Skip to main content

A Proteomics Approach for the Identification of Novel Proteins in Extremophiles

  • Chapter
  • First Online:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Proteomics is one of the most powerful tools for studying functional genomics. Although genomics is the most popular tool for bacterial gene studies, proteomics provides novel and distinctive information on gene products (i.e., proteins), including information on translational levels, post-translational modifications, turnover, and cellular localization, that cannot be provided by genomics. Recently, proteomics has been used to perform physiological and metabolic studies on extremophiles. In this chapter, we briefly summarize the basic concept of proteomics, introduce proteomic technologies that are applicable to bacteria and archaea extremophiles, and describe the screening methods for identifying novel proteins in various extremophile sample sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu B, Apte SK (2012) Gamma radiation-induced proteome of Deinococcus radiodurans primarily targets DNA repair and oxidative stress alleviation. Mol Cell Proteomics 11(M111):011734

    PubMed  Google Scholar 

  • Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, Wang R, Huang ST, Ferlanti ES, Saeed AI, Fleischmann RD, Peterson SN, Pieper R (2008) The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics 9:529

    Google Scholar 

  • Burg D, Ng C, Ting L, Cavicchioli R (2011) Proteomics of extremophiles. Environ Microbiol 13:1934–1955

    Article  CAS  PubMed  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CW, Lee YG, Kwon SO, Kim HY, Lee JC, Chung YH, Yun CY, Kim SI (2012) Analysis of Streptococcus pneumoniae secreted antigens by immuno-proteomic approach. Diagn Microbiol Infect Dis 72:318–327

    Article  CAS  PubMed  Google Scholar 

  • Chong PK, Wright PC (2005) Identification and characterization of the Sulfolobus solfataricus P2 proteome. J Proteome Res 4:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Dedieu A, Sahinovic E, Guerin P, Blanchard L, Fochesato S, Meunier B, de Groot A, Armengaud J (2013) Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation. Proteome Sci 11:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CF, Schwarz H, Folea M, Schouten S, Boekema EJ, Poolman B, Driessen AJ (2009) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Raftery M, Saunders NF, Guilhaus M, Cavicchioli R (2005) Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J Proteome Res 4:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D (2005) The membrane proteome of Halobacterium salinarum. Proteomics 5:180–197

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5:319–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pham TK, Sierocinski P, van der Oost J, Wright PC (2010) Quantitative proteomic analysis of Sulfolobus solfataricus membrane proteins. J Proteome Res 9:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883

    Article  PubMed  PubMed Central  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    Article  CAS  PubMed  Google Scholar 

  • Prosinecki V, Botelho HM, Francese S, Mastrobuoni G, Moneti G, Urich T, Kletzin A, Gomes CM (2006) A proteomic approach toward the selection of proteins with enhanced intrinsic conformational stability. J Proteome Res 5:2720–2726

    Article  CAS  PubMed  Google Scholar 

  • Schmid G, Mathiesen G, Arntzen MO, Eijsink VG, Thomm M (2013) Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 17:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebbe A, Klein C, Bisle B, Siedler F, Scheffer B, Garcia-Rizo C, Wolfertz J, Hickmann V, Pfeiffer F, Oesterhelt D (2005) Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics 5:168–179

    Article  CAS  PubMed  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Yu NY, Laird MR, Spencer C, Brinkman FS (2011) PSORTdb—an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res 39:D241–D244

    Article  CAS  PubMed  Google Scholar 

  • Yun SH, Choi CW, Kwon SO, Lee YG, Chung YH, Jung HJ, Kim YJ, Lee JH, Choi JS, Kim S, Kim SI (2011a) Enrichment and proteome analysis of a hyperthermostable protein set of archaeon Thermococcus onnurineus NA1. Extremophiles 15:451–461

    Article  CAS  PubMed  Google Scholar 

  • Yun SH, Kwon SO, Park GW, Kim JY, Kang SG, Lee JH, Chung YH, Kim S, Choi JS, Kim SI (2011b) Proteome analysis of Thermococcus onnurineus NA1 reveals the expression of hydrogen gene cluster under carboxydotrophic growth. J Proteomics 74:1926–1933

    Article  CAS  PubMed  Google Scholar 

  • Yun SH, Lee YG, Choi CW, Lee SY, Kim SI (2014) Proteomic exploration of extremophiles. Curr Biotechnol 3:87–99

    Article  CAS  Google Scholar 

  • Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Il Kim .

Editor information

Editors and Affiliations

Ethics declarations

Sung Ho Yun, Chi-Won Choi, Sang-Yeop Lee, Edmond Changkyun Park, and Seung Il Kim declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yun, S.H., Choi, CW., Lee, SY., Park, E.C., Kim, S.I. (2016). A Proteomics Approach for the Identification of Novel Proteins in Extremophiles. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_10

Download citation

Publish with us

Policies and ethics