.C., García, M.T., Mellado, E. (2016). Halophilic Bacteria and Archaea as Producers of Lipolytic Enzymes. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_13

Download citation

Publish with us

Policies and ethics