Skip to main content

Halotolerant Life in Feast or Famine: Organic Sources of Hydrocarbons and Fixers of Metals

  • Chapter
Evaporites

Abstract

A hydrocarbon source rock s generally considered to be a finegrained rock that, during its burial and heating, generates and releases enough fluids to form commercial accumulations of oil or gas (Fig. 9.1a). Back in 1981, Kirkland and Evans made the observation that some 50 % of the world’s oil sequestered in carbonate reservoirs may be associated with mesohaline micritic source rocks. Heresy or not, the notion that much of the oil in carbonate reservoirs, sealed by evaporite salts, may have been sourced in earlier less saline, but still related, evaporitic (mesohaline) conditions, is worthy of consideration. The association between mesohaline waters, the accumulation of organic-rich sediments and the evolution of the resulting evaporitic carbonates into source rocks has been noted by many, including: Woolnough (1937), Sloss (1953), Moody (1959), Dembicki et al. (1976), Oehler et al. (1979), Malek-Aslani (1980), Kirkland and Evans (1981), Jones (1984), Hite et al. (1984), Eugster (1985), Sonnenfeld (1985), Ten Haven et al. (1985), Warren (1986), Evans and Kirkland (1988), Busson (1991), Edgell (1991), Beydoun (1993), Benali et al. (1995), Billo (1996), Aizenshtat et al. (1998), Carroll (1998), Schreiber et al. (2001), Love et al. (2007), Schnyder et al. (2009), Warren (2011), Comer (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term diagenesis, as used by petroleum geochemists, describes processes of organic modification or alteration in the presence of pore waters where circulation is driven by surface processes. This usage is much more restrictive than the sedimentological use of the term which encompasses all alteration or modification from the time of sediment deposition until the onset of metamorphism. In order to minimise any possible confusion, the term eogenesis is preferred by some workers, but this is a different meaning to eogenetic as used by Choquette and Pray (1970).

  2. 2.

    Kerogen is the solid organic assemblage in a rock that is insoluble in organic solvents and encompasses numerous macerals.

  3. 3.

    Halotolerant organisms can tolerate high salt concentrations but grow better at somewhat lower salinities. Halophilic organisms grow best at very high salt concentrations and can be killed by lower salinities. Haloxene organisms cannot tolerate high concentrations of salts.

  4. 4.

    The Dead Sea described in Pliny the Elder’s Natural History as being free of life.

  5. 5.

    Autotrophs (literally “self feeders”) are organisms capable of producing organic compounds from simple inorganic compounds (producers not consumers). Autotrophs use carbon dioxide (CO2) as a sole source of carbon for growth and obtain their energy from light (photosynthetic autotrophs or photoautotrophs) or from the oxidation of inorganic compounds (chemosynthetic autotrophs or chemoautotrophs) (Fig. <InternalRef RefID="Fig11" >9.11</Internal Ref>).

    Photoautotrophs use light as a source of energy and CO2 as a source of carbon (oxygenic photosynthesis).

    Chemoautotrophs use endogenous light-independent reactions to obtain energy, these reactions involve inorganic molecules and an electron donor other than water and do not release oxygen.

    Lithoautotrophs depend upon inorganic compounds as electron donors for energy production.

    Heterotrophs (literally “feeders on others”) use organic molecules synthesized outside their body as a source of energy and carbon (consumers, detritovores, decomposers). They are saprophytes, obtaining their nutrients from dead organic matter. Most chemotrophs are autotrophic, but some are heterotrophs (chemoheterotrophs), which use inorganic oxidation for energy but use organic matter for carbon as well as supplemental energy. Photosynthetic bacteria have the biochemistry for either anoxygenic photosynthesis (non O2-producing) or oxygenic photosynthesis (O2-producing). Most photosynthetic bacteria are autotrophs that fix CO2 (photoautotrophs), but some rely on organic matter for their carbon (photoheterotrophs). Adaptive prokaryotes switch their modes of metabolism depending on environmental conditions (Peters et al. 2005).

  6. 6.

    Pink to purple colours that typify many hypersaline water bodies comes from concentrations of mostly carotenoid pigments present in the cytoplasm of various halophilic microorganisms. Most haloarchaea are red due to a high content of C-50 carotenoids of the bacterioruberin series in the cell membrane (Fig. <InternalRef RefID="Fig13" >9.13</Internal Ref>). Photosynthetic cyanobacteria and eukaryotes (e.g., unicellular green algae of the genus Dunaliella) contribute to the pigmentation of the hypersaline waters thanks to the presence of chlorophylls and C-40 carotenoids (mostly all-trans- and 9-cis- β-carotene). Chloroplasts in D. salina and D. parva accumulate large quantities of this β-carotene at their peripheries in the form of droplets (plastoglobuli) and so blooms appear brown-red, not green like most other alga and cyanobacteria. The carotene seems to act as photo-protective ‘sun-screen’ to protect chlorophyll integrity and shield cellular DNA from the high levels of irradiance that characterizes the normal habitat of halophilic Dunaliella. It may also act as a ‘carbon sink’ to store excess carbon produced during photosynthesis under conditions where growth is nutrient-limited but photosynthetic carbon fixation must continue.

    Chlorophylls absorb red and blue wavelengths much more strongly than they absorb green wavelengths, so chlorophyll-bearing cyanobacteria and most photosynthesizing plants appear green. In contrast, the carotenoids and phycobiliproteins strongly absorb green wavelength, so microbes and algae with large amounts of carotenoid pigments appear yellow to brown, those with large amounts of phycocyanin appear blue, and those with large amounts of phycoerythrin appear red.

    Pigment levels can indicate the stratification of the microbial community in any photoresponsive biomass in a brine column. Red wavelengths (long wavelengths) in white light are absorbed in the first few metres of a brine column or the uppermost millimetre or two of a microbial mat (chlorophyll utilizers flourish). The blue and green wavelengths (shorter) reach deeper into the brine column.

    Halophilic archaea were first investigated microbiologically as a common cause for spoilage of salted fish, with their carotene imparting a characteristic red colour. None of the halophilic archaea have been proved to cause disease, so their effects on salted foodstuffs are largely aesthetic. Haloarchaeal spoilage explains the red colour and the foul smell in “red herring.” The phrase “throw in a red herring” means to mislead. Spoiled salted fish were once used by poachers to distract hunting hounds. Poachers would interpose themselves between the prey and the hunting party and drag a sack of red herring across the trail to mislead the dog pack, which would follow the scent trail left by the red herring and not the prey. This would give the poachers the opportunity to bag the prey.

  7. 7.

    The euphotic (photic) zone describes the upper part of a water mass exposed to sufficient sunlight for photosynthesis to occur. Below is the aphotic zone. The lit zone can extend down to a few cm in a turbid water body, or as much as 200 m in clear waters (Fig. <InternalRef RefID="Fig12" >9.12</Internal Ref>).

  8. 8.

    Stenohaline describes the salinity tolerance of an organism that cannot cope with a wide range of salinity.

    Euryhaline is the opposite of stenohaline and describes organisms able to adapt to a wide range of salinities.

  9. 9.

    Thiotrophic describes an organism that oxidizes sulphur compounds as a major part of its metabolism. Purple and green sulphur bacteria are generally not called thiotrophic because they gain energy by photosynthesis and are thus classified as phototrophic, even though sulphide is required for this process.

  10. 10.

    Dissimilatory sulphate reducers release large amounts of hydrogen sulphide (H2S and HS) to the ambient environment, as products of their energy metabolism and so cause the characteristic smell of rotten eggs in the host sediment. The process is carried out by a heterogeneous group of bacteria and archaea that occur in anoxic environments with temperatures up to 105 °C.

    Assimilatory sulphate reduction is conducted by some bacteria in order to synthesize sulphur-containing cell components. It is another form of intracellular sulphate reduction, it is a metabolic process set that reduces sulphate to typically produce sulphide groups attached to amino acids, which are assimilated as useful components into the cell.

  11. 11.

    The term mono, used in the name Mono Lake, California, is likely a Yokut Indian word for naturally salted brine-fly pupae, a local delicacy before European settlement. However the Yokut people lived 200 miles north of Mono Lake, they harvested brine flu in Owens Lake, not Mono Lake. Prior to European settlement a small group of people (≈200 persons) calling themselves Kutzadika’a inhabited the Mono Lake region. The name Kutzadika’a, roughly translated, means “fly eaters” and Kutsavi was the Kutzadika’a term for brine fly, not Mono. Numbering around 200 individuals, the Kutzadika’a spent most of the year in the Mono Basin following an annual cycle of food gathering that seasonally focused on brine fly.

  12. 12.

    The term halobacteria (as opposed to the family Halobacteriacea, which exclusively encompasses the halophilic archaea) is a terminological carry-over from the old two-part morphology-based classification of life (see earlier discussion of Woese and his influence on microbial nomenclature and classification). When trying to make sense of the taxomic complexities that typify the microbial realms one should always remember that in contrast to eukaryotic nomenclature, there is no such thing as an official classification of prokaryotes. It remains a matter of scientific judgment and general agreement. The closest approximation to an “official” classification of prokaryotes would be one that is widely accepted by the community of microbiologists. The debate continues.

  13. 13.

    9.6 Isoprenoids are a major class of nonsaponifiable lipids that occur in plants, animals, and bacteria and are characterized by chains of modular groups of five carbon atoms in which the typical pattern has four of the carbon atoms in a linear chain and a single carbon attached at the carbon one position removed from the end of the chain. The term isoprenoid is derived from the name of the five-carbon, doubly unsaturated branched hydrocarbon isoprene, which could in principle be the simplest monomeric chemical precursor for this class of compounds.

    figure a

    Isoprenoids are also known as terpenes. Terpenes are usually grouped according to the number of isoprene (C5H8) units in the molecule: monoterpenes (C10H16) contain two such units; sesquiterpenes (C15H24), three; diterpenes (C20H32), four; triterpenes (C30H48), six; and tetraterpenes (C40H64), eight. The carotenoid pigments are the best known tetraterpenes in the geological realm.

  14. 14.

    Aliphatic hydrocarbons are any chemical compound belonging to the organic class in which the atoms are not linked together to form a ring. They are divided into three main groups according to the types of bonds they contain: alkanes, alkenes, and alkynes. Alkanes (n-alkanes) have only single bonds and a continuous chain structure, alkenes contain a carbon-carbon double bond, and alkynes contain a carbon-carbon triple bond. Aromatic hydrocarbons are classified as either arenes, which contain a benzene ring as a structural unit, or non-benzenoid aromatic hydrocarbons, which are characterized by special stability but which lack a benzene ring as a structural unit.

  15. 15.

    Hopanoids are a group of compounds (triterpenoids) produced by prokaryotic organisms, and the diagenetic alteration products of these compounds (found in oils, rock extracts and sediment extracts). Just as steroids (steranes) are a useful group of biomarkers for identifying input from various eukaryotic organisms (e.g., plants and animals), an analogous group of compounds, hopanoids, are a useful group of biomarkers for identifying input from various bacteria. Hopanoids serve the same function in bacteria as sterols do in eukaryotes: they act as cell wall rigidifiers. In petroleum and its source rocks, hopanoid biomarkers exist as a subset of a group of compounds called triterpanes (isoprenoids).

  16. 16.

    Israelis living in desert kibbutz communities construct artificial black plastic line pans in the desert, fill them with stratified waters and plumb household water pipes through the bottom brine in the pans to create a domestic water heater.

  17. 17.

    An aviator once described Lake Nakuru as “a crucible of pink and crimson fire,” with a million flamingos painting an astonishing band of colour that burst into pieces as the birds took flight.

  18. 18.

    Aka a “Chicken Little” or “the sky is falling” attitude to the world: such reportage, so popular in much of the world’s newsprint and in the religious extremes, be it reporting environmental Armageddon, the “end of peak oil,” or the coming of the next prophet, sells more newspapers and gets more zealous believers than any “good news” stories or fact-based analysis and discussion. In the prevailing zeitgeist, being a skeptic and advocating testing of all hypotheses (the basis for scientific endeavour) is considered a negative position; The questions; Leading questions, so common with the popular press, like; “When did you last beat you wife?” and “Are you a climate skeptic?” and your ability to reply without prejudicing popular perceptions is key. Otherwise when you answer either question with statement like “I don’t beat my wife” or “The proposition that climate change since the start of the Industrial Age ties mostly to anthropogenic causes, is still equivocal,” typically puts you in the same place in the minds of the true believers Prejudice be it green, left wing, right wing, religious or otherwise will always color the perceptions of such a listener.

  19. 19.

    Jargon of lacustrine stratification

    Mixolimnion: the upper, low density, freely circulating water layer of a meromictic lake.

    Monimolimnion: the deep, usually salty, layer of a meromictic lake typically it is a perennially stagnant or noncirculating water mass.

    Meromixis: a condition in a lake (meromictic lake) where the bottom noncirculating water mass is adiabatically isolated from the upper water mass.

    Holomixis: a condition in a lake describing complete overturn and mixing of the lake water mass.

    Hypoliminion: is the lowermost water mass in a lake, characterised by a generally uniform temperature (or density) profile.

    Eutrophic lake: a lake characterised by an abundance of nutrients and a seasonal deficiency of oxygen in the hypolimnion. Waters are usually shallow and sediments are organic-rich laminites.

    Oligotrophic lake: a lake characterised by a deficiency in nutrients. The bottom sediments typically contain low levels of organics and the water column is deep.

    Monomictic Lake: A lake which undergoes one period of complete mixing during the year separated by one period of thermal stratification.

  20. 20.

    Small amounts of hydrogen sulphide occur in crude petroleum, but natural gas can contain up to 90 %. At very low concentrations of less than 10–100 ppm it smells like rotten eggs and there is a common misapprehension that its foul odour is a warning. At 100 ppm the gas kills the sense of smell in 3–15 min and will cause you to cough or your eyes to water. Over 100 ppm your eyes and throat may begin to sting. At 200 ppm, your eyes and throat will begin to burn and you will get headaches. Only 600 ppm, or 0.06 of 1 % will cause death, if you are not treated very quickly. Over 1,000 ppm causes respiratory paralysis and a sudden agonizing death from asphyxiation.

    H2S is heavier than air, invisible, highly explosive and can destroy steel and rubber seals very quickly. Modern drill rig floors are all fitted with gas sniffer warning systems.

    Hydrogen sulphide is considered a broad-spectrum poison, meaning that it can poison several different systems in the body, although the nervous system is most affected. The toxicity of H2S is comparable with that of hydrogen cyanide or carbon monoxide. It forms a complex bond with iron in the mitochondrial cytochrome enzymes, thus preventing cellular respiration.

References

  • Abboud, M., R. P. Philp, and J. Allen, 2005, Geochemical correlation of oils and source rocks from central and NE Syria: Journal of Petroleum Geology, v. 28, p. 203–217.

    Google Scholar 

  • Addy, K. S., and E. W. Behrens, 1980, Time of accumulation of hypersaline anoxic brine in Orca basin (Gulf of Mexico): Marine Geology, v. 37, p. 241–252.

    Google Scholar 

  • Aharon, P., H. H. Roberts, and R. Snelling, 1992, Submarine venting of brines in the deep Gulf of Mexico: observations and geochemistry: Geology, v. 20, p. 483–486.

    Google Scholar 

  • Aizenshtat, Z., I. Miloslavski, D. Aschengrau, and A. Oren, 1998, Chapter 8: Hypersaline depositional environments and their relation to oil generation, in A. Oren, ed., Microbiology and biogeochemistry of hypersaline environments, CRC Press, p. 89–108.

    Google Scholar 

  • Alam, S., and W. Ahmed, 2008, Distribution and source rock potential assessment of Paleozoic source rocks of Punjab platform (Middle Indus basin) Pakistan (Goldschmidt Conference Abstracts): Geochimica et Cosmochimica Acta, v. 72, p. A13.

    Google Scholar 

  • Allen, D. E., B. R. Strazisar, Y. Soong, and S. W. Hedges, 2005, Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities: Fuel Processing Technology, v. 86, p. 1569–1580.

    Google Scholar 

  • Alonso-Azcarate, J., S. H. Bottrell, and J. Tritlla, 2001, Sulfur redox reactions and formation of native sulfur veins during low grade metamorphism of gypsum evaporites, Cameros Basin (NE Spain): Chemical Geology, v. 174, p. 389–402.

    Google Scholar 

  • Amrani, A., A. Deev, A. L. Sessions, Y. Tang, J. F. Adkins, R. J. Hill, J. M. Moldowan, and Z. Wei, 2012, The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction: Geochimica et Cosmochimica Acta, v. 84, p. 152–164.

    Google Scholar 

  • Amthor, J. E., 2000, Precambrian carbonates of Oman: A regional perspective (abs): GeoArabia, v. 5, p. 47.

    Google Scholar 

  • Andrejchuk, V. N., and A. B. Klimchouk, 2001, Geomicrobiology and redox geochemistry of the karstified Miocene gypsum aquifer, western Ukraine: The study from Zoloushka Cave: Geomicrobiology Journal, v. 18, p. 275–295.

    Google Scholar 

  • Antunes, A., D. K. Ngugi, and U. Stingl, 2011, Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes: Environmental Microbiology Reports, v. 3, p. 416–433.

    Google Scholar 

  • Apak, S. N., K. A. R. Ghori, G. M. Carlsen, and M. K. Stevens, 2002, Basin Development with implications for Petroleum Trap Styles of the Neoproterozoic Officer Basin, Western Australia: The sedimentary basins of Western Australia 3. Proceedings of the West Australian basins Symposium: Perth, Petroleum Exploration Society of Australia, p. 913–927.

    Google Scholar 

  • Aref, M. A. M., 1998b, Biogenic carbonates – are they a criterion for underlying hydrocarbon accumulations – an example from the Gulf of Suez region: Bulletin American Association of Petroleum Geologists, v. 82, p. 336–352.

    Google Scholar 

  • Ayres, M. G., M. Bilal, R. W. Jones, L. W. Slenz, M. Tartir, and A. O. Wilson, 1982, Hydrocarbon Habitat in Main Producing Areas, Saudi Arabia: American Association of Petroleum Geologists Bulletin, v. 66, p. 1–9.

    Google Scholar 

  • Ayres, M. G., M. Bilal, R. W. Jones, L. W. Slenz, M. Tartir, and A. O. Wilson, 1982, Hydrocarbon Habitat in Main Producing Areas, Saudi Arabia: American Association of Petroleum Geologists Bulletin, v. 66, p. 1–9.

    Google Scholar 

  • Bakr, M. M. Y., and H. Wilkes, 2002, The influence of facies and depositional environment on the occurrence and distribution of carbazoles and benzocarbazoles in crude oils: a case study from the Gulf of Suez, Egypt: Organic Geochemistry, v. 33, p. 561–580.

    Google Scholar 

  • Barbé, A., J. O. Grimalt, and J. Albaigés, 1988, Novel cyclohexyl isoprenoid hydrocarbons in carbonate-evaporite crude oils: Naturwissenschaften, v. 75, p. 624–625.

    Google Scholar 

  • Barbé, A., J. O. Grimalt, J. J. Pueyo, and J. Albaiges, 1990, Characterization of model evaporitic environments through the study of lipid components: Organic Geochemistry, v. 16, p. 815–828.

    Google Scholar 

  • Barkan, E., B. Luz, and B. Lazar, 2001, Dynamics of the carbon dioxide system in the Dead Sea: Geochimica et Cosmochimica Acta, v. 65, p. 1.

    Google Scholar 

  • Ballot, A., 2004, Cyanobacteria in Kenyan Rift Valley lakes: A biological and toxicological study: Doctoral thesis, Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin.

    Google Scholar 

  • Barrat, J. A., J. Boulegue, J. J. Tiercelin, and M. Lesourd, 2000, Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa: Geochimica et Cosmochimica Acta, v. 64, p. 287–298.

    Google Scholar 

  • Bass-Becking, L. G. M., 1928, On organisms living in concentrated brines: Tijdsch. Ned. Dierk. Ver., v. Series 3, p. 6–9.

    Google Scholar 

  • Baudrand, M., V. Grossi, R. Pancost, and G. Aloisi, 2010, Non-isoprenoid macrocyclic glycerol diethers associated with authigenic carbonates: Organic geochemistry, v. 41, p. 1341–1344.

    Google Scholar 

  • Baumgartner, L. K., R. P. Reid, C. Dupraz, A. W. Decho, D. H. Buckley, J. R. Spear, K. M. Przekop, and P. T. Visscher, 2006, Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries: Sedimentary Geology, v. 185, p. 131–145.

    Google Scholar 

  • Bayly, I. A. E., and W. E. Williams, 1973, Inland waters and their ecology: Hawthorn, Vic., Longman Australia.

    Google Scholar 

  • Bechtel, A., and W. Puttmann, 1997, Palaeoceanography of the early Zechstein Sea during Kupferschiefer deposition in the Lower Rhone Basin (Germany) – A reappraisal from stable isotope and organic geochemical investigations: Palaeogeography Palaeoclimatology Palaeoecology, v. 136, p. 331–358.

    Google Scholar 

  • Bechtel, A., Y. N. Shieh, M. Pervaz, and W. Puttmann, 1996, Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environment – inferences from sulfur isotope and organic geochemical investigations of the Bahloul Formation at the Bou Grine Zn/Pb ore deposit, Tunisia: Geochimica et Cosmochimica Acta, v. 60, p. 2833–2855.

    Google Scholar 

  • Beglinger, S. E., H. Doust, and S. Cloetingh, 2012, Relating petroleum system and play development to basin evolution: West African South Atlantic basins: Marine and Petroleum Geology, v. 30, p. 1–25.

    Google Scholar 

  • Benali, S., B. C. Schreiber, M. L. Helman, and R. P. Philp, 1995, Characterisation of organic matter from a restricted/ evaporative sedimentary environment – Late Miocene of Lorca Basin, southeastern Spain: American Association of Petroleum Geologists – Bulletin, v. 79, p. 816–830.

    Google Scholar 

  • Benson, L., B. Linsley, J. Smoot, S. Mensing, S. Lund, S. Stine, and A. Sarna-Wojcickig, 2003, Influence of Pacific Decadal Oscillation on the climate of Sierra Nevada, California and Nevada: Quaternary Research, v. 59, p. 151–159.

    Google Scholar 

  • Bergquist, D. C., F. M. Williams, and C. R. Fisher, 2000, Longevity record for deep-sea invertebrate: Nature, v. 403, p. 499–500.

    Google Scholar 

  • Berner, R. A., 1980, Early Diagenesis – A theoretical approach: Princeton NJ, Princeton University Press, 241 p.

    Google Scholar 

  • Beydoun, Z. R., 1993, Evolution of the northeastern Arabian plate margin and shelf – Hydrocarbon habitat and conceptual future potential: Revue de l’ Institut Francais du Petrole, v. 48, p. 311–345.

    Google Scholar 

  • Bildstein, K. L., C. B. Golden, B. J. McCraith, and B. W. Bohmke, 1993, Feeding Behavior, Aggression, and the Conservation Biology of Flamingos: Integrating Studies of Captive and Free-ranging Birds: American Zoologist, v. 33, p. 117–125.

    Google Scholar 

  • Billo, S. M., 1996, Geology of marine evaporites favorable for oil, gas exploration: Oil & Gas Journal, v. 94, p. 69–73.

    Google Scholar 

  • Bohacs, K. M., A. R. Carroll, J. E. Neal, and P. J. Mankiewicz, 2000, Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic – geochemical framework, in E. H. Gierlowski-Kodesch, and K. Kelts, eds., Lake basins through space and time, v. 46: Tulsa, American Association Petroleum Geologists Studies in Geology, p. 3–34.

    Google Scholar 

  • Bonch-Osmolovskaya, E. A., M. L. Miroshnichenko, A. V. Lebedinsky, N. A. Chernyh, T. N. Nazina, V. S. Ivoilov, S. S. Belyaev, E. S. Boulygina, Y. P. Lysov, A. N. Perov, A. D. Mirzabekov, H. Hippe, E. Stackebrandt, S. L’Haridon, and C. Jeanthon, 2003, Radioisotopic, Culture-Based, and Oligonucleotide Microchip Analyses of Thermophilic Microbial Communities in a Continental High-Temperature Petroleum Reservoir: Applied and Environmental Microbiology, v. 69, p. 6143–6151.

    Google Scholar 

  • Borin, S., L. Brusetti, F. Mapelli, G. D’Auria, T. Brusa, M. Marzorati, A. Rizzi, M. Yakimov, D. Marty, G. J. De Lange, P. Van der Wielen, H. Bolhuis, T. J. McGenity, P. N. Polymenakou, E. Malinverno, L. Giuliano, C. Corselli, and D. Daffonchio, 2009, Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin: Proceedings of the National Academy of Sciences, v. 106, p. 9151–9156.

    Google Scholar 

  • Boutaiba, S., H. Hacene, K. A. Bidle, and J. A. Maupin-Furlow, 2011, Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara: Journal of Arid Environments, v. 75, p. 909–916.

    Google Scholar 

  • Bradshaw, J., 1988, The depositional, diagenetic and structural history of the Chandler Formation and related units, Amadeus Basin, central Australia: PhD thesis, University of New South Wales (Australia).

    Google Scholar 

  • Brandt, K. K., and K. Ingvorsen, 1997, Desulfobacter halotolerans sp nov, a halotolerant acetate- oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah: Systematic and Applied Microbiology, v. 20, p. 366–373.

    Google Scholar 

  • Bregant, D., G. Catalano, G. Civitarese, and A. Luchetta, 1990, Some chemical characteristics of the brines in Bannock and Tyro Basins: salinity, sulphur compounds, Ca, F, pH, At, PO4, SiO2, NH3: Marine Chemistry, v. 31, p. 35–62.

    Google Scholar 

  • Brock, M. A., 1982a, Biology of the Salinity Tolerant Genus Ruppia L in Saline Lakes in South-Australia .1. Morphological Variation within and between Species and Ecophysiology: Aquatic Botany, v. 13, p. 219–248.

    Google Scholar 

  • Brock, M. A., 1982b, Biology of the Salinity Tolerant Genus Ruppia L in Saline Lakes in South-Australia .2. Population Ecology and Reproductive- Biology: Aquatic Botany, v. 13, p. 249–268.

    Google Scholar 

  • Brocks, J. J., G. D. Love, R. E. Summons, A. H. Knoll, G. A. Logan, and S. A. Bowden, 2005, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea: Nature, v. 437, p. 866–870.

    Google Scholar 

  • Brocks, J. J., and P. Schaeffer, 2008, Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640†Ma Barney Creek Formation: Geochimica et Cosmochimica Acta, v. 72, p. 1396–1414.

    Google Scholar 

  • Brocks, J. J., and R. E. Summons, 2003, Chapter 8.03: Sedimentary hydrocarbons, biomarkers for early life, in W. Schlesinger, ed., Treatise in Geochemistry, v. 8: Amsterdam, Elsevier, p. 53.

    Google Scholar 

  • Burke, C. M., 1995, Benthic microbial production of oxygen supersaturates the bottom water of a stratified hypersaline lake: Microbial Ecology, v. 29, p. 163–171.

    Google Scholar 

  • Burke, C. M., and B. Knott, 1997, Homeostatic interactions between the benthic microbial communities and the waters of a saline lake: Marine & Freshwater Research, v. 48, p. 623–631.

    Google Scholar 

  • Burkova, V. N., E. A. Kurakolova, N. S. Vorob’eva, M. L. Kondakova, and O. K. Bazhenova, 2000, Hydrocarbons of the hypersaline environment of the Tyro deep-sea depression (eastern Mediterranean): Geochemistry International, v. 38, p. 883–894.

    Google Scholar 

  • Burne, R. V., J. Bauld, and P. De Deckker, 1980, Saline lake charophytes and their geological significance: Journal of Sedimentary Petrology, v. 50, p. 281–293.

    Google Scholar 

  • Burwood, R., S. M. De Witte, B. Mycke, and J. Paulet, 1995, Petroleum geochemical characterisation of the lower Congo Coastal basin Bucomazi Formation, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 235–263.

    Google Scholar 

  • Burwood, R., P. Leplat, B. Mycke, and J. Paulet, 1992, Rifted Margin Source Rock Deposition – a Carbon Isotope and Biomarker Study of a West African Lower Cretaceous Lacustrine Section: Organic Geochemistry, v. 19, p. 41–52.

    Google Scholar 

  • Burwood, R., and B. Mycke, 1996, Coastal Angola and Zaire; a geochemical contrast of the lower Congo and Kwanza Basin hydrocarbon habitats (abs): Bulletin American Association of Petroleum Geologists, v. 80, p. 1277.

    Google Scholar 

  • Busson, G., 1991, Relationship between different types of evaporitic deposits, and the occurrence of organic-rich layers (potential source-rocks): Carbonates and Evaporites, v. 6, p. 177–192.

    Google Scholar 

  • Camerlenghi, A., 1990, Anoxic Basins of the eastern Mediterranean: geological framework: Marine Chemistry, v. 31, p. 1–19.

    Google Scholar 

  • Campos, P. G., J. O. Grimalt, L. Berdie, J. O. Lopez-Quintero, and L. E. Navarrete-Reyes, 1996, Organic geochemistry of Cuban oils--I. The northern geological province: Organic Geochemistry, v. 25, p. 475–488.

    Google Scholar 

  • Canet, C., R. M. Prol-Ledesma, E. Escobar-Briones, C. Mortera-Gutierrez, R. Lozano-Santa Cruz, C. Linares, E. Cienfuegos, and P. Morales-Puente, 2006, Mineralogical and geochemical characterization of hydrocarbon seep sediments from the Gulf of Mexico: Marine and Petroleum Geology, v. 23, p. 605–619.

    Google Scholar 

  • Canfield, D. E., and D. J. Des Marais, 1991, Aerobic sulfate reduction in microbial mats: Science, v. 251, p. 1471–1473.

    Google Scholar 

  • Canfield, D. E., K. B. SØRensen, and A. Oren, 2004, Biogeochemistry of a gypsum-encrusted microbial ecosystem: Geobiology, v. 2, p. 133–150.

    Google Scholar 

  • Cann, J. H., and P. De Deckker, 1981, Fossil Quaternary and Living Foraminifera from Athalassic (Non – Marine) Saline Lakes, Southern Australia: Journal of Palaeontology, v. 55, p. 660–670.

    Google Scholar 

  • Carrigan, W. J., G. A. Cole, E. L. Colling, and P. J. Jones, 1995, Geochemistry of the Upper Jurassic Tuwaiq Mountain and Hanifa Formation petroleum source rocks of eastern Saudi Arabia, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 67–87.

    Google Scholar 

  • Carrigan, W. J., G. A. Cole, E. L. Colling, and P. J. Jones, 1995, Geochemistry of the Upper Jurassic Tuwaiq Mountain and Hanifa Formation petroleum source rocks of eastern Saudi Arabia, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 67–87.

    Google Scholar 

  • Carroll, A. R., 1998, Upper Permian lacustrine organic facies evolution, southern Junggar basin, NW China: Organic Geochemistry, v. 28, p. 649–667.

    Google Scholar 

  • Carroll, A. R., S. C. Brasell, and S. A. Graham, 1992, Upper Permian lacustrine oil shales, southern Junggar Basin, Northwest China: American Association Petroleum Geologists – Bulletin, v. 76, p. 1874–1902.

    Google Scholar 

  • Caumette, P., 1993, Ecology and physiology of phototropic bacteria and sulphate-reducing bacteria in marine salterns: Experientia, v. 49, p. 473–481.

    Google Scholar 

  • Cavicchioli, R., 2006, Cold-adapted archaea: Nature Reviews, Microbiology, v. 4, p. 331–343.

    Google Scholar 

  • Cayol, J. L., B. Ollivier, B. K. C. Patel, G. Prensier, J. Guezennec, and J.-L. Garcia, 1994, Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative strictly anaerobic bacterium: Int. J. Syst. Bacteriol., v. 44, p. 534–540.

    Google Scholar 

  • Chakhmakhchev, A., and N. Suzuki, 1995, Saturate biomarkers and aromatic sulfur compounds in oils and condensates from different source rock lithologies of Kazakhstan, Japan and Russia: Organic Geochemistry, v. 23, p. 289–299.

    Google Scholar 

  • Chen, J., M. R. Walter, G. A. Logan, M. C. Hinman, and R. E. Summons, 2003, The Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern Australia: organic geochemistry and ore genesis: Earth and Planetary Science Letters, v. 210, p. 467–479.

    Google Scholar 

  • Chen, J. Y., Y. P. Bi, J. G. Zhang, and S. F. Li, 1996, Oil-source correlation in the Fulin basin, Shengli petroleum province, East China: Organic Geochemistry, v. 24, p. 931–940.

    Google Scholar 

  • Choquette, P. W., and L. C. Pray, 1970, Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates: Bulletin American Association Petroleum Geologists, v. 54, p. 207–250.

    Google Scholar 

  • Christiansen, F. G., S. Piasecki, L. Stemmerik, and N. Telnaes, 1993, Depositional environment and organic geochemistry of the Upper Permian Ravnjeld Formation source rock in East Greenland: Bulletin American Association of Petroleum Geologists, v. 77, p. 1519–1537.

    Google Scholar 

  • Cita, M. B., 2006, Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine-filled collapsed basins: Sedimentary Geology, v. 188-189, p. 357–378.

    Google Scholar 

  • Clark, J. A., J. A. Cartwright, and S. A. Stewart, 1999, Mesozoic dissolution tectonics on the West Central Shelf, UK Central North Sea: Marine & Petroleum Geology, v. 16, p. 283–300.

    Google Scholar 

  • Clark, J. P., and R. P. Philp, 1989, Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek basin, Alberta: Bulletin of Canadian Petroleum Geology, v. 37, p. 401–416.

    Google Scholar 

  • Clavero, E., M. Hernandez-Marine, J. O. Grimalt, and F. Garcia-Pichel, 2000, Salinity tolerance of diatoms from thalassic hypersaline environments: Journal of Phycology, v. 36, p. 1021–1034.

    Google Scholar 

  • Cohen, A. S., 1989, Facies relationships and sedimentation in large rift lakes and implications for hydrocarbon exploration: Examples from Lake Turkana and Tanganyika: Palaeogeography Palaeoclimatology Palaeoecology, v. 70, p. 65–80.

    Google Scholar 

  • Collett, T. S., A. H. Johnson, C. C. Knapp, and R. Boswell, 2009, Natural Gas Hydrates: A Review, in T. Collett, A. Johnson, C. Knapp, and R. Boswell, eds., Natural gas hydrates—Energy resource potential and associated geologic hazards: American Association of Petroleum Geologists Memoir, v. 89, p. 146–219.

    Google Scholar 

  • Collins, D., D. Briggs, and S. C. Morris, 1983, New Burgess Shale Fossil Sites Reveal Middle Cambrian Faunal Complex: Science, v. 222, p. 163–167.

    Google Scholar 

  • Comer, J. B., 2012, Woodford Shale and the evaporite connection – The significance of aridity an hypersalinity in organic matter productivity and preservation (abs.): Geological Society of America- North-Central Section – 46th Annual Meeting (23–24 April 2012)

    Google Scholar 

  • Connan, J., and D. Dessort, 1987, Novel family of hexacyclic hopanoid alkanes (C32---C35) occurring in sediments and oils from anoxic paleoenvironments: Organic Geochemistry, v. 11, p. 103–113.

    Google Scholar 

  • Cooper, B. S., P. C. Barnard, and N. Telnaes, 1995, The Kimmeridge Clay Formation of the North Sea, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 89–110.

    Google Scholar 

  • Cordell, R. J., 1992, Carbonates as hydrocarbon source rocks, in G. V. Chilingarian, S. J. Mazzullo, and H. H. Rieke, eds., Carbonate reservoir characterisation: a geologic-engineering analysis, part 1: Developments in Petroleum Science, v. 30: Amsterdam, Elsevier, p. 271–329.

    Google Scholar 

  • Cornford, C., 2005, The Petroleum System, in R. C. Selley, L. R. M. Cocks, and I. R. Plimer, eds., Encyclopedia of Geology, Elsevier Academic Press, p. 268–294.

    Google Scholar 

  • Corselli, C., and F. S. Aghib, 1987, Brine formation and gypsum precipitation in the Bannock Basin (eastern Mediterranean): Marine Geology, v. 75, p. 185–199.

    Google Scholar 

  • Cota, L., and G. Baric, 1998, Petroleum potential of the Adriatic offshore, Croatia: Organic Geochemistry, v. 29, p. 559–570.

    Google Scholar 

  • Curial, A., D. Dumas, and G. Dromart, 1990, Organic matter and evaporites in the Paleogene West European Rift: The Bresse and Valence salt basins (France), in A. Y. Huc, ed., Deposition of Organic Facies, v. 30: Tulsa, OK, American Association Petroleum Geologists, Studies in Geology.

    Google Scholar 

  • Dahl, J., J. M. Moldowan, and P. Sundararaman, 1993, Relationship of biomarker distribution to depositional environment – Phosphoria Fromation, Montana, USA: Organic Geochemistry, p. 1001–1017.

    Google Scholar 

  • Dahl, J. E., J. M. Moldowan, S. C. Teerman, M. A. McCaffrey, P. Sundararaman, M. Pena, and C. E. Stelting, 1994, Source rock quality determination from oil biomarkers I. – An example from the Aspen Shale, Scully’s Gap, Wyoming: Bulletin American Association Petroleum Geologists, v. 78, p. 1507–1026.

    Google Scholar 

  • Dalthorp, M., and T. H. Naehr, 2011, Structural and Stratigraphic Relationships of Hydrocarbon Seeps in the Northern Gulf of Mexico and Geological Factors Contributing to Migration Variations: Gulf Coast Association of Geological Societies Transactions, v. 61, p. 105–122.

    Google Scholar 

  • Damste, J. S. S., J. W. De Leeuw, S. Betts, Yue Ling, and P. M. Hofmann, 1993, Hydrocarbon biomarkers of different lithofacies of the Salt IV Formation of the Mulhouse Basin, France: Organic Geochemistry, v. 20, p. 1187–1200.

    Google Scholar 

  • Damste, J. S. S., N. L. Frewin, F. Kenig, and J. W. Deleeuw, 1995, Molecular indicators or palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy) .1. Variations in extractable organic matter of ten cyclically deposited marl beds: Organic Geochemistry, v. 23, p. 471–483.

    Google Scholar 

  • DasSarma, S., and P. Arora, 2001, Halophiles: Encyclopedia of Life Sciences (Nature Publishishing Group www.els.net), p. 1–9.

  • Davies, G. R., 1970, Carbonate bank sedimentation, eastern Shark Bay, Western Australia, in B. W. Logan, G. R. Davies, J. F. Read, and D. E. Cebulski, eds., Carbonate Sedimentation and Environments, Shark Bay, Western Australia, American Association of Petroleum Geologists Memoir, v. 13, p. 85–168.

    Google Scholar 

  • Davila, A. F., I. Hawes, C. Ascaso, and J. Wierzchos, 2013, Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert: Environmental Microbiology Reports, p. n/a-n/a.

    Google Scholar 

  • Davis, J. B., and D. W. Kirkland, 1970, Native sulfur deposition in the Castile formation, Culberson county, Texas: Econ. Geol., v. 65, p. 107–121.

    Google Scholar 

  • De Araújo, C. C., J. K. Yamamoto, S. P. Rostirolla, V. Madrucci, and A. Tankard, 2005, Tar sandstones in the Paraná Basin of Brazil: structural and magmatic controls of hydrocarbon charge: Marine and Petroleum Geology, v. 22, p. 671–685.

    Google Scholar 

  • De Deckker, P., 1981, Ostracods of Athalassic Saline Lakes – a Review: Hydrobiologia, v. 81-2, p. 131–144.

    Google Scholar 

  • De Deckker, P., and M. C. Geddes, 1980, Seasonal fauna of ephemeral saline lakes near the Coorong Lagoon, South Australia: Australian Journal of Marine and Freshwater Research, v. 31, p. 677–699.

    Google Scholar 

  • De Lange, G. J., J. J. Middleburg, C. H. van der Weijden, G. Catalano, G. W. Luther, III, D. J. Hydes, J. R. W. Woittiez, and G. P. Klinkhammer, 1990, Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean: Marine Chemistry, v. 31, p. 63–88.

    Google Scholar 

  • Dela Pierre, F., P. Clari, E. Bernardi, M. Natalicchio, E. Costa, S. Cavagna, F. Lozar, S. Lugli, V. Manzi, M. Roveri, and D. Violanti, 2012, Messinian carbonate-rich beds of the Tertiary Piedmont Basin (NW Italy): Microbially-mediated products straddling the onset of the salinity crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 3443345, p. 78–93.

    Google Scholar 

  • Demaison, G. J., and G. T. Moore, 1980, Anoxic environments and oil source bed genesis: American Association of Petroleum Geologists Bulletin, v. 64, p. 1179–1209.

    Google Scholar 

  • Dembicki, H. J., W. G. Meinschein, and D. E. Hattin, 1976, Possible ecological and environmental significance of the predominance of even carbon number C20 – C30 n-alkanes: Geochimica et Cosmochimica Acta, v. 40, p. 203–208.

    Google Scholar 

  • Deocampo, D. M., 2002, Sedimentary structures generated by Hippopotamus amphibius in a lake-margin wetland, Ngorongoro Crater, Tanzania: Palaios, v. 17, p. 212–217.

    Google Scholar 

  • Des Marais, D. J., 2003, Biogeochemistry of Hypersaline Microbial Mats Illustrates the Dynamics of Modern Microbial Ecosystems and the Early Evolution of the Biosphere: Biological Bulletin, v. 204, p. 160–167.

    Google Scholar 

  • Deuser, W. G., 1971, Organic carbon budget of the Black Sea: Deep Sea Research, v. 18, p. 995–1004.

    Google Scholar 

  • Didyk, B. M., and B. R. T. Simoneit, 1989, Hydrothermal oil of the Guaymas Basin and implications for petroleum formation mechanisms: Nature, v. 342, p. 65–69.

    Google Scholar 

  • Dill, H. G., A. Bechtel, Z. Berner, R. Botz, J. Kus, C. Heunisch, and A. M. B. Abu Hamad, 2012, The evaporite-coal transition: Chemical, mineralogical and organic composition of the Late Triassic Abu Ruweis Formation, NW Jordan -Reference type of the Arabian Keuper: Chemical Geology, v. 298–299, p. 20–40.

    Google Scholar 

  • Dolson, J. C., R. M. Rashed, M. V. Shann, S. I. Matbouly, and H. Hammouda, 2001, Egypt in the twenty-first century: Petroleum potential in offshore trends: GeoArabia, v. 6, p. 211–230.

    Google Scholar 

  • Droste, H., 1990, Depositional cycles and source rock development in an epeiric intra-platform basin; the Hanifa Formation of the Arabian Peninsula: Sedimentary Geology, v. 69, p. 281–296.

    Google Scholar 

  • Duncan, W. I., and N. W. K. Buxton, 1995, New evidence for evaporitic Middle Devonian Lacustrine sediments with hydrocarbon source potential on the East Shetland Platform, North Sea: Journal of the Geological Society, v. 152, p. 251–258.

    Google Scholar 

  • Dupraz, C., R. P. Reid, O. Braissant, A. W. Decho, R. S. Norman, and P. T. Visscher, 2009, Processes of carbonate precipitation in modern microbial mats: Earth-Science Reviews, v. 96, p. 141–162.

    Google Scholar 

  • Dupraz, C., P. T. Visscher, L. K. Baumgartner, and R. P. Reid, 2004, Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas): Sedimentology, v. 51, p. 745–765.

    Google Scholar 

  • Eder, W., L. L. Jahnke, M. Schmidt, and R. Huber, 2001, Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods: Applied & Environmental Microbiology, v. 67, p. 3077–3085.

    Google Scholar 

  • Edgell, H. S., 1991, Proterozoic salt basins of the Persian Gulf area and their role in hydrocarbon generation: Precambrian Research, v. 54, p. 1–14.

    Google Scholar 

  • Ellison, J. C., and S. Simmonds, 2003, Structure and productivity of inland mangrove stands at Lake MacLeod, Western Australia: Journal Royal Society of West Australia, v. 86, p. 21–26.

    Google Scholar 

  • Emery, D., and A. Robinson, 1993, Inorganic Chemistry: Applications to Petroleum Geology: Oxford, Blackwell Scientific Publications, 254 p.

    Google Scholar 

  • Erba, E., 1991, Deep mid-water bacterial mats from anoxic basins of the eastern Mediterranean: Marine Geology, v. 100, p. 83–101.

    Google Scholar 

  • Espitalie, J., M. Madee, and B. Tissot, 1980, Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration: Bulletin American Association of Petroleum Geologists, v. 64, p. 59–66.

    Google Scholar 

  • Eugster, H. P., 1985, Oil shales, evaporites and ore deposits: Geochimica et Cosmochimica Acta, v. 49, p. 619–635.

    Google Scholar 

  • Evans, R., and D. W. Kirkland, 1988, Evaporitic environments as a source of petroleum, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, NY, United States, Columbia Univ. Press, p. 256–299.

    Google Scholar 

  • Farrimond, P., H. M. Talbot, D. F. Watson, L. K. Schulz, and A. Wilhelms, 2004, Methylhopanoids: Molecular indicators of ancient bacteria and a petroleum correlation tool: Geochimica et Cosmochimica Acta, v. 68, p. 3873–3882.

    Google Scholar 

  • Fendrihan, S., A. Legat, C. Gruber, M. Pfaffenhuemer, G. Weidler, F. Gerbl, and H. Stan-Lotter, 2006, Extremely halophilic archaea and the issue of long term microbial survival: Reviews in Environmental Science and Biotechnology, v. 5, p. 1569–1605.

    Google Scholar 

  • Feng, D., D. Chen, and J. Peckmann, 2009, Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps: Terra Nova, v. 21, p. 49–56.

    Google Scholar 

  • Ferrer, M., J. Werner, T. N. Chernikova, R. Bargiela, L. Fernández, V. La Cono, J. Waldmann, H. Teeling, O. V. Golyshina, F. O. Glöckner, M. M. Yakimov, P. N. Golyshin, and M. S. C. The, 2012, Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study: Environmental Microbiology, v. 14, p. 268–281.

    Google Scholar 

  • Finkelstein, D. B., R. L. Hay, and S. P. Altaner, 1999, Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado: Geological Society of America Bulletin, v. 111, p. 1175–1191.

    Google Scholar 

  • Fischer, A. G., and L. T. Roberts, 1991, Cyclicity in the Green River Formation (lacustrine Eocene) of Wyoming: Journal of Sedimentary Petrology, v. 61, p. 1146–1154.

    Google Scholar 

  • Fisher, C. R., I. R. MacDonald, R. Sassen, C. M. Young, S. A. Macko, S. Hourdez, R. S. Carney, S. Joye, and E. McMullin, 2000, Methane Ice Worms: Hesiocaeca methanicola Colonizing Fossil Fuel Reserves: Naturwissenschaften, v. 87, p. 184–187.

    Google Scholar 

  • Fowler, M. G., A. P. Hamblin, D. J. MacDonald, and P. G. McMahon, 1993, Geological occurrence and geochemistry of some oil shows in Nova Scotia: Bulletin of Canadian Petroleum Geology, v. 41, p. 422–436.

    Google Scholar 

  • Fox, J. E., and T. S. Ahlbrandt, 2001, Petroleum Geology and Total Petroleum Systems of the Widyan Basin and Interior Platform of Saudi Arabia and Iraq: U.S. Geological Survey Bulletin 2202–E.

    Google Scholar 

  • Franzmann, P. D., E. Stackebrandt, K. Sanderson, J. K. Volkman, D. E. Cameron, P. L. Stevenson, T. A. McMeekin, and H. R. Burton, 1988, Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica: Syst. Appl. Microbiol., v. 11, p. 20–27.

    Google Scholar 

  • Fredrickson, J. K., and T. C. Onstott, 1996, Microbes deep inside the Earth: Scientific American, v. Oct. 1996, p. 68–73.

    Google Scholar 

  • Freytag, J. K., P. R. Girguis, D. C. Bergquist, J. P. Andras, J. J. Childress, and C. R. Fisher, 2001, A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy: Proceedings of the National Academy of Sciences of the United States of America, v. 98, p. 13408–13413.

    Google Scholar 

  • Fry, J. C., R. J. Parkes, B. A. Cragg, A. J. Weightman, and G. Webster, 2008, Prokaryotic biodiversity and activity in the deep subseafloor biosphere: FEMS Microbiology Ecology, v. 66, p. 181–196.

    Google Scholar 

  • Fu Chen, D., Q. Liu, Z. Zhang, L. M. Cathles Iii, and H. H. Roberts, 2007, Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico: Marine and Petroleum Geology, v. 24, p. 313–320.

    Google Scholar 

  • García, A., and A. R. Chivas, 2004, Quaternary and extant euryhaline Lamprothamnium; Groves (Charales) from Australia: Gyrogonite morphology and paleolimnological significance: Journal of Paleolimnology, v. 31, p. 321–341.

    Google Scholar 

  • Garcia, C. M., and F. X. Niell, 1993, Seasonal Change in a Saline Temporary Lake (Fuente-De-Piedra, Southern Spain): Hydrobiologia, v. 267, p. 211–223.

    Google Scholar 

  • Gardner, W. C., and E. E. Bray, 1984, Oil and source rocks of the Niagaran Reefs (Silurian) in the Michigan Basin, in J. G. Palacas, ed., Petroleum geochemistry and source rock potential of carbonate rocks, v. 18: Tulsa, Ok, American Association of Petroleum Geologists, Studies in Geology, p. 33–44.

    Google Scholar 

  • Garrels, R. M., and C. L. Christ, 1965, Solutions, minerals, and equilibria: San Francisco, W. H. Freeman, 450 p.

    Google Scholar 

  • Geddes, M. C., 1975a, Studies on an Australian brine shrimp, Parartemia zeitziana Sayce (Crustacea: Anostraca). I. Salinity tolerance: Comp. Biochem. Physiol, v. 51A, p. 553–559.

    Google Scholar 

  • Geddes, M. C., 1975b, Studies on an Australian brine shrimp, Parartemia zeitziana Sayce (Crustacea: Anostraca). II. Osmotic and ionic regulation: Comp. Biochem. Physiol., v. 51A, p. 561–571.

    Google Scholar 

  • Geddes, M. C., 1975c, Studies on an Australian brine shrimp, Parartemia zeitziana Sayce (Crustacea: Anostraca). III. The mechanisms of osmotic and ionic regulation: Comp. Biochem. Physiol., v. 51A, p. 573–578.

    Google Scholar 

  • Geddes, M. C., P. De Deckker, and W. C. Williams, 1981, On the chemistry and biota of some saline lakes in Western Australia: Hydrobiologia, v. 81, p. 201–222.

    Google Scholar 

  • Gerdes, G., T. Klenke, and N. Noffke, 2000a, Microbial signatures in peritidal siliciclastic sediments: a catalogue: Sedimentology, v. 47, p. 279–308.

    Google Scholar 

  • Gerdes, G., H. Porada, and E. Bouougri, 2008, Bio-sedimentary structures evolving from the interaction of microbial mats, burrowing beetles and the physical environment of Tunisian coastal sabkhas: Senckenbergiana maritima, v. 38, p. 45–58.

    Google Scholar 

  • Ghai, R., L. Pasic, A. B. Fernandez, A.-B. Martin-Cuadrado, C. M. Mizuno, K. D. McMahon, R. T. Papke, R. Stepanauskas, B. Rodriguez-Brito, F. Rohwer, C. Sanchez-Porro, A. Ventosa, and F. Rodriguez-Valera, 2011, New Abundant Microbial Groups in Aquatic Hypersaline Environments: Scientific reports.

    Google Scholar 

  • Ghori, K. A. R., 2002, Modelling the hydrocarbon generative history of the Officer Basin, Western Australia: PESA Journal, v. 29, p. 29–43.

    Google Scholar 

  • Gibson, J. A. E., 1999, The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica: Antarctic Science, v. 11, p. 175–192.

    Google Scholar 

  • Gierlowski-Kordesch, E., and K. Kelts, 1994, The global geological record of lake basins: Cambridge, Cambridge University Press.

    Google Scholar 

  • Gilhooly III, W. P., R. S. Carney, and S. A. Macko, 2007, Relationships between sulfide-oxidizing bacterial mats and their carbon sources in northern Gulf of Mexico cold seeps: Organic Geochemistry, v. 38, p. 380–393.

    Google Scholar 

  • Glover, A. G., A. J. Gooday, D. M. Bailey, D. S. M. Billett, P. Chevaldonne, A. Colaco, J. Copley, D. Cuvelier, D. Desbruyeres, V. Kalogeropoulou, M. Klages, N. Lampadariou, C. Lejeusne, N. Mestre, G. L. J. Paterson, T. Perez, H. Ruhl, J. Sarrazin, T. Soltwedel, E. H. Soto, S. Thatje, A. Tselepides, S. Van Gaever, and A. Vanreusel, 2010, Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies: Advances In Marine Biology, v. 58, p. 1–95.

    Google Scholar 

  • Goff, J. C., 2005, Origin and Potential of Unconventional Jurassic oil reservoirs on the northern Arabian Plate: SPE Paper 3505-MS.

    Google Scholar 

  • Gostincar, C., M. Lenassi, N. Gunde-Cinerman, and A. Plemenitas, 2011, Fungal adaption to extremely high salt conditions, in A. I. Laskin, G. M. Gadd, and S. Sariaslani, eds., Advances in Applied Microbiology, V. 77, p. 71–91: Burlington, Elsevier Science.

    Google Scholar 

  • Grant, S., W. D. Grant, B. E. Jones, C. Kato, and L. Li, 1999, Novel archaeal phylotypes from an East African alkaline saltern: Extremophiles, v. 3, p. 139–145.

    Google Scholar 

  • Grantham, P. J., G. W. M. Lijmbach, J. Posthuma, M. W. Hughes Clarke, and R. J. Willink, 1988, Origin of crude oils in Oman: Journal of Petroleum Geology, v. 11, p. 61–80.

    Google Scholar 

  • Grice, K., S. Schouten, A. Nissenbaum, J. Charrach, and J. S. S. Damste, 1998, Isotopically heavy carbon in the C-21 to C-25 regular isoprenoids in halite-rich deposits from the Sedom Formation, Dead Sea basin, Israel: Organic geochemistry, v. 28, p. 349–359.

    Google Scholar 

  • Grimalt, J. O., R. De Wit, P. Teixidor, and J. Albaiges, 1992, Lipid biogeochemistry of Phormidium and Microcoleus mats: Organic Geochemistry, v. 19, p. 509–530.

    Google Scholar 

  • Grosjean, E., G. D. Love, A. E. Kelly, P. N. Taylor, and R. E. Summons, 2012, Geochemical evidence for an Early Cambrian origin of the “Q”oils and some condensates from north Oman: Organic geochemistry, v. 45, p. 77–90.

    Google Scholar 

  • Gunde-Cimerman, N., P. Zalar, S. de Hoog, and A. Plemenita, 2000, Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts: FEMS Microbiology Ecology, v. 32, p. 235–240.

    Google Scholar 

  • Gürgey, K., 2002, An attempt to recognise oil populations and potential source rock types in Paleozoic sub- and Mesozoic-Cenozoic supra-salt strata in the southern margin of the Pre-Caspian Basin, Kazakhstan Republic: Organic Geochemistry, v. 33, p. 723–741.

    Google Scholar 

  • Hahn, J., and P. Haug, 1986, Traces of Archaebacteria in ancient sediments: System. Appl. Microbiol., v. 7, p. 178–183.

    Google Scholar 

  • Hammer, U. T., 1986, Saline lake ecosystems of the world (Monographiae Biologicae, Vol. 59): Dordrecht, Nederlands, Dr. W. Junk Publishers, 632 p.

    Google Scholar 

  • Hanor, J. S., 1994a, Origin of saline fluids in sedimentary basins, in J. Parnell, ed., Geofluids; origin, migration and evolution of fluids in sedimentary basins: Geological Society Special Publications, v. 78: London, United Kingdom, Geological Society of London, p. 151–174.

    Google Scholar 

  • Hanson, A. D., B. D. Ritts, D. Zinniker, J. M. Moldowan, and U. Biffi, 2001, Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China: Bulletin-American Association of Petroleum Geologists, v. 85, p. 601–619.

    Google Scholar 

  • Hartmann, M., J. C. Scholten, P. Stoffers, and K. F. Wehner, 1998, Hydrographic structure of the brine-filled deeps in the Red Sea – New results from the Shaban, Kebrit, Atlantis II, and Discovery deeps: Marine Geology, v. 144, p. 311–330.

    Google Scholar 

  • Hartwig, A., R. di Primio, Z. Anka, and B. Horsfield, 2012, Source rock characteristics and compositional kinetic models of Cretaceous organic rich black shales offshore southwestern Africa: Organic Geochemistry, v. 51, p. 17–34.

    Google Scholar 

  • Hauer, G., and A. Rogerson, 2005, Remarkable salinity tolerance of seven species of naked amoebae (gymnamoebae): Hydrobiologia, v. 549, p. 33–42.

    Google Scholar 

  • Hazen, R. M., and C. M. Schiffries, 2013, Why Deep Carbon?: Reviews in Mineralogy and Geochemistry, v. 75, p. 1–6.

    Google Scholar 

  • Helfman, G., D. Facey, and B. Collette, 1997, The diversity of fishes: Oxford, UK, Blackwell Publishing, 1006 p.

    Google Scholar 

  • Henneke, E., G. W. Luther, G. J. Delange, and J. Hoefs, 1997, Sulphur speciation in anoxic hypersaline sediments from the Eastern Mediterranean Sea: Geochimica et Cosmochimica Acta, v. 61, p. 307–321.

    Google Scholar 

  • Herbst, D. B., and T. J. Bradley, 1988, Osmoregulation in Dolichopodid Larvae (Hydrophorus-Plumbeus) from a Saline Lake: Journal of Insect Physiology, v. 34, p. 369–372.

    Google Scholar 

  • Hesse, R., 1986, Early diagenetic pore water/sediment interaction: Modern offshore basins: Geoscience Canada, v. 13, p. 165–197.

    Google Scholar 

  • Heydari, E., 1997, The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi: American Association of Petroleum Geologists – Bulletin, v. 81, p. 26–45.

    Google Scholar 

  • Heydari, E., 2000, Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi: American Association Petroleum Geologists – Bulletin, v. 84, p. 100–118.

    Google Scholar 

  • Hill, C. A., 1995, H2S-related porosity and sulfuric acid oilfield karst, in D. A. Budd, A. H. Saller, and P. M. Harris, eds., Unconformities and porosity in carbonate strata, American Association Petroleum Geologists Memoir 63, p. 301–306.

    Google Scholar 

  • Hite, R. J., and D. E. Anders, 1991, Petroleum and evaporites, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50: Amsterdam, Elsevier Developments in Sedimentology, p. 477–533.

    Google Scholar 

  • Hite, R. J., D. E. Anders, and T. G. Jing, 1984, Organic-rich source rocks of Pennsylvanian age in the Paradox Basin of Utah and Colorado, in J. Woodward, F. F. Meissner, and J. L. Clayton, eds., Hydrocarbon source rocks of the Greater Rocky Mountain Region: Denver, Rocky Mountain Assoc. Geologists, p. 255–274.

    Google Scholar 

  • Hofmann, P., A. Y. Huc, B. Carpentier, P. Schaeffer, P. Albrecht, B. Keely, J. R. Maxwell, D. J. S. Sinninghe, L. J. W. de, and D. Leythaeuser, 1993a, Organic matter of the Mulhouse Basin, France; a synthesis: Organic Geochemistry, v. 20, p. 1105–1123.

    Google Scholar 

  • Hofmann, P., D. Leythaeuser, and B. Carpentier, 1993b, Palaeoclimate controlled accumulation of organic matter in Oligocene evaporite sediments of the Mulhouse Basin: Organic Geochemistry, v. 20, p. 1125–1138.

    Google Scholar 

  • Holba, A. G., E. Tegelaar, L. Ellis, M. S. Singletary, and P. Albrecht, 2000, Tetracyclic polyprenoids: Indicators of freshwater (lacustrine) algal input: Geology, v. 28, p. 251–254.

    Google Scholar 

  • Hollander, D. J., A. Y. Huc, J. S. S. Damste, J. M. Hayes, and J. W. De Leeuw, 1993, Molecular and bulk isotopic analyses of organic matter in marls of the Mulhouse Basin (Tertiary, Alsace, France): Organic Geochemistry, v. 20, p. 1253–1263.

    Google Scholar 

  • Horikoshi, K., G. Antranikian, A. T. Bull, F. T. Robb, and K. O. Stetter, 2011, Extremophiles Handbook, Springer, 1247 p.

    Google Scholar 

  • Horsfield, B., D. J. Curry, K. M. Bohacs, A. R. Carroll, R. Littke, U. Mann, M. Radke, R. G. Schaefer, G. H. Isaksen, H. G. Schenk, E. G. Witte, and J. Rulkotter, 1994, Organic geochemistry of freshwater and alkaline lacustrine environments, Green River Formation, Wyoming: Organic geochemistry, v. 22, p. 415–450.

    Google Scholar 

  • Horsfield, B., and J. Rullkotter, 1994, Diagenesis, catagenesis, and metagenesis of organic matter, in L. B. Magoon, and W. G. Dow, eds., The petroleum system – from source to trap, v. 60, American Association of Petroleum Geologists; Memoir, p. 189–199.

    Google Scholar 

  • Huang, X. Z., and H. S. Shao, 1993, Sedimentary characteristics and types of hydrocarbon source rocks in the Tertiary semiarid to arid lake basins of Northwest China: Palaeogeography Palaeoclimatology Palaeoecology, v. 105, p. 33–43.

    Google Scholar 

  • Huber, R., M. Kurr, H. W. Jannasch, and K. O. Stetter, 1989, A novel group of methanogenic archaebacteria (Methanopyrus) growing at 110°C: Nature, v. 342, p. 833–834.

    Google Scholar 

  • Hunt, J. M., 1996, Petroleum geochemistry and geology: New York, W. H. Freeman & Co., 743 p.

    Google Scholar 

  • Ibrahim, M. I. A., H. Al-Saad, and S. E. Kholeif, 2002, Chronostratigraphy, palynofacies, source-rock potential, and organic thermal maturity of Jurassic rocks from Qatar: GeoArabia, v. 7, p. 675–696.

    Google Scholar 

  • Imhoff, J. F., H. G. Sahl, G. S. H. Soliman, and H. G. Trüper, 1979, The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes: Geomicrobiology Journal, v. 1, p. 219–234.

    Google Scholar 

  • Ionescu, D., A. Lipski, K. Altendorf, and A. Oren, 2007, Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis: Hydrobiologia Theme: Saline Waters and their Biota, v. 576, p. 15–26.

    Google Scholar 

  • Jassim, S. Z., R. Raiswell, and S. H. Bottrell, 1999, Genesis of the Middle Miocene stratabound sulphur deposits of northern Iraq: Journal of the Geological Society, v. 156, p. 25–39.

    Google Scholar 

  • Javor, B. J., 2000, Biogeochemical models of solar salterns, in R. M. Geertmann, ed., 8th World Salt Symposium, v. 2: Amsterdam, Elsevier, p. 877–882.

    Google Scholar 

  • Jellison, R., and J. M. Melack, 1993, Meromixis in hypersaline Mono Lake, California. 1. Stratification and vertical mixing during the onset, persistence, and breakdown of meromixis: Limnology & Oceanography, v. 38, p. 1008–1019.

    Google Scholar 

  • Jesse, G. D., M. Scott, B. Brad, H. Meredith, P. Nicolás, and A. S. David, 2009, Spatial and temporal variability in a stratified hypersaline microbial mat community: FEMS Microbiology Ecology, v. 68, p. 46–58.

    Google Scholar 

  • Jiang, L., C. F. Cai, R. H. Worden, K. K. Li, and L. Xiang, 2013, Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China: Geofluids, v. 13, p. 232–245.

    Google Scholar 

  • Jiang, L., R. H. Worden, and C. F. Cai, 2014, Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China: Bulletin American Association Petroleum Geologists, v. 98, p. 947–973.

    Google Scholar 

  • Jiang, Z., and M. G. Fowler, 1986, Carentenoid-derived alkanes in oils derived from northwestern China: Organic geochemistry, v. 10, p. 831–839.

    Google Scholar 

  • Jin, Q., J. Wang, G. Song, L. Wang, L. Lin, and S. Bai, 2010, Interaction between source rock and evaporite: A case study of natural gas generation in the northern Dongying Depression: Chinese Journal of Geochemistry, v. 29, p. 75-81-81.

    Google Scholar 

  • Johnston, P. A., K. J. Johnston, C. J. Collom, W. G. Powell, and R. J. Pollock, 2009, Palaeontology and depositional environments of ancient brine seeps in the Middle Cambrian Burgess Shale at The Monarch, British Columbia, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 86–105.

    Google Scholar 

  • Jones, B. E., W. D. Grant, A. W. Duckworth, and G. G. Owenson, 1998, Microbial diversity of soda lakes: Extremophiles, v. 2, p. 191–200.

    Google Scholar 

  • Jones, D. A., A. R. G. Price, and R. N. Hughs, 1978, Ecology of the high saline lagoons Dawhat as Sayh, Arabian Gulf, Saudi Arabia: Estuarine and Coastal Marine Science, v. 6, p. 253–262.

    Google Scholar 

  • Jones, R. W., 1984, Comparison of carbonate and shale source rocks, in J. G. Palacas, ed., Petroleum geochemistry and source rock potential of carbonate rocks, v. 18: Tulsa, OK, American Association of Petroleum Geologists, Studies in Geology, p. 163–180.

    Google Scholar 

  • Jørgensen, B. B., M. F. Isaksen, and H. W. Jannasch, 1992, Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent sediments: Science, v. 258, p. 1756–1757.

    Google Scholar 

  • Joye, S. B., V. A. Samarkin, B. N. Orcutt, I. R. MacDonald, K.-U. Hinrichs, M. Elvert, A. P. Teske, K. G. Lloyd, M. A. Lever, J. P. Montoya, and C. D. Meile, 2009, Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics: Nature Geoscience, v. 2, p. 349–354.

    Google Scholar 

  • Kagya, M. L. N., 1996, Geochemical characterization of Triassic petroleum source rock in the Mandawa Basin, Tanzania: Journal of African Earth Sciences & the Middle East, v. 23, p. 73–88.

    Google Scholar 

  • Karakitsios, V., and N. Rigakis, 2007, Evolution and petroleum potential of western Greece: Journal of Petroleum Geology, v. 30, p. 197–218.

    Google Scholar 

  • Kassler, P., 1979, Oil Generation and Migration in Lusitanian Basin, Portugal (abs.): Bulletin American Association Petroleum Geologists, v. 63, p. 477–478.

    Google Scholar 

  • Kates, M., D. J. Kushner, and A. T. Matheson, 1993, The biochemistry of the Archaea: New Comprehensive Biochemistry, v. 26: Amsterdam, Elsevier, 582 p.

    Google Scholar 

  • Katz, B. J., 1990, Lacustrine Basin Exploration – Case studies and modern analogues, v. 50, American Association Petroleum Geologists Memoir, 340 p.

    Google Scholar 

  • Katz, B. J., 2005, Controlling factores on source rock development – A review of Productivity, preservation and sedimentation rate, The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences, SEPM Special Publication No. 82, p. 7–16.

    Google Scholar 

  • Katz, B. J., K. K. Bissada, and J. W. Wood, 1987, Factors limiting potential of evaporites as hydrocarbon source rocks (abs): American Association of Petroleum Geologists Bulletin, v. 71, p. 575.

    Google Scholar 

  • Katz, B. J., 1995, The Green River Oil Shale: An Eocene Carbonate Lacustrine Source Rock, in B. J. Katz, ed., Petroleum Source Rocks: Berlin, Springer-Verlag, p. 309–332.

    Google Scholar 

  • Katz, B. J., 1995, A survey of rift basin source rocks: Geological Society, London, Special Publication, v. 80, p. 213–240.

    Google Scholar 

  • Kaufmann, D. W., 1960, Sodium Chloride: New York, Reinhold.

    Google Scholar 

  • Keely, B. J., S. R. Blake, P. Schaeffer, and J. R. Maxwell, 1995, Distribution of pigments in the organic matter of marls from the Vena del Gesso evaporitic sequence: Organic Geochemistry, v. 23, p. 527–593.

    Google Scholar 

  • Keely, B. J., J. W. De Leeuw, J. R. Maxwell, J. S. S. Damste, S. E. Betts, and Ling Yue, 1993, A molecular stratigraphic approach to palaeoenvironmental assessment and the recognition of changes in source inputs in marls of the Mulhouse Basin (Alsace, France): Organic Geochemistry, v. 20, p. 1165–1186.

    Google Scholar 

  • Kenig, F., A. Y. Huc, B. H. Purser, and J. L. Oudin, 1990, Sedimentation, distribution and diagenesis of organic matter in a recent carbonate environment, Abu Dhabi: Organic Geochemistry, v. 16, p. 735–747.

    Google Scholar 

  • Kevbrin, V. V., A. M. Lysenko, and T. N. Zhilina, 1997, Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinaeae isolated from Lake Magadi: Microbiology, v. 66, p. 261–266.

    Google Scholar 

  • Kholief, M. M., and M. A. Barakat, 1986, New evidence for a petroleum source rock in a Miocene evaporite sequence, Gulf of Suez, Egypt: Journal of Petroleum Geology, v. 9, p. 217–226.

    Google Scholar 

  • Kinsman, D. J. J., 1973, Evaporite Basins and the Availability of Oxygen in Natural Brines: Int. Symp. Salt, Tech. Program Abstr. Book. No.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1976, Origin of limestone buttes, Gypsum Plain, Culberson County, Texas: American Association of Petroleum Geologists, Bulletin, v. 60, p. 2005–2018.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1980, Origin of castiles on the Gypsum Plain of Texas and New Mexico: Guidebook New Mexico Geological Society, v. 31, p. 173–178.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1981, Source-rock potential of evaporitic environment: Bulletin American Association of Petroleum Geologists, v. 65, p. 181–190.

    Google Scholar 

  • Klemme, H. D., and G. F. Ulmishek, 1991, Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors: Bulletin American Association of Petroleum Geologists, v. 75, p. 1809–1851.

    Google Scholar 

  • Klepac-Ceraj, V., C. A. Hayes, W. P. Gilhooly, T. W. Lyons, R. Kolter, and A. Pearson, 2012, Microbial diversity under extreme euxinia: Mahoney Lake, Canada: Geobiology, v. 10, p. 223–235.

    Google Scholar 

  • Krekeler, D., A. Teske, and H. Cypionka, 1998, Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat: FEMS Microbiology Ecology, v. 25, p. 89–96.

    Google Scholar 

  • Krienitz, L., A. Ballot, K. Kotut, C. Wiegand, S. Pütz, J. S. Metcalf, G. A. Codd, and S. Pflugmache, 2003, Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya: FEMS Microbiology Ecology, v. 43, p. 141–148.

    Google Scholar 

  • Krienitz, L., and K. Kotut, 2010, Fluctuating algal food populations and the occurrence of Lesser Flamingoes (Phoeniconaias minor) in three Kenyan rift valley lakes: Journal of Phycology, v. 46, p. 1088–1096.

    Google Scholar 

  • Kuo, L.-C., 1994, Lower Cretaceous lacustrine source rocks in northern Gabon: effect of organic facies and thermal maturity on crude oil quality: Organic Geochemistry, v. 22, p. 257–273.

    Google Scholar 

  • Kvenvolden, K. A., and B. R. T. Simoneit, 1990, Hydrothermally derived petroleum: examples from Guaymas Basin, Gulf of California, and Escanaba Trough, northeast Pacific Ocean: American Association of Petroleum Geologists Bulletin, v. 74, p. 223–237.

    Google Scholar 

  • Kyle, J. R., and H. H. Posey, 1991, Halokinesis, Cap rock Development and salt dome mineral resources, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 413–474.

    Google Scholar 

  • Lazar, B., and J. Erez, 1992, Carbon geochemisty of marine-derived brines. 1. C-13 depletions due to intense photosynthesis: Geochimica Cosmochimica Acta, v. 56, p. 335–345.

    Google Scholar 

  • Lazo, D. G., M. Cichowolski, D. L. Rodriguez, and M. B. Aguirre-Urreta, 2005, Lithofacies, palaeoecology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquen Basin, Argentina: Geological Society, London, Special Publications, v. 252, p. 295–315.

    Google Scholar 

  • Levin, L. A., 2005, Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes, in R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, eds., Oceanography and Marine Biology: An Annual Review, v. 43, Taylor & Francis, p. 1–46.

    Google Scholar 

  • Lewan, M. D., 1984, Factors controlling the proportionality of vanadium to nickel in crude oils: Geochimica et Cosmochimica Acta, v. 48, p. 2231–2238.

    Google Scholar 

  • Likens, G. E., 2010, Plankton of Inland Waters, Elsevier.

    Google Scholar 

  • Littke, R., 1993, Depositional history of the Posidonia shale, Deposition, Diagenesis and Weathering of Organic Matter-Rich Sediments, v. 43, Springer Lecture Notes in Earth Sciences, p. 46–81.

    Google Scholar 

  • Liu, D., J. Tu, and K. Jin, 2003, Organic petrology of potential source rocks in the Tarim Basin, NW China: Journal of Petroleum Geology, v. 26, p. 105–124.

    Google Scholar 

  • Lock, B. E., W. F. Ashley, and E. Anderson, 2004, Bacteria-Petroleum Reactions; Salt Dome Cap Rock Genesis Compared with Similar Processes from Permian Outcrops in West Texas: Gulf Coast Association of Geological Societies Transactions, v. 54, p. 361–367.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Love, G. D., E. Grosjean, C. Stalvies, C. E. Snape, W. Meredith, D. A. Fike, J. P. Grotzinger, P. N. Taylor, M. J. Newall, and R. E. Summons, 2007, Self Sourcing of Ara Group Carbonate Stringer Oils in the Neoproterozoic-Cambrian South Oman Salt Basin from indigenous kerogen and bitumen (Abstract): American Association of Petroleum Geologists Annual Meeting, April 1–4, 2007, Long Beach, California.

    Google Scholar 

  • Ludbrook, N. H., 1965, Occurrence of foraminifera in salt lakes.: Quarterly geological notes, Geological Survey of South Australia, v. 14, p. 6–7.

    Google Scholar 

  • MacDonald, I. R., 1992, Sea-floor brine pools affect behavior, mortality, and preservation of fishes in the Gulf of Mexico: lagerstatten in the making?: Palaios, v. 7, p. 383–387.

    Google Scholar 

  • MacDonald, I. R., M. B. Peccini, and N. L. Guinasso Jr, 2000, Pulsed oil discharge from a mud volcano: Geology, v. 28, p. 907–910.

    Google Scholar 

  • MacDonald, I. R., J. F. Reilly, N. L. Guinasso, J. M. Brooks, R. S. Carney, W. A. Bryant, and T. J. Bright, 1990, Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico: Science, v. 248, p. 1096–1099.

    Google Scholar 

  • MacDonald, I. R., W. W. Sager, and M. B. Peccini, 2003, Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico: Marine Geology, v. 198, p. 133–158.

    Google Scholar 

  • Machel, H. G., 1987, Some aspects of diagenetic sulphate-hydrocarbon redox reactions, in J. D. Marshall, ed., Diagenesis of sedimentary sequences: Geological Society Special Publications, v. 36: London, Geological Society, p. 15–28.

    Google Scholar 

  • Machel, H. G., 1989, Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits: Carbonates & Evaporites, v. 4, p. 137–151.

    Google Scholar 

  • Machel, H. G., 1998, Gas Souring by Thermochemical Sulfate Reduction at 140°C: A discussion: Bulletin American Association of Petroleum Geologists, v. 82, p. 1870–1873.

    Google Scholar 

  • Machel, H. G., 2001, Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights: Sedimentary Geology, v. 140, p. 143–175.

    Google Scholar 

  • Machel, H. G., H. R. Krouse, and R. Sassen, 1995, Products and distinguishing criteria of bacterial and thermochemical sulfate reduction: Applied Geochemistry, v. 10, p. 373–389.

    Google Scholar 

  • Madigan, M. T., J. M. Martinko, K. S. Bender, D. Buckley, H., and D. A. Stahl, 2015, Brock Biology of Microorganisms, Pearson Higher Education Publishing, 1006 p.

    Google Scholar 

  • Magnier, C., I. Moretti, J. O. Lopez, F. Gaumet, J. G. Lopez, and J. Letouzey, 2004, Geochemical characterization of source rocks, crude oils and gases of Northwest Cuba: Marine and Petroleum Geology, v. 21, p. 195–214.

    Google Scholar 

  • Makhlouf, I. M., and A. A. El-Haddad, 2006, Depositional environments and facies of the Late Triassic Abu Ruweis Formation, Jordan: Journal of Asian Earth Sciences, v. 28, p. 372–384.

    Google Scholar 

  • Malek-Aslani, M., 1980, Environmental and diagenetic controls of carbonate and evaporite source rocks: Transactions Gulf Coast Association of Geological Societies, v. 30, p. 445–456.

    Google Scholar 

  • Malinski, E., A. Gasiewicz, A. Witkowski, J. Szafranek, K. Pihlaja, P. Oksman, and K. Wiinamaki, 2009, Biomarker features of sabkha-associated microbialites from the Zechstein Platy Dolomite (Upper Permian) of northern Poland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 273, p. 92–101.

    Google Scholar 

  • Margulis, L., and M. F. Dolan, 2002, Early Life: Evolution on the Precambrian Earth, Jones and Bartlett, 224 p.

    Google Scholar 

  • Marshall, A. T., P. Kyriakou, P. D. Cooper, P. Coy, and A. Wright, 1995, Osmolality of rectal fluid from two species of osmoregulating brine fly larvae (Diptera: Ephyridae): J. Insect Physiol., v. 41, p. 413–418.

    Google Scholar 

  • Mascle, A., and R. Vially, 1999, The petroleum systems of the Southeast Basin and Gulf of Lion (France): Geological Society, London, Special Publications, v. 156, p. 121–140.

    Google Scholar 

  • Mazzini, A., H. Svensen, G. Etiope, N. Onderdonk, and D. Banks, 2011, Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA): Journal of Volcanology and Geothermal Research, v. 205, p. 67–83.

    Google Scholar 

  • McCall, J., 2010, Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites: Earth-Science Reviews, v. 103, p. 71–79.

    Google Scholar 

  • McGlue, M. M., G. S. Ellis, A. S. Cohen, and P. W. Swarzenski, 2012, Playa-lake sedimentation and organic matter accumulation in an Andean piggyback basin: the recent record from the Cuenca de Pozuelos, North-west Argentina: Sedimentology, v. 59, p. 1237–1256.

    Google Scholar 

  • McHague, T. R., 1990, Stratigraphic development of Proto-South Atlantic rifting in Cabinda, Angola – A petrolifeous lake basin, in B. J. Katz, ed., Lacustrine Basin Exploration-Case Studies and Modern Analogs, Am. Assoc. Petrol. Geol. Mem. 50, p. 307–326.

    Google Scholar 

  • McMillan, C., and F. N. Moseley, 1967, Salinity tolerances of five marine macrophytes of Redfish Bay, Texas: Ecology, v. 48, p. 503–506.

    Google Scholar 

  • McMullin, E. R., K. Nelson, C. R. Fisher, and S. W. Schaeffer, 2010, Population structure of two deep sea tubeworms, Lamellibrachia luymesi and Seepiophila jonesi, from the hydrocarbon seeps of the Gulf of Mexico: Deep Sea Research Part I: Oceanographic Research Papers, v. 57, p. 1499–1509.

    Google Scholar 

  • Melack, J. M., and R. Jellison, 1998, Limnological conditions in Mono Lake: contrasting monomixis and meromixis in the 1990s: Hydrobiologia, v. 384, p. 21–39.

    Google Scholar 

  • Melack, J. M., and P. Kilham, 1974, Photosynthetic rates of phytoplankton in East-African alkaline saline lakes: Limnology and Oceanography, v. 19, p. 743–755.

    Google Scholar 

  • Melchor, R. N., M. C. Cardonatto, and G. Visconti, 2012, Palaeonvironmental and palaeoecological significance of flamingo-like footprints in shallow-lacustrine rocks: An example from the Oligocene-Miocene Vinchina Formation, Argentina: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 315–316, p. 181–198.

    Google Scholar 

  • Mello, M. R., and J. R. Maxwell, 1991, Organic geochemical and biological marker characterization of source rocks and oils derived from lacustrine environments in the Brazilian continental margin, in B. J. Katz, ed., Lacustrine basin exploration case studies and modern analogs: Tulsa OK, American Association Petroleum Geologists Memoir, 50, p. 77–97.

    Google Scholar 

  • Menzel, D. W., and J. H. Ryther, 1970, Distribution and recycling of organic matter in the oceans, in D. W. Hood, ed., Organic matter in natural waters, v. 1, University of Alaska, Institute of Marine Science, Occasional Publication, p. 31–53.

    Google Scholar 

  • Milkov, A. V., and R. Sassen, 2001, Estimate of gas hydrate resource, northwestern Gulf of Mexico, continental slope: Marine Geology, v. 179, p. 71–83.

    Google Scholar 

  • Miller, R. G., 1990, A paleogeographic approach to Kimmeridge Shale forrmation, in A. Y. Huc, ed., Deposition of organic facies: Tulsa OK, American Association Petroleum Geologists Studies in Geology, 30, p. 13–26.

    Google Scholar 

  • Moberg, E. G., D. M. Greenberg, R. Revelle, and E. C. Allen, 1932, The buffer mechanism of seawater: Scripps Inst. Oceanography Tech. Serv. Bull., v. 3, p. 231–278.

    Google Scholar 

  • Moldowan, J. M., J. Dahl, B. J. Huizinga, F. J. Fago, L. J. Hickey, T. M. Peakman, and D. W. Taylor, 1994, The molecular fossil record of oleanane and its relation to angiosperms: Science, v. 265.

    Google Scholar 

  • Moldowan, J. M., W. K. Seifert, and E. J. Gallegos, 1985, Relationship between petroleum composition and depositional environment of petroleum source rocks: American Association of Petroleum Geologists Bulletin, v. 69, p. 1255–1268.

    Google Scholar 

  • Moody, J. D., 1959, Relationship of primary evaporites to oil accumulation: 5th World Petroleum Congress, New York, v. 1, p. 134–138.

    Google Scholar 

  • Morley, C. K., B. Kongwung, A. A. Julapour, M. Abdolghafourian, M. Hajian, D. Waples, J. Warren, H. Otterdoom, K. Srisuriyon, and H. Kazemi, 2009, Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area: Geosphere, v. 5, p. 325–362.

    Google Scholar 

  • Moulton, T. P., and M. A. Burford, 1990, The mass culture of Dunaliella viridis (Volvocales, Chlorophyta) for oxygenated carotenoids: laboratory and pilot plant studies: Hydrobiologia, v. 204–205, p. 401–408.

    Google Scholar 

  • Murray, J. W., 1970, The foraminifera of the hypersaline Abu Dhabi lagoon, Persian Gulf: Lethaia, v. 3, p. 51–68.

    Google Scholar 

  • Natalicchio, M., F. Dela Pierre, P. Clari, D. Birgel, S. Cavagna, L. Martire, and J. Peckmann, 2013, Hydrocarbon seepage during the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 390, p. 68–80.

    Google Scholar 

  • Niemi, T., Z. Ben-Avraham, and J. R. Gat, 1997, The Dead Sea – The Lake and its setting, Oxford University Press, 336 p.

    Google Scholar 

  • Nix, E. R., C. R. Fisher, J. Vodenichar, and K. M. Scott, 1995, Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico: Marine Biology, v. 122, p. 605–617.

    Google Scholar 

  • Obermajer, M., M. G. Fowler, and L. R. Snowdon, 1998, A geochemical characterization and a biomarker re-appraisal of the oil families from southwestern Ontario: Bulletin of Canadian Petroleum Geology, v. 46, p. 350–378.

    Google Scholar 

  • Obermajer, M., M. G. Fowler, L. R. Snowdon, and R. W. Macqueen, 2000, Compositional variability of crude oils and source kerogen in the Silurian carbonate-evaporite sequences of the eastern Michigan Basin, Ontario, Canada: Bulletin of Canadian Petroleum Geology, v. 48, p. 307–322.

    Google Scholar 

  • Oehler, D. Z., J. H. Oehler, and A. J. Stewart, 1979, Algal fossils from a Late Precambrian, hypersaline lagoon: Science, v. 205, p. 338–340.

    Google Scholar 

  • Oehler, J. H., 1984, Carbonate source rocks in the Jurassic Smackover trend of Mississippi, Alabama, and Florida, in J. G. Palacas, ed., Petroleum geochemistry and source rock potential of carbonate rocks: Tulsa, Oklahoma, American Association of Petroleum Geologists, Studies in Geology No. 18, p. 63–69.

    Google Scholar 

  • Oesterhelt, D., and W. Marwan, 1993, Signal transduction in Halobacteria, in M. Kates, D. J. Kushner, and A. T. Matheson, eds., The Biochemistry of the Archaea, v. 26: Amsterdam, Elsevier, p. 173–187.

    Google Scholar 

  • Oliveri, E., M. Sprovieri, D. S. Manta, L. Giaramita, V. La Cono, F. Lirer, P. Rumolo, N. Sabatino, G. Tranchida, M. Vallefuoco, M. M. Yakimov, and S. Mazzola, 2013, Sediment geochemistry of the Thetis hypersaline anoxic basin (eastern Mediterranean Sea): Sedimentary Geology, v. 296, p. 72–85.

    Google Scholar 

  • Ollivier, B., P. Caumette, J. L. Garcia, and R. A. Mah, 1994, Anaerobic bacteria from hypersaline environments: Microbiological Reviews, v. 58, p. 27–38.

    Google Scholar 

  • Oren, A., 1993, The Dead Sea – Alive again: Experientia, v. 49, p. 518–522.

    Google Scholar 

  • Oren, A., 1999, Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations: Hydrobiologia, v. 405, p. 1–9.

    Google Scholar 

  • Oren, A., 2001, The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems: Hydrobiologia, v. 466, p. 61–72.

    Google Scholar 

  • Oren, A., 2002, Molecular ecology of extremely halophilic Archaea and Bacteria: FEMS Microbiology Ecology, v. 39, p. 1–7.

    Google Scholar 

  • Oren, A., 2005, A century of Dunaliella research: 1905–2005, in N. Gunde-Cimerman, A. Oren, and A. Plemenitaš, eds., Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya: Dordrecht, Netherlands, Springer, p. 491–502.

    Google Scholar 

  • Oren, A., 2009, Microbial diversity and microbial abundance in salt-saturated brines: Why are the waters of hypersaline lakes red?: Natural Resources and Environmental Issues: Vol. 15, Article 49. Available at: http://digitalcommons.usu.edu/ nrei/vol15/iss1/49

  • Oren, A., and N. Ben Yosef, 1997, Development and spatial distribution of an algal bloom in the Dead Sea: A remote sensing study: Aquatic Microbial Ecology, v. 13, p. 219–223.

    Google Scholar 

  • Oren, A., and P. Gurevich, 1995, Dynamics of a bloom of halophilic Archaea in the Dead Sea: Hydrobiologia, v. 315, p. 149–158.

    Google Scholar 

  • Oren, A., P. Gurevich, D. A. Anati, E. Barkan, and B. Luz, 1995, A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects: Hydrobiologia, v. 297, p. 173–185.

    Google Scholar 

  • Oschmann, W., 2011, Black Shales, in J. Reitner, and V. Thiel, eds., Encyclopedia of Geobiology: Dordrecht, Netherlands, Springer, p. 201–206.

    Google Scholar 

  • Overmann, J., J. T. Beatty, and K. J. Hall, 1996, Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake: Applied and Environmental Microbiology, v. 62, p. 3251–3258.

    Google Scholar 

  • Overmann, J., G. Sandmann, K. Hall, and T. Northcote, 1993, Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada: Aquatic Sciences, v. 55, p. 31–39.

    Google Scholar 

  • Palacas, J. G., 1984, Petroleum geochemistry and source rock potential of carbonate rocks, American Association of Petroleum Geologists Studies in Geology No. 18: Tulsa, Okla., U.S.A, American Association of Petroleum Geologist, 208 p.

    Google Scholar 

  • Palacas, J. G., D. E. Anders, and J. D. King, 1984, South Florida Basin – A prime example of carbonate source rocks of petroleum, in J. G. Palacas, ed., Petroleum geochemistry and source rock potential of carbonate rocks, v. 18: Tulsa, Oklahoma, American Association of Petroleum Geologists, Studies in Geology, p. 71–96.

    Google Scholar 

  • Pancost, R. D., N. Crawford, and J. R. Maxwell, 2002, Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea: Chemical Geology, v. 188, p. 217–227.

    Google Scholar 

  • Park, L. E., and K. F. Downing, 2001, Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, southern California, USA: Palaios, v. 16, p. 175–184.

    Google Scholar 

  • Parkes, R. J., C. D. Linnane, G. Webster, H. Sass, A. J. Weightman, E. R. C. Hornibrook, and B. Horsfield, 2011, Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity: Geology, v. 39, p. 219–222.

    Google Scholar 

  • Paull, C. K., J. R. Chanton, A. C. Neumann, J. A. Coston, and C. S. Martens, 1992, Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment: Palaios, v. 7, p. 361–375.

    Google Scholar 

  • Peckmann, J., J. Paul, and V. Thiel, 1999, Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany): Sedimentary Geology, v. 126, p. 205–222.

    Google Scholar 

  • Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives: FEMS Microbiology Letters, v. 185, p. 9–16.

    Google Scholar 

  • Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives: FEMS Microbiology Letters, v. 185, p. 9–16.

    Google Scholar 

  • Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives: FEMS Microbiology Letters, v. 185, p. 9–16.

    Google Scholar 

  • Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives: FEMS Microbiology Letters, v. 185, p. 9–16.

    Google Scholar 

  • Peters, K. E., M. E. Clark, U. Dasgupta, M. A. Mccaffrey, and C. Y. Lee, 1995, Recognition of an Infracambrian source rock based on biomarkers in the Bahewala-1 oil, India: Bulletin American Association of Petroleum Geologists., v. 79, p. 1481–1494.

    Google Scholar 

  • Peters, K. E., A. E. Cunningham, C. C. Walters, J. G. Jiang, and Z. A. Fan, 1996, Petroleum systems in the Jiangling-Dangyang area, Jianghan basin, China: Organic Geochemistry, v. 24, p. 1035–1060.

    Google Scholar 

  • Peters, K. E., and J. M. Moldowan, 1993, The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments: Englewood Cliffs, NJ, Prentice Hall, 363 p.

    Google Scholar 

  • Peterson, J. A., and R. J. Hite, 1969, Pennsylvanian evaporite-carbonate cycles and their relation to petroleum occurrence, southern Rocky Mountains: American Association Petroleum Geologists – Bulletin, v. 53, p. 884–908.

    Google Scholar 

  • Philp, R. P., P. Fan, C. A. Lewis, J. Li, and H. Wang, 1991, Geochemical characteristics of oils from the Chaidamu, Shanganning and Jianghan basins, China: Journal of Southeast Asian Earth Sciences, v. 5, p. 351–358.

    Google Scholar 

  • Philp, R. P., and C. A. Lewis, 1987, Organic geochemistry of biomarkers: Ann. Rev. Earth Planet. Science, v. 15, p. 363–395.

    Google Scholar 

  • Pierre, C., and J. M. Rouchy, 1988, Carbonate replacements after sulphate evaporites in the Middle Miocene of Egypt: Journal of Sedimentary Petrology, v. 58, p. 446–456.

    Google Scholar 

  • Pinckney, J., H. W. Paerl, and B. M. Bebout, 1995, Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon: Journal of Experimental Marine Biology & Ecology, v. 187, p. 223–237.

    Google Scholar 

  • Pirajno, F., 2009, Hydrothermal Processes and Mineral Systems: Berlin, Springer Science, 1252 p.

    Google Scholar 

  • Porter, D., A. N. Roychoudhury, and D. Cowan, 2007, Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient: Geochimica et Cosmochimica Acta, v. 71, p. 5102–5116.

    Google Scholar 

  • Post, F. J., and N. N. Youssef, 1977, A procaryotic intracellular symbiont of the Great Salt Lake brine shrimp Artemia salina (L.). Canadian Journal Microbiology, v. 23, p. 1232–1236.

    Google Scholar 

  • Postgate, J. R., 1984, The sulphate-reducing bacteria, 2nd Edition, Cambridge University Press.

    Google Scholar 

  • Powell, W. G., P. A. Johnston, C. J. Collom, and K. J. Johnston, 2006, Middle Cambrian brine seeps on the Kicking Horse Rim and their relationship to talc and magnesite mineralization and associated dolomitization, British Columbia, Canada: Economic Geology, v. 101, p. 431–451.

    Google Scholar 

  • Price, L. C., and C. E. Barker, 1985, Suppression of vitrinite reflectance in amorphous rich kerogen – a major unrecognized problem: Journal of Petroleum Geology, v. 8, p. 59–84.

    Google Scholar 

  • Rabbani, A. R., and M. R. Kamali, 2005, Source rock evaluation and petroleum geochemistry, Offshore SW Iran: Journal of Petroleum Geology, v. 28, p. 413–428.

    Google Scholar 

  • Raiswell, R., F. Buckley, R. A. Berner, and T. F. Anderson, 1988, Degree of pyritization of iron as a palaeoenvironmental indicator of bottom water oxygenation: Journal of Sedimentary Petrology, v. 58, p. 812–819.

    Google Scholar 

  • Rasmussen, B., and R. Buick, 2000, Oily old ores: Evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulfide deposit: Geology, v. 28, p. 731–734.

    Google Scholar 

  • Rayer, F. G., and O. L. Slind, 1999, Hydrocarbon potential of the East African Continental Margin – From Somalia to South Africa; an EARHS project of Canadian International Development Agency (CIDA) and NOCs.

    Google Scholar 

  • Reed, R. H., J. A. Chudek, R. Foster, and W. D. P. Stewart, 1984, Osmotic adjustment in cyanobacteria from hypersaline environments: Arch. Microbiol, v. 138, p. 333–33.

    Google Scholar 

  • Reilly, J. F., I. R. MacDonald, E. K. Biegert, and J. M. Brooks, 1996, Geologic controls on the distribution of chemosynthetic communities in the Gulf of Mexico, in D. Schumacher, and M. A. Abrams, eds., Hydrocarbon Migration and its Near-Surface Expression, American Association of Petroleum Geologists Memoir 66, p. 38–61.

    Google Scholar 

  • Reith, F., 2011, Life in the deep subsurface: Geology, v. 39, p. 287–288.

    Google Scholar 

  • Rhodes, M. E., S. T. Fitz-Gibbon, A. Oren, and C. H. House, 2010, Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea: Environmental Microbiology, v. 12, p. 2613–2623.

    Google Scholar 

  • Riboulleau, A., J. Schnyder, L. Riquier, V. Lefebvre, F. Baudin, and J.-F. Deconinck, 2007, Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): A biomarker approach: Organic Geochemistry, v. 38, p. 1804–1823.

    Google Scholar 

  • Riciputi, L. R., D. R. Cole, and H. G. Machel, 1996, Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada -An ion microprobe study: Geochimica et Cosmochimica Acta, v. 60, p. 325–336.

    Google Scholar 

  • Rigakis, N., and V. Karakitsios, 1998, The source rock horizons of the Ionian Basin (NW Greece): Marine and Petroleum Geology, v. 15, p. 593–697.

    Google Scholar 

  • Ritts, B. D., A. D. Hanson, D. Zinniker, and J. M. Moldowan, 1999, Lower-middle Jurassic nonmarine source rocks and petroleum systems of the northern Qaidam basin, northwest China: Bulletin American Association of Petroleum Geologists, v. 83, p. 1980–2005.

    Google Scholar 

  • Roger, A. J., and A. G. B. Simpson, 2009, Evolution: Revisiting the Root of the Eukaryote Tree: Current biology : CB, v. 19, p. R165-R167.

    Google Scholar 

  • Roney, H., G. Booth, and P. Cox, 2009, Competitive exclusion of cyanobacterial species in the Great Salt Lake: Extremophiles, v. 13, p. 355–361.

    Google Scholar 

  • Rouchy, J. M., 1988, Relations évaporites-hydrocarbures:l’association laminites-récifes-évaporites dans le Messinien de Mediterranée et ses enseignements, in G. Busson, ed., Evaporites et hydrocarbures, v. 55, Mémoires du Muséum national d’Historie naturelle, (C), p. 15–18.

    Google Scholar 

  • Rouchy, J. M., 1988, Relations évaporites-hydrocarbures:l’association laminites-récifes-évaporites dans le Messinien de Mediterranée et ses enseignements, in G. Busson, ed., Evaporites et hydrocarbures, v. 55, Mémoires du Muséum national d’Historie naturelle, (C), p. 15–18.

    Google Scholar 

  • Rouchy, J. M., 1988, Relations évaporites-hydrocarbures:l’association laminites-récifes-évaporites dans le Messinien de Mediterranée et ses enseignements, in G. Busson, ed., Evaporites et hydrocarbures, v. 55, Mémoires du Muséum national d’Historie naturelle, (C), p. 15–18.

    Google Scholar 

  • Rouchy, J. M., C. Taberner, M. M. Blanc-Valleron, R. Sprovieri, M. Russell, C. Pierre, E. Di Stefano, J. J. Pueyo, A. Caruso, J. Dinares-Turell, E. Gomis-Coll, G. A. Wolff, G. Cespuglio, P. Ditchfield, S. Pestrea, N. Combourieu-Nebout, C. Santisteban, and J. O. Grimalt, 1998, Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian: Sedimentary Geology, v. 121, p. 23–55.

    Google Scholar 

  • Rozanova, E. P., and A. S. Khudyakova, 1974, New non-sporulating thermophilic organism Desulfovibrio thermophilus Sp. Nov. reducing sulphates: Mikrobiologiya, v. 43, p. 1069.

    Google Scholar 

  • Ruble, T. E., A. J. Bakel, and R. P. Philp, 1994, Compound-Specific Isotopic Variability in Uinta Basin Native Bitumens – Paleoenvironmental Implications: Organic Geochemistry, v. 21, p. 661–671.

    Google Scholar 

  • Russell, M., J. A. Grimalt, W. A. Hartgers, C. Taberner, and J. M. Rouchy, 1997, Bacterial and algal markers in sedimentary organic matter deposited under natural sulphurization conditions (Lorca Basin, Murcia, Spain): Organic Geochemistry, v. 26, p. 605–625.

    Google Scholar 

  • Sajnovic, A., K. Stojanovic, B. Jovancivez, and O. Cvetkovic, 2008, Biomarker distributions as indicators for the depositional environment of lacustrine sediments in the Valjevo-Mionica basin (Serbia): Chemie der Erde – Geochemistry, v. 68, p. 395–411.

    Google Scholar 

  • Saller, A. H., D. Pollitt, and J. A. D. Dickson, 2014, Diagenesis and porosity development in the first Eocene reservoir at the Giant Wafra Field, partitioned zone (PZ), Saudi Arabia and Kuwait:American Association Petroleum Geologists – Bulletin, v. 98, p. 1185–1212.

    Google Scholar 

  • SantamarÌa-Orozco, D., B. Horsfield, R. di Primio, and D. H. Welte, 1998, Influence of maturity on distributions of benzoand dibenzothiophenes in Tithonian source rocks and crude oils, Sonda de Campeche, Mexico: Organic Geochemistry, v. 28, p. 423–439.

    Google Scholar 

  • Santos, R. V., E. L. Dantas, C. G. de Oliveira, C. J. S. d. Alvarenga, C. W. D. d. Anjos, E. M. Guimarães, and F. B. Oliveira, 2009, Geochemical and thermal effects of a basic sill on black shales and limestones of the Permian Irati Formation: Journal of South American Earth Sciences, v. 28, p. 14–24.

    Google Scholar 

  • Sass, A. M., H. Sass, M. J. L. Coolen, H. Cypionka, and J. Overmann, 2001, Microbial communities in the chemocline of a hypersaline deep- sea basin (Urania basin, Mediterranean Sea): Applied and Environmental Microbiology, v. 67, p. 5392–5402.

    Google Scholar 

  • Sassen, R., D. A. DeFreitas, N. L. Eaker, H. H. Roberts, and C. Zhang, 2004, Brine vents on the Gulf of Mexico slope: Hydrocarbons, carbonate-barite-uranium mineralisation, red beds and life in an extreme environment: In, 24 Gulf Coast Section SEPM Foundation Bob F. Perkins Conference; Salt-sediment Interactions and Hydrocarbon productivity:Concepts,Applications and Casde Studies for the 21st Century, p. 444–63.

    Google Scholar 

  • Sassen, R., I. R. MacDonald, A. G. Requejo, N. L. Guinasso, Jr., M. C. Kennicutt, II, S. T. Sweet, and J. M. Brooks, 1994, Organic geochemistry of sediments from chemosynthetic communities, Gulf of Mexico slope: Geo-Marine Letters, v. 14, p. 110–119.

    Google Scholar 

  • Sassen, R., and P. Post, 2008, Enrichment of diamondoids and 13C in condensate from Hudson Canyon, US Atlantic: Organic Geochemistry, v. 39, p. 147–151.

    Google Scholar 

  • Savage, A., and B. Knott, 1998, Artemia parthenogenetica in Lake Hayward, Western Australia. II. Feeding biology in a shallow seasonally stratified, hypersaline lake: International Journal of Salt Lake Research, v. 7, p. 13–24.

    Google Scholar 

  • Savard, M. M., G. Lynch, and F. Fallara, 1996, Burial diagenesis model for the Macumber Formation on Cape Breton Island – implications for the tectonic evolution of the Windsor Group: Atlantic Geology, v. 32, p. 53–64.

    Google Scholar 

  • Scherf, A.-K., and J. Rullkötter, 2009, Biogeochemistry of high salinity microbial mats – Part 1: Lipid composition of microbial mats across intertidal flats of Abu Dhabi, United Arab Emirates: Organic Geochemistry, v. 40, p. 1018–1028.

    Google Scholar 

  • Schnyder, J., F. Baudin, and J.-F. Deconinck, 2009, Occurrence of organic-matter-rich beds in Early Cretaceous coastal evaporitic setting (Dorset, UK): a link to long-term palaeoclimate changes?: Cretaceous Research, v. 30, p. 356–366.

    Google Scholar 

  • Schoell, M., M. A. McCaffrey, F. J. Fago, and J. M. Moldowan, 1992, Carbon isotopic compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil: Geochimica et Cosmochimica Acta, v. 56, p. 1391–1399.

    Google Scholar 

  • Schoellkopf, N. B., and B. A. Patterson, 2000, Chapter 25: Petroleum Systems of Offshore Cabinda, Angola, in M. R. Mello, and B. J. Katz, eds., Petroleum Systems of South Atlantic Margins, American Association of Petroleum Geologists Memoir 73, p. 361–376.

    Google Scholar 

  • Schoenherr, J., R. Littke, J. L. Urai, P. A. Kukla, and Z. Rawahi, 2007a, Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen: Organic Geochemistry, v. 38, p. 1293–1318.

    Google Scholar 

  • Schoenherr, J., L. Reuning, P. A. Kukla, R. Littke, J. L. Urai, M. G. Siemann, and Z. Rawahi, 2009, Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin): Sedimentology, v. 56, p. 567–589.

    Google Scholar 

  • Schoenherr, J., Z. Schléder, J. L. Urai, P. A. Fokker, and O. Schulze, 2007c, Deformation mechanisms and rheology of Pre-cambrian rocksalt from the South Oman Salt Basin.- In (eds. ), Hannover, Germany, in M. Wallner, K. Lux, W. Minkley, and H. Hardy Jr., eds., Proc. 6th Conference on the Mechanical Behavior of Salt (SaltMech6) – Understanding of THMC Processes in Salt Hannover, Germany, p. 167–173.

    Google Scholar 

  • Schoenherr, J., J. L. Urai, P. A. Kukla, R. Littke, Z. Schleder, J.-M. Larroque, M. J. Newall, N. Al-Abry, H. A. Al-Siyabi, and Z. Rawahi, 2007b, Limits to the sealing capacity of rock salt: A case study of the infra-Cambrian Ara Salt from the South Oman salt basin: Bulletin American Association Petroleum Geologists, v. 91, p. 1541–1557.

    Google Scholar 

  • Schouten, S., W. A. Hartgers, J. F. López, J. O. Grimalt, and J. S. Sinninghe Damsté, 2001, A molecular isotopic study of 13C-enriched organic matter in evaporitic deposits: recognition of limited ecosystems: Organic Geochemistry, v. 32, p. 277–286.

    Google Scholar 

  • Schreiber, B. C., R. P. Philp, S. Benali, M. L. Helman, J. A. de la Pena, R. Marfil, P. Landais, A. D. Cohen, and C. G. S. C. Kendall, 2001, Characterisation of organic matter formed in hypersaline carbonate/evaporite environments: Hydrocarbon potential and biomarkers obtained through artificial maturation studies: Journal of Petroleum Geology, v. 24, p. 309–338.

    Google Scholar 

  • Schroeder, W., S. Brooke, J. Olson, B. Phaneuf, J. McDonough, III, and P. Etnoyer, 2005, Occurrence of deep-water Lophelia pertusa and Madrepora oculata in the Gulf of Mexico, in A. Freiwald, and J. M. Roberts, eds., Cold-Water Corals and Ecosystems: Erlangen Earth Conference Series, Springer Berlin Heidelberg, p. 297–307.

    Google Scholar 

  • Schubert, C. J., 2011, Methane, Origin, in J. Reitner, and V. Thiel, eds., Encyclopedia of Geobiology: Dordrecht Netherlands, Springer, p. 578–586.

    Google Scholar 

  • Schwark, L., M. Vliex, and P. Schaeffer, 1998, Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II): Organic geochemistry, v. 29, p. 1921–1952.

    Google Scholar 

  • Scott, J. J., R. W. Renaut, L. A. Buatois, and R. B. Owen, 2009, Biogenic structures in exhumed surfaces around saline lakes: An example from Lake Bogoria, Kenya Rift Valley: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 272, p. 176–198.

    Google Scholar 

  • Seckbach, J., 2005, The Relevance of Halophiles and other Extremophiles to Martian and Extraterrestrial Environments, in N. Gunde-Cimerman, A. Oren, and A. Plemenitaš, eds., Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya: Dordrecht, Netherlands, Springer, p. 123–136.

    Google Scholar 

  • Shakeri,A., J. Douraghinejad, and M. Moradpour, 2007, Microfacies and sedimentary environments of the late Oligocene-early Miocene Qom Formation of the Gooreh Berenji region (Jandaq area, central Iran): GeoArabia, v. 12, p. 41–60.

    Google Scholar 

  • Sheu, D. D., 1987, Sulfur and organic carbon contents in sediment cores from the Tyro and Orca basins: Marine Geology, v. 75, p. 157–164.

    Google Scholar 

  • Sheu, D. D., and B. J. Presley, 1986a, Formation of hematite in the euxinic Orca basin, northern Gulf of Mexico: Marine Geology, v. 69, p. 309–321.

    Google Scholar 

  • Sheu, D. D., and B. J. Presley, 1986b, Variations of calcium carbonate, organic carbon and iron sulfides in anoxic sediment from the Orca Basin, Gulf of Mexico: Marine Geology, v. 70, p. 103–118.

    Google Scholar 

  • Shiba, H., and K. Horikoshi, 1988, Isolation and characterization of novel anaerobic, halophilic eubacteria from hypersaline environments of western America and Kenya: In: Proceedings of the FEMS symposium—The microbiology of extreme environments and its biotechnological potential, Portugal, p. 371–373.

    Google Scholar 

  • Sigalevich, P., and Y. Cohen, 2000, Oxygen dependent growth of the sulphate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in a aerated sulphate-depleted chemostat: Applied Environmental Microbiology, v. 66, p. 5019–5023.

    Google Scholar 

  • Simmons, R. E., 1995, Population declines, viable breeding areas and management options for flamingos in southern Africa: Conservation Biology, v. 10, p. 504–514.

    Google Scholar 

  • Simoneit, B. R. T., 1991, Hydrothermal Effects on Recent Diatomaceous Sediments in Guaymas Basin--Generation, Migration, and Deposition of Petroleum: Chapter 38: Part VI. Hydrothermal Processes: American Association Petroleum Geologists – Special Volume, v. 47, p. 793–825.

    Google Scholar 

  • Simoneit, B. R. T., 1994, Organic matter alteration and fluid migration in hydrothermal systems, in J. Parnell, ed., Geofluids: Origin, Migration and Evolution of fluids in Sedimentary Basins, Geological Society London, Special Publication No. 78, p. 261–274.

    Google Scholar 

  • Simoneit, B. R. T., T. A. T. Aboul-Kassim, and J. J. Tiercelin, 2000, Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift: Applied Geochemistry, v. 15, p. 355–368.

    Google Scholar 

  • Sinninghe Damste, J. S., J. Kenig, M. P. Koopmans, J. Koster, S. Schouten, J. M. Hayes, and J. W. De Leeuw, 1995, Evidence for gammacerane as an indicator of water column stratification: Geochimica et Cosmochimica, v. 59, p. 1895–1900.

    Google Scholar 

  • Sloss, L. L., 1953, The significance of evaporites: Journal of Sedimentary Petrology, p. 143–161.

    Google Scholar 

  • Sloss, L. L., 1953, The significance of evaporites: Journal of Sedimentary Petrology, p. 143–161.

    Google Scholar 

  • Smith, E. B., K. M. Scott, E. R. Nix, C. Korte, and C. R. Fisher, 2000, Growth and Condition of Seep Mussels (Bathymodiolus childressi) at a Gulf of Mexico Brine Pool: Ecology, v. 81, p. 2392–2403.

    Google Scholar 

  • Sonnenfeld, P., 1985, Evaporites as oil and gas source rocks: Journal of Petroleum Geology, v. 8, p. 253–271.

    Google Scholar 

  • Soulié-Marsche, I., 2008, Charophytes, indicators for low salinity phases in North African sebkhet: Journal of African Earth Sciences, v. 51, p. 69–76.

    Google Scholar 

  • Stafford, K. W., R. Nance, L. Rosales-Lagarde, and P. J. Boston, 2008a, Epigene and Hypogene Gypsum karst manifestations of the Castile formation: Eddy County, new Mexico and Culbesron County, Texas, USA: International Journal of Speleology, v. 37, p. 83–98.

    Google Scholar 

  • Stafford, K. W., L. Rosales-Lagarde, and P. J. Boston, 2008b, Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison., v. 70, no. 1, p. 35–46.: Journal of Cave and Karst Studies, v. 70, p. 35–46.

    Google Scholar 

  • Stan-Lotter, H., 2011, Halobacteria – Halophiles, in J. Reitner, and V. Thiel, eds., Encyclopedia of Geobiology: Dordrecht, Netherlands, Springer, p. 437–441.

    Google Scholar 

  • Stasiuk, L. D., 1994, Oil-prone alginite macerals from organic-rich Mesozoic and Paleozoic strata, Saskatchewan, Canada: Marine & Petroleum Geology, v. 11, p. 208–218.

    Google Scholar 

  • Summons, R. E., J. M. Hope, R. Swart, and M. R. Walter, 2008, Origin of Nama Basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana: Organic Geochemistry, v. 39, p. 589–607.

    Google Scholar 

  • Summons, R. E., L. L. Jahnke, J. M. Hope, and G. A. Logan, 1999, 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis: Nature, v. 400, p. 554–557.

    Google Scholar 

  • Summons, R. E., and T. G. Powell, 1987, Identification of arylisoprenoids in a source rock and crude oils: Biological markers for the green sulfur bacteria: Geochimica et Cosmochimica Acta, v. 51, p. 557–566.

    Google Scholar 

  • Svengren, H., 2002, A study of the environmental conditions in Lake Nakuru, Kenya, using isotope dating and heavy metal analysis of sediments: Masters thesis, Dept. Structural Chemistry, University of Stockholm, Swededn.

    Google Scholar 

  • Svensen, H., D. A. Karlsen, A. Sturz, K. Backer-Owe, D. A. Banks, and S. Planke, 2007, Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA: Geology, v. 35, p. 85–88.

    Google Scholar 

  • Tang, Z. H., J. Parnell, and F. J. Longstaffe, 1997, Diagenesis of analcime-bearing reservoir sandstones – the Upper Permian Pingdiquan Formation, Junggar Basin, Northwest China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 486–498.

    Google Scholar 

  • Taraschewski, H., and I. Paperna, 1981, Distribution of the snail Pirenella conica in Sinai and Israel and its snfection by Heterophyidae and other Trematodes: Marine Ecology Progress Series, v. 5, p. 193–205.

    Google Scholar 

  • Taylor, K. G., and C. D. Curtis, 1995, Stability and facies association of early diagenetic mineral assemblages; an example from a Jurassic ironstone-mudstone succession, U.K.: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 65, p. 358–368.

    Google Scholar 

  • ten Haven, H. L., J. W. De Leeuw, J. Rullkötter, and J. S. Sinninghe Damste, 1987, Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator: Nature, v. 330, p. 641–643.

    Google Scholar 

  • ten Haven, H. L., J. W. de Leeuw, and P.A. Schenk, 1985, Organic geochemical studies of a Messinian evaporite basin, northern Appennines (Italy), part 1: Hydrocarbon biological markers for a hypersaline environment: Geochimica et Cosmochimica Acta, v. 49, p. 2181–2191.

    Google Scholar 

  • ten Haven, H. L., J. W. De Leeuw, J. S. Sinninghe Damsté, P. A. Schenk, S. E. Palmer, and J. E. Zumberge, 1988, Application of biological markers in the recognition of palaeo-hypersaline environments, v. 40: London, Blackwell, Geological Society London Special Publication, 123–130 p.

    Google Scholar 

  • Teske, A., A. Dhillon, and M. L. Sogin, 2003, Genomic Markers of Ancient Anaerobic Microbial Pathways: Sulfate Reduction, Methanogenesis, and Methane Oxidation: Biological Bulletin, v. 204, p. 186–191.

    Google Scholar 

  • Thakur, N. K., and S. Rajput, 2011, Exploration of Gas Hydrates – Geophysical Techniques: Berlin, Springer, 281 p.

    Google Scholar 

  • Thrasher, J., A. J. Fleet, S. J. Hay, M. Hovland, and S. Düppenbecker, 1996, Understanding geology as the key to using seepage in exploration: the spectrum of seepage styles, in S. D., and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: Tulsa, American Association of Petroleum Geologists Memoir 66, p. 223–241.

    Google Scholar 

  • Tiercelin, J.-J., C. Thouin, T. Kalala, and A. Mondeguer, 1989, Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift: Geology, v. 17, p. 1053–1056.

    Google Scholar 

  • Tiercelin, J. J., C. Pflumio, M. Castrec, J. Boulegue, P. Gente, J. Rolet, C. Coussement, K. O. Stetter, R. Huber, S. Buku, and W. Mifundu, 1993, Hydrothermal vents in Lake Tanganyika, East African Rift system: Geology, v. 21, p. 499–502.

    Google Scholar 

  • Timms, B., 2009, A study of the salt lakes and salt springs of Eyre Peninsula, South Australia: Hydrobiologia, v. 626, p. 41–51.

    Google Scholar 

  • Trefry, J. H., B. J. Presley, W. L. Keeney-Kennicutt, and R. P. Trocine, 1984, Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin: Geomarine Lett., v. 4, p. 125–130.

    Google Scholar 

  • Trindade, L. A. F., J. L. Dias, and M. R. Mello, 1995, Sedimentological and geochemical characterisation of the Lagoa Feia Formation, rift phase of the Campos Basin, Brazil, in B. Katz, ed., Petroluem source rocks: Berlin, Springer Verlag, p. 149–165.

    Google Scholar 

  • Trudinger, P. A., L. A. Chambers, and J. W. Smith, 1985, Low-temperature sulphate reduction; biological versus abiological: Canadian Journal of Earth Sciences, v. 22, p. 1910–1918.

    Google Scholar 

  • Tuite, C. H., 2000, The Distribution and Density of Lesser Flamingos in East Africa in Relation to Food Availability and Productivity: Waterbirds: The International Journal of Waterbird Biology, v. 23, Special Publication 1: Conservation Biology of Flamingos, p. 52–63.

    Google Scholar 

  • Turich, C., and K. H. Freeman, 2011, Archaeal lipids record paleosalinity in hypersaline systems: Organic Geochemistry, v. 42, p. 1147–1157.

    Google Scholar 

  • Tyson, R. V., P. Esherwood, and K. A. Pattison, 2005, Organic facies variations in the Valanginian-mid-Hauterivian interval of the Agrio Formation (Chos Malal Area, Neuquen, Argentina): local significance and global context: Geological Society, London, Special Publications, v. 252, p. 251–266.

    Google Scholar 

  • Uliana, M. A., and L. Legarreta, 1993, Hydrocarbon habitat in a Triassic to Cretaceous sub-Andean setting – Neuquen basin, Argentina: Journal of Petroleum Geology, v. 16, p. 397–420.

    Google Scholar 

  • Ulmishek, G. F., 2001a, Petroleum Geology and Resources of the Dnieper-Donets Basin, Ukraine and Russia: U.S. Geological Survey Bulletin, v. 2201-E.

    Google Scholar 

  • Uphoff, T. L., 2005, Subsalt (pre-Jurassic) exploration play in the northern Lusitanian basin of Portugal: Bulletin American Association Petroleum Geologists, v. 89, p. 699–714.

    Google Scholar 

  • Urien, C. M., and J. J. Zambrano, 1994, Petroleum Systems in the Neuquen Basin, Argentina: Chapter 32: Part V. Case Studies--Western Hemisphere, The Petroleum System--From Source to Trap, American Association of Petroleum Geologists Memoir No. 60, p. 513–534.

    Google Scholar 

  • Van der Sloot, H. A., D. Hoede, G. Hamburg, J. R. W. Woittiez, and C. H. Van der Weijden, 1990, Trace elements in suspended matter from the anoxic hypersaline Tyro and Bannock Basins (eastern Mediterranean): Marine Chemistry, v. 31, p. 187–203.

    Google Scholar 

  • Vareschi, E., 1978, The ecology of Lake Nakuru (Kenya). I. Abundance and feeding of the lesser flamingo: Oecologia, v. 32, p. 11–35.

    Google Scholar 

  • Vareschi, E., 1982, The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production: Oecologia, v. 55, p. 81–101.

    Google Scholar 

  • Ventosa, A., J. J. Nieto, and A. Oren, 1998, Biology of moderately halophilic aerobic bacteria: Microbiology and Molecular Biology Reviews, v. 62, p. 504–544.

    Google Scholar 

  • Vincelette, R. R., and W. E. Chittum, 1981, Exploration for oil accumulation in Entrada Sandstone, San Juan Basin, New Mexico: Bulletin American Association of Petroleum Geologists, v. 65, p. 2546–2570.

    Google Scholar 

  • Visscher, P. T., P. R. Reid, and B. M. Bebout, 2000, Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites: Geology, v. 28, p. 919–922.

    Google Scholar 

  • Wallmann, K., F. S. Aghi, D. Castradori, M. B. Cita, E. Suess, J. Greinert, and D. Rickert, 2002, Sedimentation and formation of secondary minerals in the hypersaline Discovery Basin, eastern Mediterranean: Marine Geology, v. 186, p. 9–28.

    Google Scholar 

  • Wang, G., T. G. Wang, B. R. T. Simoneit, L. Zhang, and X. Zhang, 2010, Sulfur rich petroleum derived from lacustrine carbonate source rocks in Bohai Bay Basin, East China: Organic Geochemistry, v. 41, p. 340–354.

    Google Scholar 

  • Wang, R. L., 1998, Acyclic isoprenoids – molecular indicators of archaeal activity in contemporary and ancient Chinese saline/hypersaline environments: Hydrobiologia, v. 381, p. 59–76.

    Google Scholar 

  • Wani, M. R., and S. K. Al-Kabli, 2007, Reservoir characterization and stochastic modeling of the Second Eocene dolomite reservoir, Wafra field, Kuwait-Saudi Arabia Divided Zone (abstract). 7th Middle East Geosciences Conference, GEO 2006: GeoArabia, v. 12, p. 163.

    Google Scholar 

  • Waples, D. W., P. Haug, and D. H. Welte, 1974, Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal saline environment: Geochemica et Cosmochimica Acta, v. 38, p. 381–387.

    Google Scholar 

  • Warren, J. K., 1986, Shallow water evaporitic environments and their source rock potential: Journal Sedimentary Petrology, v. 56, p. 442–454.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J. K., 2011, Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines, Doug Shearman Memorial Volume, (Wiley-Blackwell) IAS Special Publication Number 43, p. 315–392.

    Google Scholar 

  • Warren, J. K., and R. H. Kempton, 1997, Evaporite Sedimentology and the Origin of Evaporite-Associated Mississippi Valley-type Sulfides in the Cadjebut Mine Area, Lennard Shelf, Canning Basin, Western Australia., in I. P. Montanez, J. M. Gregg, and K. L. Shelton, eds., Basinwide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations: Tulsa OK, SEPM Special Publication, v. 57, p. 183–205.

    Google Scholar 

  • Webster, R. E., 2004, Tropical versus Temperate Zone Lacustrine Source Rocks: Examples from Takutu Basin, Guyana, and General Levalle Basin, Argentina: American Association of Petroleum Geologists Search and Discovery Article #10070 (Adapted from a poster presentation at American Association of Petroleum Geologists Annual Convention, Dallas, Texas, April 18–21, 2004).

    Google Scholar 

  • Weeks, L. G. e., 1958, Habitat of oil: A symposium: Tulso, OK, American Association Petroleum Geologists.

    Google Scholar 

  • Weeks, L. G. e., 1961, Chapter 5, Origin, migration and occurrence of petroleum, in G. B. Moody, ed., Petroluem exploration handbook: New York, McGraw-Hill.

    Google Scholar 

  • Westbrook, G. K., and T. J. Reston, 2002, The accretionary complex of the Mediterranean Ridge: tectonics, fluid flow and the formation of brine lakes – an introduction to the special issue of Marine Geology: Marine Geology, v. 186, p. 1–8.

    Google Scholar 

  • Wharton, D. A., 2002, Life at the limits; Organisms in extreme environments Cambridge, UK, Cambridge University Press, 307 p.

    Google Scholar 

  • Whittle, G. L., and A. S. Alsharhan, 1996, Diagenetic history and source rock potential of the Upper Jurassic Diyab Formation, offshore Abu Dhabi, United Arab Emirates: Carbonates and Evaporites, v. 11, p. 145–154.

    Google Scholar 

  • Williams, D. F., and I. Lerche, 1987, Salt domes, organic-rich source beds and reservoirs in intraslope basins of the Gulf Coast region, in I. Lerche, and J. J. O’Brien, eds., Dynamical geology of salt and related structures: New York, Academic Press, p. 751–830.

    Google Scholar 

  • Williams, W. D., P. De Deckker, and R. J. Shiel, 1998, The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989: Hydrobiologia, v. 384, p. 101–110.

    Google Scholar 

  • Williams, W. D., P. De Deckker, and R. J. Shiel, 1998, The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989: Hydrobiologia, v. 384, p. 101–110.

    Google Scholar 

  • Winsborough, B. M., J. S. Seeler, S. Golubic, R. L. Folk, and B. Maguire, Jr., 1994, Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from northeastern Mexico, in J. Bertrand-Sarfati, and C. Monty, eds., Phanerozoic Stromatolites II: Amsterdam, Kluwer Academic Publishers, p. 71–100.

    Google Scholar 

  • Woese, C. R., 1993, Introduction. The archaea: their hustory and significance, in M. Kates, D. J. Kushner, and A. T. Matheson, eds., The Biochemistry of the Archaea, v. 26: Amsterdam, Elsevier, p. vii–xxix.

    Google Scholar 

  • Woese, C. R., and G. E. Fox, 1977, Phylogenetic structure of the prokaryotic domain: the primary kingdoms: Proc. Natl. Acad. Sci. USA, v. 74, p. 5088–5090.

    Google Scholar 

  • Woese, C. R., O. Kandler, and M. L. Wheelis, 1990, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya: Proc. Natl. Acad. Sci. USA, v. 87, p. 4576–4579.

    Google Scholar 

  • Wolela, A., 2007, Source rock potential of the Blue Nile (Abay) Basin, Ethiopia: Journal of Petroleum Geology, v. 30, p. 389–402.

    Google Scholar 

  • Wood, A. P., and D. P. Kelly, 1991, Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake: Arch. Microbiol., v. 156, p. 277–280.

    Google Scholar 

  • Woolnough, W. G., 1937, Sedimentation in barred basins and source rocks of oil: American Association Petroleum Geologists – Bulletin, v. 29, p. 1101–1157.

    Google Scholar 

  • Worden, R. H., and P. C. Smalley, 1996, H2S-Producing reactions in deep carbonate gas reservoirs – Khuff Formation, Abu Dhabi: Chemical Geology, v. 133, p. 157–171.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and M. M. Cross, 2000, The influence of rock fabric and mineralogy on thermochemical sulfate reduction: Khuff Formation, Abu Dhabi: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 1210–1221.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and N. H. Oxtoby, 1995, Gas souring by thermochemical sulfate reduction at 140° C: Bulletin-American Association of Petroleum Geologists., v. 79, p. 854–863.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and N. H. Oxtoby, 1996, The effects of thermochemical sulphate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs: Geochimica et Cosmochimica Acta, v. 60, p. 3925–3931.

    Google Scholar 

  • Xiong, J., and C. E. Bauer, 2002, Complex evolution of photosynthesis: Ann Rev. Plant Physiol, v. 53, p. 503–521.

    Google Scholar 

  • Yakimov, M. M., V. La Cono, R. Denaro, G. D’Auria, F. Decembrini, K. N. Timmis, P. N. Golyshin, and L. Giuliano, 2007, Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea: ISME J, v. 1, p. 743–755.

    Google Scholar 

  • Yakimov, M. M., V. La Cono, V. Z. Slepak, G. La Spada, E. Arcadi, E. Messina, B. Mireno, L. S. Monticelli, D. Rojo, C. Barbas, O. V. Golyshina, M. Ferrer, P. N. Golyshin, and L. Giuliano, 2013, Microbial life in the Lake Medee, the largest deepsea salt-saturated formation.: Scientific reports, 3; http://www.nature.com/srep/2013/131219/srep03554/full/srep03554.html.

  • Yang, C., I. Hutcheon, and H. R. Krouse, 2001, Fluid inclusion and stable isotope studies of thermochemical sulphate reduction from Burnt Timber and Crossfield East gas fields in Alberta, Canada: Bulletin of Canadian Petroleum Geology, v. 49, p. 149–164.

    Google Scholar 

  • Younes, M. A., and R. P. Philp, 2005, Source rock characterization based on biological marker distributions of crude oils in the southern Gulf of Suez, Egypt: Journal of Petroleum Geology, v. 28, p. 301–317.

    Google Scholar 

  • Zappaterra, E., 1994, Source-Rock Distribution Model of the Periadriatic Region: Bulletin American Association Petroleum Geologists, v. 78, p. 333–354.

    Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin, 1994, Alkaliphilic anaerobic community at pH 10: Curr. Microbiol., v. 29, p. 109–112.

    Google Scholar 

  • Zhilina, T. N., G. A. Zavarzin, F. Rainey, V. V. Kevbrin, N. A. Kostrikina, and A. M. Lysenko, 1996, Spirochaeta alkalica sp nov, Spirochaeta africana sp nov, and Spirochaeta asiatica sp nov, alkaliphilic anaerobes from the Continental soda lakes in Central Asia and the East African Rift: International Journal of Systematic Bacteriology, v. 46, p. 305–312.

    Google Scholar 

  • Ziegenbalg, S. B., D. Birgel, L. Hoffmann-Sell, C. Pierre, J. M. Rouchy, and J. Peckmann, 2012, Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C-depleted molecular fossils: Chemical Geology, v. 292–293, p. 140–148.

    Google Scholar 

  • Zobell, C., 1957, The ecology of sulphate-reducing bacteria.: Sulphate-Reducing Bacteria – their relation to the secondary recovery of oil, Symposium, St Bonaventure University, (Oct 23–24, 1957).

    Google Scholar 

  • Zumberge, J. E., 1987, Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach: Geochimica et Cosmochimica Acta, v. 51, p. 1625–1637.

    Google Scholar 

  • Zumberge, J. E., 1987, Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach: Geochimica et Cosmochimica Acta, v. 51, p. 1625–1637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Halotolerant Life in Feast or Famine: Organic Sources of Hydrocarbons and Fixers of Metals. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_9

Download citation

Publish with us

Policies and ethics