Skip to main content

Salt Dissolution and Pointers to Vanished Evaporites: Karst, Breccia, Nodules and Cement

  • Chapter
Evaporites

Abstract

Given enough time all subsurface evaporites eventually dissolve. Even in the subsurface sedimentary realm there are probably more intervals of dissolution residues than there are beds of salts. The rate of evaporite dissolution changes with temperature and rate and volume of crossflowing undersaturated pore waters (Fig. 7.1) Solubility of the chloride salts consistently increases with increasing temperature (prograde solubility), with the sulphates and the sodium carbonates it initially increases, but can then decrease at higher temperatures (retrograde solubility) Dissolution typically begins in the shallow subsurface as the edges of salt beds that are flushed by meteoric or marine waters and continues deeper in the subsurface, wherever and whenever bed edges are flushed by undersaturated basinal brines. Partial dissolution, whereby crystals of more saline salts (typically halite and bitterns) are flushed, leaves behind residues of the less saline salts (typically gypsum-anhydrite, as in many caprocks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cluster of water-filled sinkholes atop dissolving evaporites and locally known as “Hell’s Kettles” (Lat 54.492655, Long −1.567459) located to the south of Darlington, UK, formed in 1179 AD via a catastrophic collapse of the landsurface. A twelfth century annalist describes their formation as follows:

    “In the reign of Henry II, the earth rose high at Oxendale, in the District of Darlington, (Oxendale is now Oxney flat) in the likeness of a lofty tower, and so remained from nine in the morning until evening, when it sank don with a terrible noise, to the terror of all that heard it, and being swallowed up it left behind a deep pit.”

    After the collapse the local clergy had a field-day; the “Hell’s Kettles” dolines have long been reputed to be bottomless pits, said to harbor the tortured souls of the sinful dead.

  2. 2.

    The term subrosion refers to the burial-related dissolution of salt.

  3. 3.

    Rockhead is the buried interface between the underlying bedrock and its soil cover.

  4. 4.

    The Plains Indians that inhabited the area 300 years ago trapped and slaughtered thousands of buffalo as their primary food by stampeding the animals over the rim of a large steep-sided sinkhole near Sundance, Wyoming (the Vore Buffalo Jump; Fig. 7.16b).

    The Mammoth Site in Hot Springs, South Dakota, is a salt dissolution sinkhole in the Spearfish Formation. There some 26,000 years ago, well before humans had migrated to north America, mammoths and other megafauna died after falling into what was then a steep sided water-filled sinkhole.

  5. 5.

    The term boxwork is nongenetic, it describes an aggregate with plates or septa which intersect at various angles leaving open boxlike spaces, which may be subsequently infilled or cemented.

  6. 6.

    Bathyphreatic is used to describe the hydrologic zone typified by deep, near-stagnant waters, situated at depths well below the zone of active phreatic circulation.

  7. 7.

    Epikarst: pertains to the upper/outer layer of karstified rock in the unsaturated zone, immediately below the soil layer.

    Exokarst: pertains to features found on a surface karst landscape, ranging in size from karren to dolines and subsidence bowls.

    Endokarst: pertains to all features beneath the surface and hosted by a vertically layered karst system. It includes the full spectrum of underground voids and the dissolutional features present on the rock surfaces surrounding them. Klimchouk (2012) argues usage of the term endokarst should be expanded to include much hotter and deeper process sets that includes igneous and metamorphic fluids acting to create porosity at great depth.

  8. 8.

    High levels of impurities meant Haselgebirge salt could not be exploited using conventional mining techniques. Instead the sinkwerk method was used. A sinkwerk is a chamber or sump in a salt mine filled with water to dissolve salt. The resulting brine is then pumped via pipelines to a saltworks for processing at the surface.

  9. 9.

    The Catholic Church in the early Middle Ages of Europe explained such rapidly formed sinkholes as being “Gateways to Hell,” the result of the parishioners sinning a little to much, and/or not paying sufficient tithes to ameliorate the work of the Devil.

  10. 10.

    Cave origin can be epigenic (by shallow circulation of meteoric groundwater) or hypogenic (by rising groundwater or production of deep-seated solutional aggressiveness). Epigenic mazes form by diffuse infiltration through a permeable insoluble caprock or by floodwater supplied by sinking streams. Most hypogenic caves involve deep sources of aggressive waters and are instigated at bathyphreatic depths (Palmer 2011).

  11. 11.

    Entrenched karst occurs where the entire thickness of the soluble rock is entrenched along the sides of valleys but the insoluble cap spans most interfluves.

    Subjacent karst occurs where the soluble rock is locally breached by erosion over a minor part of its thickness, karst features may be expressed at the surface as combinations of springs and collapse features. Mantled karst is wholly or partly covered by a relatively thin veneer of post-karst rock or sediment and is part of the contemporary landscape.

  12. 12.

    A. H. Cooper in a lecture to the general public argued that collapse dolines breaching the landscape between Ripon and Darlington were the inspiration for the rabbit hole in Alice in Wonderland (see also < http://www.bgs.ac.uk/caves/alice_in_wonderland.html > last accessed Jan 5, 2015).

    In Chap. 1, Lewis Carroll wrote:

    “...The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly, that Alice had not a moment to think about stopping herself, before she found herself falling down what seemed a deep well. Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her, and to wonder what would happen next...”

    Charles Lutwidge Dodgson, who later adopted the Lewis Carroll pseudonym, was born in Cheshire and spent his early days at Croft, near Darlington. There, a trio of ponds called Hell’s Kettles were believed by locals in the Dark Ages to be bottomless links to hell. The pits are now known to be gypsum collapse features only 22 ft deep but they may have inspired this passage from the Carroll’s first chapter. In 1852 Carroll moved with his parents to Yorkshire when his father became Canon Dodgson of Ripon. Here, he first met Mary Badcock. Carroll, a keen mathematician, scientist and photographer, took pictures of Mary that were later adapted by Sir John Tenniel into illustrations in the first edition of Alice in Wonderland.

  13. 13.

    On August 7, 2014, the Islamic State of Iraq and the Levant (ISIL) movement captured the Mosul Dam complex from the Peshmerga. ISIL control of the dam created fears that its power supply could be restricted, or the water flows to downstream areas greatly inhibited. In a less likely scenario, there were worries the dam could be breached, causing widespread flooding and destruction downstream. On August 17, 2014, Peshmerga and the Iraqi Army launched a successful operation to retake control of the dam from ISIL militants. United States air strikes assisted the Kurdish and Iraqi military, damaging or destroying 19 vehicles belonging to ISIL, as well as a checkpoint near the dam.

    Some estimates suggest that the dam would begin to crumble within weeks if grouting stopped, which explains why ISIL brought in their own engineers to keep the grouting process going. Any group trying to establish a new state needs control of water supplies and power-generation, so it was in the interests of ISIL to keep the dam intact. (It was not known at the time of recapture if they had planted explosive charges throughout the structure, just in case they needed a Doomsday option).

  14. 14.

    Obruk is an internationally recognized Turkish geomorphic term, describing hypogenic collapse dolines, which crop out in the currently semiarid and almost flat land of Konya Closed Basin in central Turkey. These megadolines, with surface diameters and depths reaching several hundreds of meters, are still surfacing with an estimated temporal frequency of once per 5–10 years (Bayari et al. 2009).

  15. 15.

    Translates as “Cave of the Lighted House.” The cave has at least 24 natural skylights, mostly vertical shafts and is lined with dissolution features such as natural bridges, boneyards, and rillenkarren walls.

  16. 16.

    Quartzine is a form of chalcedony composed of fibres having a positive crystallographic elongation parallel to the c axis.

  17. 17.

    Lutecite is a form of chalcedony characterised by fibres that are seemingly elongated about 30 °C to the c axis.

  18. 18.

    Epithermal, said of a hydrothermal mineral deposit located within 1 km of the Earth’s surface and precipitated in a temperature range of 50–200 °C, mainly occurs in veins.

  19. 19.

    In 1955 Magnet Cove Barium Corporation, a subsidiary of Dresser Industries Inc., Dallas, Texas, purchased the property from Canadian Industrial Minerals Limited. Diamond drilling in 1956–57 discovered a lead-zinc-copper-silver ore body below the baryte deposit and sulphide production began in 1961. In 1967 Magnet Cove Barium Corporation became Dresser Minerals, which operated the mine until it closed in 1978. The Walton Mine produced baryte for 38 years. Most of the baryte was shipped to United States and Caribbean destinations where it was used as a weighting agent in drilling fluids with smaller amounts shipped to the Middle East for the same purpose.

  20. 20.

    Kroeger and Stinnesbeck (2003), established that the terms Minas Viejas and Olvido Fms. are synonyms for the same stratigraphic unit. Its outcrop distribution is now broken up by the effects of dissolution, tectonism and halokinesis, but originally it was deposited as single basinwide succession.

References

  • Abidi, R., N. Slim-Shimi, C. Marignac, N. Hatira, D. Gasquet, C. Renac, A. Soumarin, and S. Gleeson, 2012, The origin of sulfate mineralization and the nature of the BaSO4 -SrSO4 solid-solution series in the Ain Allega and El Aguiba ore deposits, Northern Tunisia: Ore Geology Reviews, v. 48, p. 165–179.

    Google Scholar 

  • Ackermann, R. V., P. W. Schlische, and P. E. Olsen, 1995, Synsedimentary collapse of portions of the Lower Blomidon Formation (Late Triassic), Fundy Rift Basin, Nova Scotia: Canadian Journal of Earth Sciences, v. 32, p. 1965–1976.

    Google Scholar 

  • Aitken, J. D., 1981, Stratigraphy and sedimentology of the upper Proterozoic Little Dal Group, Mackenzie Mountains, Northwest Territories: Campbell, F. H. A. Proterozoic basins of Canada. Paper Geological Survey of Canada, v. 10, p. 47–71.

    Google Scholar 

  • Aitken, J. D., and D. G. Cook, 1969, Geology, Lake Belot, District of Mackenzie: Geological Survey of Canada Map 6.

    Google Scholar 

  • Al Eid, G. A., and A. A. Al Tawil, 2009, Depositional Anhydrite Types and Controls from Anhydrite Cementation within a High-Resolution Sequence Stratigraphic Framework of the Khuff C, Hawiyah Area; Saudi Arabia (Abs.): American Association of Petroleum Geologists Search and Discovery Article #90090 ©2009 American Association of Petroleum Geologists, Annual Convention and Exhibition, Denver, Colorado, June 7–10, 2009

    Google Scholar 

  • Alavi, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of Science, v. 307, p. 1064–1095.

    Google Scholar 

  • Alberto, W., F. Carraro, M. Giardino, and D. Tiranti, 2007, Genesis and evolution of ‘pseudocarniole’: preliminary observations from the Susa Valley (Western Alps): Geological Society, London, Special Publications, v. 285, p. 155–168.

    Google Scholar 

  • Alberto, W., M. Giardino, G. Martinotti, and D. Tiranti, 2008, Geomorphological hazards related to deep dissolution phenomena in the Western Italian Alps: Distribution, assessment and interaction with human activities: Engineering Geology, v. 99, p. 147–159.

    Google Scholar 

  • Alonso-Zarza, A. M., Y. Sánchez-Moya, M. A. Bustillo, A. Sopeña, and A. Delgado, 2002, Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: an example of meteoric-dominated diagenesis from the Triassic of central Spain: Sedimentology, v. 49, p. 303–317.

    Google Scholar 

  • Amadi, F. O., R. P. Major, and L. R. Baria, 2012, Origins of gypsum in deep carbonate reservoirs: Implications for hydrocarbon exploration and production: American Association Petroleum Geologists – Bulletin, v. 96, p. 375–390.

    Google Scholar 

  • Amieux, P., 1980, Exemple d’un passage des ‘black shales’ aux evaporites dans le Ludien (Oligocene inferieur) du bassin de Mormoiron (Vaucluse, Sud- Est de la France). (Example of a transition of black shales to evaporites in the Ludian (Lower Oligocene) of the Mormoiron Basin, Vaucluse, south- eastern France): Bulletin, Centres de Recherches Exploration-Production Elf- Aquitaine, v. 4, p. 281–307.

    Google Scholar 

  • Amin, A., and K. Bankher, 1997b, Causes of land subsidence in the Kingdom of Saudi Arabia: Natural Hazards, v. 16, p. 57–63.

    Google Scholar 

  • Amin, A. A., and K. A. Bankher, 1997a, Karst hazard assessment of eastern Saudi Arabia: Natural Hazards, v. 15, p. 21–30.

    Google Scholar 

  • Anderson, E. J., 1981, Deep-seated salt dissolution in the Delaware Basin, Texas and New Mexico: in Wells, S.G., Lamber, W., and Callender, J.F., eds., Environmental geology and hydrology in New Mexico: Special Publication 10, New Mexico Geological Society, p. 133–145.

    Google Scholar 

  • Anderson, E. J., 1981, Deep-seated salt dissolution in the Delaware Basin, Texas and New Mexico: in Wells, S.G., Lamber, W., and Callender, J.F., eds., Environmental geology and hydrology in New Mexico: Special Publication 10, New Mexico Geological Society, p. 133–145.

    Google Scholar 

  • Anderson, N. L., A. Martinez, J. F. Hopkins, and T. R. Carr, 1998, Salt dissolution and surface subsidence in central Kansas – A seismic investigation of the anthropogenic and natural origin models: Geophysics, v. 63, p. 366–378.

    Google Scholar 

  • Andrejchuk, V. N., and A. B. Klimchouk, 2001, Geomicrobiology and redox geochemistry of the karstified Miocene gypsum aquifer, western Ukraine: The study from Zoloushka Cave: Geomicrobiology Journal, v. 18, p. 275–295.

    Google Scholar 

  • Andrejchuk, V. N., and A. B. Klimchouk, 2004, Mechanisms of karst breakdown formation in the gypsum karst of the fore-Ural region, Russia (from observations in the Kungurskaja Cave): Speleogenesis and Evolution of Karst Aquifers 2 (2), available at www.speleogenesis.info, (online journal).

  • Aquilina, L., A. N. Dia, J. Boulegue, J. Bourgois, and A. M. Fouillac, 1997, Massive barite deposits in the convergent margin off Peru: Implications for fluid circulation within subduction zones: Geochimica et Cosmochimica Acta, v. 61, p. 1233–1245.

    Google Scholar 

  • Arbey, N., 1980, Silicification des évaporites: Bulletin, Centres de Recherches Exploration-Production Elf- Aquitaine, v. 4, p. 309–365.

    Google Scholar 

  • Aref, M. A. M., 1998b, Biogenic carbonates – are they a criterion for underlying hydrocarbon accumulations – an example from the Gulf of Suez region: Bulletin American Association of Petroleum Geologists, v. 82, p. 336–352.

    Google Scholar 

  • Arenas, C., A. M. A. Zarza, and G. Pardo, 1999, Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain): Sedimentary Geology, v. 125, p. 23–45.

    Google Scholar 

  • Arenas, C., A. M. A. Zarza, and G. Pardo, 1999, Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain): Sedimentary Geology, v. 125, p. 23–45.

    Google Scholar 

  • Armenteros, I., 2010, Chapter 2 Diagenesis of Carbonates in Continental Settings, in A. M. Alonso-Zarza, and L. H. Tanner, eds., Developments in Sedimentology, v. Volume 62, Elsevier, p. 61–151.

    Google Scholar 

  • Arp, G., C. Ostertag-Henning, S. Yücekent, J. Reitner, and V. Thiel, 2008, Methane-related microbial gypsum calcitization in stromatolites of a marine evaporative setting (Münder Formation, Upper Jurassic, Hils Syncline, north Germany): Sedimentology, v. 55, p. 1227–1251.

    Google Scholar 

  • Aulstead, K. L., and R. J. Spencer, 1985, Diagenesis of Keg River Formation, northwestern Alberta; fluid inclusion evidence: Bulletin of Canadian Petroleum Geology, v. 33, p. 167–183.

    Google Scholar 

  • Autin, W. J., 2002, Landscape evolution of the Five Islands of south Louisiana: scientific policy and salt dome utilization and management: Geomorphology, v. 47, p. 227–244.

    Google Scholar 

  • Autin, W. J., and R. P. McCulloh, 1995, Quaternary geology of the Weeks and Cote Blanche islands salt domes: Gulf Coast Association of Geological Societies Transactions, v. XLV, p. 39–46.

    Google Scholar 

  • Ayora, C., 1999, Modelo de dedolomitización, in I. Armenteros, J. A. Blanco Sañchez, and E. Merino, eds., Dinámica de las interacciones entre aguay minerales en medios de baja temperatura (meteorización, diagénesis, metasomatismo), Reunión Científica y Curso Extraordinario, Salamanca, Spain, p. 197–207.

    Google Scholar 

  • Babel, M., 1991, Dissolution of halite within the middle Miocene (Badenian) laminated gypsum of southern Poland: Acta Geologica Polonica, v. 41, p. 165–182.

    Google Scholar 

  • Babieri, M., and U. Masi, 1984, Sr geochemical evidence on the origin of celestite–barite deposits at Pian dell’Organo in the Tolfa Mountains area (Latium, central Italy): Mineralogy and Petrology, v. 28, p. 33–37.

    Google Scholar 

  • Bachman, G., and R. B. Johnson, 1973, Stability of Salt in the Permian Salt Basin of Kansas, Oklahoma, Texas and New Mexico: U. S. Geol. Surv. Open-File Rept.. v. 4339–4.

    Google Scholar 

  • Bachman, G. O., 1981, Geology of Nash Draw, Eddy County, New Mexico.: U. S. Geol. Surv. Open-File Rept. 81–3.

    Google Scholar 

  • Bachman, G. O., 1984, Regional geology of Ochoan evaporites, northern part of Delaware Basin: New Mexico Bureau of Mines and Mineral Resources, Circular, v. 184, p. 22.

    Google Scholar 

  • Backé, G., G. Baines, D. Giles, W. Preiss, and A. Alesci, 2010, Basin geometry and salt diapirs in the Flinders Ranges, South Australia: Insights gained from geologically-constrained modelling of potential field data: Marine and Petroleum Geology, v. 27, p. 650–665.

    Google Scholar 

  • Bain, R. J., 1990, Diagenetic, nonevaporative origin for gypsum: Geology, v. 18, p. 447–450.

    Google Scholar 

  • Baker, P. A., and S. H. Bloomer, 1988, The origin of celestite in deep water carbonate sediments: Geochim. Cosmochim. Acta, v. 52, p. 335–339.

    Google Scholar 

  • Barker, R. A., P. W. Bush, and E. T. Baker, 1994, Geologic history and hydrogeologic setting of the Edwards-Trinity aquifer system, West-Central Texas: US Geological Survey Water-Resources Investigation Report 94–4039, 51 p.

    Google Scholar 

  • Bayari, C. S., E. Pekkan, and N. N. Ozyurt, 2009, Obruks, as giant collapse dolines caused by hypogenic karstification in central Anatolia, Turkey: Analysis of likely formation processes: Hydrogeology Journal, v. 17, p. 327–345.

    Google Scholar 

  • Bazargani-Guilani, K., and M. A. N. Tak, 2008, Celestite Ore Deposit and Occurrences of the Qom Formation, Oligo-Miocene, Central Iran: 2nd IASME / WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES ‘08), Cambridge, UK, February 23–25, 2008.

    Google Scholar 

  • Behr, H. J., H. Ahrendt, H. Martin, H. Porada, J. Rohrs, and K. Weber, 1983, Sedimentology and mineralogy of Upper Proterozoic playa-lake deposits in the Damara orogen, in H. Martin, and F. W. Eder, eds., Intracontinental Fold Belts: Berlin, Springer-Verlag, p. 577–610.

    Google Scholar 

  • Belloni, S., B. Martins, and G. Orombelli, 1972, Karst of Italy, in M. Herak, and V. T. Springfield, eds., Karst: Important karst regions of the Northern Hemisphere: Amsterdam, Elsevier, p. 85–128.

    Google Scholar 

  • Belous, I. R., S. I. Kirikilitsa, M. L. Levenshteyn, E. K. Rodina, and V. N. Florinskaya, 1984, Occurrences of mercury in northeastern Donbass salt dome: Internat. Geol. Rev., v. 26, p. 573–582.

    Google Scholar 

  • Benito, G., F. Gutierrez, A. Perez-Gonzalez, and M. Machado, 2000, Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain): Geomorphology, v. 33, p. 209–224.

    Google Scholar 

  • Benito, G., F. Gutierrez, A. Perez-Gonzalez, and M. Machado, 2000, Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain): Geomorphology, v. 33, p. 209–224.

    Google Scholar 

  • Biddle, P. G., 1983, Patterns of drying and moisture deficit in the vicinity of trees on clay soils: Geotechnique, v. 33, p. 107–126.

    Google Scholar 

  • Birnbaum, S. J., and J. W. Wireman, 1985, Sulfate-reducing bacteria and silica solubility; a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations: Canadian Journal of Earth Sciences, v. 22, p. 1904–1909.

    Google Scholar 

  • Black, T. J., 1997, Evaporite karst of northern lower Michigan: Carbonates & Evaporites, p. 81–83.

    Google Scholar 

  • Black, T. J., 2012, Deep karst system research, Michigan, USA: Carbonates and Evaporites, v. 27, p. 119–122.

    Google Scholar 

  • Blount, C. W., and F. W. Dickson, 1969, The solubility of anhydrite (CaSO4) in NaCl- from 100 to 450° C and 1 to 1000 bars: Geochimica et Cosmochimica Acta, v. 33, p. 227–245.

    Google Scholar 

  • Blount, C. W., and F. W. Dickson, 1969, The solubility of anhydrite (CaSO4) in NaCl- from 100 to 450° C and 1 to 1000 bars: Geochimica et Cosmochimica Acta, v. 33, p. 227–245.

    Google Scholar 

  • Boiron, M.-C., M. Cathelineau, and A. Richard, 2010, Fluid flows and metal deposition near basement /cover unconformity: lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits: Geofluids, v. 10, p. 270–292.

    Google Scholar 

  • Bonny, S. M., and B. Jones, 2008, Experimental Precipitation of Barite (BaSO4) Among Streamers of Sulfur-Oxidizing Bacteria: Journal of Sedimentary Research, v. 78, p. 357–365.

    Google Scholar 

  • Bosak, P., J. I. Bruthans, M. Fillippi, T. Svoboda, and J. Smid, 1999, Karst and salt caves in salt diapirs, SE Zagros Mountains (Iran): Acta Carsologica, v. 28, p. 41–75.

    Google Scholar 

  • Bose, P. K., P. G. Eriksson, S. Sarkar, D. T. Wright, P. Samanta, S. Mukhopadhyay, S. Mandal, S. Banerjee, and W. Altermann, 2012, Sedimentation patterns during the Precambrian: A unique record?: Marine and Petroleum Geology, v. 33, p. 34–68.

    Google Scholar 

  • Bottrell, S. H., S. Crowley, and C. Self, 2001, Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization: Geofluids, v. 1, p. 103–121.

    Google Scholar 

  • Boyle, R. W., 1962, Geology and Geochemistry of the Magnet Cove Barium-Lead-Zinc-Silver Deposit, Walton, Nova Scotia: Canadian Mining Journal, v. 83, p. 104–110.

    Google Scholar 

  • Bozeman, J., and S. Bozeman, 2002, Speleology of gypsum caves in Oklahoma: Carbonates and Evaporites, v. 17, p. 107–113.

    Google Scholar 

  • Braitsch, O., 1964, The temperature of evaporite formation, in A. E. M. Nairn, ed., Problems in palaeoclimatology: New York, Wiley, p. 479–490.

    Google Scholar 

  • Brasier, A. T., A. E. Fallick, A. R. Prave, V. A. Melezhik, and A. Lepland, 2011, Coastal sabkha dolomites and calcitised sulphates preserving the Lomagundi-Jatuli carbon isotope signal: Precambrian Research, v. 189, p. 193–211.

    Google Scholar 

  • Breit, G. N., M. B. Goldhaber, D. R. Shawe, and E. C. Simmons, 1990, Authigenic barite as an indicator of fluid movement through sandstones within the Colorado Plateau: Journal of Sedimentary Petrology, v. 60, p. 884–896.

    Google Scholar 

  • Bretz, J. H., 1952, A solution cave in gypsum: Journal of Geology, v. 6-, p. 279–283.

    Google Scholar 

  • Broughton, P. L., 2013, Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada: Sedimentary Geology, v. 283, p. 57–82.

    Google Scholar 

  • Bruthans, J., M. Filippi, N. Asadi, M. Zare, S. Slechta, and Z. Chur·ckov·, 2009, Surficial deposits on salt diapirs (Zagros Mountains and Persian Gulf Platform, Iran): Characterization, evolution, erosion and the influence on landscape morphology: Geomorphology, v. 107, p. 195–209.

    Google Scholar 

  • Bruthans, J., M. Filippi, J. Smíd, and L. Palatinus, 2002, Trí Nahácu (Three Nudes) and Ghar-e Daneshyu caves – The world’s second and fifth longest salt caves: The International Caver 2002, Swindon, U.K., p. 27–36.

    Google Scholar 

  • Bruthans, J., M. Filippi, M. Zare, Z. Churackova, N. Asadi, M. Fuchs, and J. Adamovic, 2010, Evolution of salt diapir and karst morphology during the last glacial cycle: Effects of sea-level oscillation, diapir and regional uplift, and erosion (Persian Gulf, Iran): Geomorphology, v. 121, p. 291–304.

    Google Scholar 

  • Bruthans, J., J. Smid, M. Filippi, and O. Zeman, 2000, Thickness of cap rock and other important factors affecting the morphogenesis of salt karst: Acta Carsologica, v. 29, p. 51–64.

    Google Scholar 

  • Buck, M. J., D. C. Ford, and H. P. Schwarcz, 1994, Classification of cave gypsum deposits derived from oxidation of H2S, in I. D. Sasowsky, and M. V. Palmer, eds., Breakthroughs in Karst Geomicrobiology: Colorado Springs, Colorado, Karst Waters Institute, p. 5–9.

    Google Scholar 

  • Budai, J. M., K. C. Lohmann, and R. M. Owen, 1984, Burial dedolomite in the Mississippian Madison Limestone, Wyoming and Utah thrust belt: Journal of Sedimentary Petrology, v. 54, p. 276–288.

    Google Scholar 

  • Burns, K. L., O. Stephansson, and A. J. R. White, 1977, The Flinders Ranges breccias of South Australia — diapirs or décollement ?: Quarterly Journal Geological Soc. London, v. 134, p. 363–384.

    Google Scholar 

  • Burri, E., 1986, Various aspects of karstic phenomena in the urbanised area of Gissi and neighbouring areas (southern Abruzzo, Italy): Le Grotte d’Italia, v. 4, p. 143–161.

    Google Scholar 

  • Bustillo, M. A., J. Garcia-Guinea, J. Martinez-Frias, and A. Delgado, 1999, Unusual sedimentary geodes filled by gold-bearing hematite laths: Geological Magazine, v. 136, p. 671–679.

    Google Scholar 

  • Butler, G. P., 1973, Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf [with comment]: in Marine Evaporites; Origin, Diagenesis, and Geochemistry, p.

    Google Scholar 

  • Butler, G. P., 1973, Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf [with comment]: in Marine Evaporites; Origin, Diagenesis, and Geochemistry, p.

    Google Scholar 

  • Calaforra, J. M., and A. Pulido-Bosch, 1999, Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, Southern Spain: Geomorphology, v. 29, p. 251–264.

    Google Scholar 

  • Calaforra, J. M., and A. Pulido-Bosch, 2003, Evolution of the gypsum karst of Sorbas (SE Spain): Geomorphology, v. 50, p. 173–180.

    Google Scholar 

  • Calvo, J., B. Jones, M. Bustillo, R. Fort, A. Zarza, and C. Kendall, 1995, Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, Spain: Chemical Geology, v. 123, p. 173–191.

    Google Scholar 

  • Cañaveras, J. C., S. Sanchezmoral, J. P. Calvo, M. Hoyos, and O. S., 1996, Dedolomites associated with karstification – an example of early dedolomitisation in lacustrine sequences from the Tertiary Madrid basin, central Spain: Carbonates & Evaporites, v. 11, p. 85–103.

    Google Scholar 

  • Cañaveras, J. C., S. Sanchezmoral, E. Sanzrubio, and M. Hoyos, 1998, Meteoric calcitization of magnesite in Miocene lacustrine deposits (Calatayud basin, NE Spain): Sedimentary Geology, v. 119, p. 183–194.

    Google Scholar 

  • Carlson, E. H., 1983, The occurrence of Mississippi Valley-type Mineralization in northwestern Ohio, in G. Kisvarsanyi, S. K. Grant, W. P. Pratt, and J. W. Koenig, eds., International Conference on Mississippi Valley Type lead-zinc deposits; Proceedings, University of Missouri Rolla, Mo, p. 424–435.

    Google Scholar 

  • Carlson, E. H., 1987, Celestite replacements of evaporites in the Salina Group: Sedimentary Geology, v. 54, p. 93–112.

    Google Scholar 

  • Carlson, E. H., 1992, Reactivated interstratal karst – example from the late Silurian rocks of western Lake Erie (USA): Sedimentary Geology, v. 76, p. 273–283.

    Google Scholar 

  • Castañeda, C., F. Gutiérrez, M. Manunta, and J. P. Galve, 2009, DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain: Earth Surface Processes and Landforms, v. 34, p. 1562–1574.

    Google Scholar 

  • Castellini, D. G., G. R. Dickens, G. T. Snyder, and C. D. Ruppel, 2006, Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico: Chemical Geology, v. 226, p. 1–30.

    Google Scholar 

  • Cathro, D. L., J. K. Warren, and G. E. Williams, 1992, Halite saltern in the Canning Basin, Western Australia; a sedimentological analysis of drill core from the Ordovician-Silurian Mallowa Salt: Sedimentology, v. 39, p. 983–1002.

    Google Scholar 

  • Cesaretti, N. N., J. Parnell, and E. A. Dominguez, 2000, Pore fluid evolution within a hydrocarbon reservoir: Yacoraite Formation, (Upper Cretaceous), Northwest Basin, Argentina: Journal of Petroleum Geology, v. 23, p. 375–398.

    Google Scholar 

  • Chabert, C., and P. Courbon, 1997, Atlas de cavités non calcaires du monde: Union Int. Spéléol. au prés Madame Carle, Paris, p. 1–120.

    Google Scholar 

  • Chabou-Mostafai, S., J. J. DeVolce, Y. Fuchs, G. Memant, and M. Riviere, 1978, Sur les niveaux a celestite de Tunisie centrale et du sud-Constantinois: Sciences de la Terre, v. 22, p. 293–300.

    Google Scholar 

  • Chabou-Mostafai, S., J. J. DeVolce, Y. Fuchs, G. Memant, and M. Riviere, 1978, Sur les niveaux a celestite de Tunisie centrale et du sud-Constantinois: Sciences de la Terre, v. 22, p. 293–300.

    Google Scholar 

  • Chafetz, H. S., and J. L. Zhang, 1998, Authigenic euhedral megaquartz crystals in a Quaternary dolomite: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 994–1000.

    Google Scholar 

  • Chowns, T. M., and J. E. Elkins, 1974, The origin of quartz geodes and cauliflower cherts through the silicification of anhydrite nodules: J. Sediment. Petrol., v. 44, p. 885–903.

    Google Scholar 

  • Closson, D., N. Abou Karaki, and F. Hallot, 2010, Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering: Environmental Earth Sciences, v. 59, p. 1417–1430.

    Google Scholar 

  • Closson, D., P. LaMoreaux, N. Abou Karaki, and H. al-Fugha, 2007, Karst system developed in salt layers of the Lisan Peninsula, Dead Sea, Jordan: Environmental Geology, v. 52, p. 155–172.

    Google Scholar 

  • Colson, J., and I. Cojan, 1996, Groundwater dolocretes in a lake-marginal environment – An alternative model for dolocrete formation in continental settings (Danian of the Provence Basin, France): Sedimentology, v. 43, p. 175–188.

    Google Scholar 

  • Conklin, J., 1974, Structural geology of the Huizachal-Peregrina Anticlinorium: Pan American Geological Society, Geology of Huizachal-Peregrina Anticlinorium, p. 21–31.

    Google Scholar 

  • Cook, D. J., A. F. Randazzo, and C. L. Sprinkle, 1985, Authigenic fluorite in dolomitic rocks of the Floridan Aquifer: Geology, v. 13, p. 390–391.

    Google Scholar 

  • Cooper, A. H., 1986, Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire: Harwood, Gill M., Smith, Denys B. The English Zechstein and related topics. Univ. Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom. Geological Society Special Publications, v. 22, p. 127–139.

    Google Scholar 

  • Cooper, A. H., 1995, Subsidence hazards due to the dissolution of Permian gypsum in England: Investigation and remediation, in B. F. Beck, ed., Karst Geohazards – Engineering and Environmental Problems in Karst Terrane. Proceedings of the fifth multidisciplinary conference on sinkholes and the environmental impacts of karst, Gatlinburg, Tennessee: Rotterdam, A.A. Balkema, p. 23–29.

    Google Scholar 

  • Cooper, A. H., 1998, Subsidence hazards caused by the dissolution of Permian gypsum in England: geology, investigation and remediation, in J. G. Maund, and M. Eddleston, eds., Geohazards in Engineering Geology, v. 15: London, Geological Society, London, p. 265–275.

    Google Scholar 

  • Cooper, A. H., and F. Gutiérrez, 2013, Dealing with gypsum karst problems: hazards, environmental issues, and planning, in J. F. Shroder, ed., Treatise on geomorphology, Elsevier, p. 451–462.

    Google Scholar 

  • Cooper, A. H., and J. M. Saunders, 2002, Road and bridge construction across gypsum karst in England: Engineering Geology, v. 65, p. 217–233.

    Google Scholar 

  • Cooper, A. H., and A. C. Waltham, 1999, Subsidence caused by gypsum dissolution at Ripon, North Yorkshire: Quarterly Journal of Engineering Geology, v. 32, p. 305–310.

    Google Scholar 

  • Cooper, A. M., 1991, Late Proterozoic hydrocarbon potential and its association with diapirism in Blinman #2, Central Flinders Ranges.: Honours thesis, University of Adelaide – National Centre Petroleum Geology and Geophysics.

    Google Scholar 

  • Crocker, I. T., 1979, Fluorite mineralisation in the dolomite of the Transvaal Supergroup, South Africa: Geological Society of South Africa, Special Publication, v. 6, p. 73–82.

    Google Scholar 

  • Crowley, S. F., S. H. Bottrell, M. D. B. McCarthy, J. Ward, and B. Young, 1997, Delta-S-34 of Lower Carboniferous anhydrite, Cumbria and its implications for barite mineralisation in Northern Pennines: Journal of the Geological Society, v. 154, p. 597–600.

    Google Scholar 

  • Cucchi, F., and L. Zini, 2003, Gypsum karst of Zagros Mountains (I.R. Iran): Acta Carsologica, v. XXXII, p. 69–82.

    Google Scholar 

  • Cunningham, K. I., and K. I. Takahashi, 1992, Evidence for petroleum-assisted speleogenesis, Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico: Barker, Charles E., Coury, Anny B. Abstracts of the U. S. Geological Survey, central region.

    Google Scholar 

  • Dahm, T., S. Heimann, and W. Bialowons, 2011, A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution: Natural Hazards, v. 58, p. 1111–1134.

    Google Scholar 

  • Dalgarno, C. R., and J. E. Johnson, 1966, Parachilna Sheet, South Australia.

    Google Scholar 

  • Dalgarno, C. R., and J. E. Johnson, 1968, Diapiric structures and late Precambrian-early Cambrian sedimentation in Flinders ranges, South Australia: American Association Petroleum Geologists, Memoir, v. 8, p. 301–314.

    Google Scholar 

  • Davies, P. B., 1984a, DeepSeated Dissolution and Subsidence in Bedded Salt Deposits: Doctoral thesis, Stanford University.

    Google Scholar 

  • Davies, P. B., 1984b, Structural analysis of a deep seated salt dissolution collapse chimney; implications for nuclear waste disposal: Neues Jahrbuch fuer Mineralogie, Abhandlungen, v. 149, p. 163–175.

    Google Scholar 

  • Davis, D. G., 1980, Cave development in the Guadalupe Mountains. A critical review of recent hypotheses: Natl. Speleol. Soc. Bull., v. 42, p. 42–48.

    Google Scholar 

  • Davis, D. M., and T. Engelder, 1985, The role of salt in fold and thrust belts: Tectonophysics, v. 19, p. 67–88.

    Google Scholar 

  • De Brodtkorb, M. K., V. Ramos, M. Barbieri, and S. Ametrano, 1982, The evaporitic celestite-barite deposits of Neuquen, Argentina: Mineralium Deposita, v. 17, p. 423–436.

    Google Scholar 

  • De Meer, S., and C. J. Spiers, 1999, Influence of pore-fluid salinity on pressure solution creep in gypsum: Tectonophysics, v. 308, p. 311–330.

    Google Scholar 

  • Dean, W. E., 1978, Trace and minor elements in evaporites, in W. Dean, and B. C. Schreiber, eds., Marine evaporites, Society of Economic Paleontologists and Mineralogists, Short course notes, v. 4,, p. 86–104.

    Google Scholar 

  • DeMille, G., J. R. Shouldice, and H. W. Nelson, 1964, Collapse structures related to evaporites of the Prairie Formation, Saskatchewan: Geological Society America Bulletin, v. 75, p. 307–316.

    Google Scholar 

  • Dickerson, R., R. Rupp, and J. Ford, 2014, Triassic Stratigraphy and Syndepositional Basin Development in the Central Panhandle, Carson County, Texas: The Mountain Geologist, v. 51, p. 223–240.

    Google Scholar 

  • Diehl, S. F., A. H. Hofstra, A. E. Koenig, P. Emsbo, W. Christiansen, and C. Johnson, 2010, Hydrothermal Zebra Dolomite in the Great Basin, Nevada – Attributes and Relation to Paleozoic Stratigraphy, Tectonics, and Ore Deposits: Geosphere, v. 6, p. 663–690.

    Google Scholar 

  • Dill, H. G., R. Botz, Z. Berner, D. Stüben, S. Nasir, and H. Al-Saad, 2005, Sedimentary facies, mineralogy, and geochemistry of the sulphate-bearing Miocene Dam Formation in Qatar: Sedimentary Geology, v. 174, p. 63–96.

    Google Scholar 

  • Dill, H. G., F. Henjes-Kunst, Z. Berner, and D. Stüben, 2009, Miocene diagenetic and epigenetic strontium mineralization in calcareous series from Cyprus and the Arabian Gulf: Metallogenic perspective on sub- and suprasalt redox-controlled base metal deposits: Journal of Asian Earth Sciences, v. 34, p. 557–576.

    Google Scholar 

  • Dill, H. G., N. Nolte, and B. T. Hansen, 2014, Lithology, mineralogy and geochemical characterizations of sediment-hosted Sr–F deposits in the eastern Neo-Tethyan region – With special reference to evaporation and halokinesis in Tunisia: Journal of African Earth Sciences, v. 92, p. 76–96.

    Google Scholar 

  • Doelling, H. H., 2001, Geologic map of the Moab and eastern part of the San Rafael Desert 30’ x 60’ quadrangles, Grand and Emery Counties, Utah, and Mesa County, Colorado: Utah Geological Survey Map 180.

    Google Scholar 

  • Dogan, U., and S. Ozel, 2005, Gypsum karst and its evolution east of Hafik (Sivas, Turkey): Geomorphology, v. 71, p. 373–388.

    Google Scholar 

  • Doran, H., R. S. Haszeldine, C. Taberner, and A. E. Fallick, 2004, Fluid Migration around the Machar Salt Diapir UK Central North Sea: Impact on Porosity and Permeability of a Fractured Carbonate Reservoir (abs) presented at American Association of Petroleum Geologists Annual Meeting, Dallas, Texas, April 18–21, 2004: Bulletin American Association Petroleum Geologists, v. 88 (13).

    Google Scholar 

  • Douglas, S., 2005, Mineralogical footprints of microbial life: American Journal of Science, v. 305, p. 503–525.

    Google Scholar 

  • Douglas, S., and H. X. Yang, 2002, Mineral biosignatures in evaporites: Presence of rosickyite in an endoevaporitic microbial community from Death Valley, California: Geology, v. 30, p. 1075–1078.

    Google Scholar 

  • Driscoll, R., 1983, The influence of vegetation on the swelling and shrinking of clay soils in Britain: Geotechnique, v. 33, p. 93–105.

    Google Scholar 

  • Dronkert, H., 1985, Evaporite models and sedimentology of Messinian and Recent evaporites: GUA Papers of Geology, Series 1, v. 24, p. 283 pp.

    Google Scholar 

  • Duggan, J. P., E. W. Mountjoy, and L. D. Stasiuk, 2001, Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada: Sedimentology, v. 48, p. 301–323.

    Google Scholar 

  • Duguid, C., and J. R. Underhill, 2010, Geological controls on Upper Permian Plattendolomit Formation reservoir prospectivity, Wissey Field, UK Southern North Sea: Petroleum Geoscience, v. 16, p. 331–348.

    Google Scholar 

  • Dworkin, S. I., and L. S. Land, 1994, Petrographic and geochemical constraints on the formation and diagenesis of anhydrite cements, Smackover sandstones, Gulf of Mexico: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 64, p. 339–348.

    Google Scholar 

  • Dworkin, S. I., and L. S. Land, 1994, Petrographic and geochemical constraints on the formation and diagenesis of anhydrite cements, Smackover sandstones, Gulf of Mexico: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 64, p. 339–348.

    Google Scholar 

  • Dyson, I. A., 1998, The Christmas tree diapir and salt glacier at Pinda Springs, central Flinders Ranges: MESA Journal, v. 10.

    Google Scholar 

  • Dyson, I. A., 1999, The Beltana Diapir — a salt withdrawal minibasin in the northern Flinders Ranges: MESA Journal, v. 15, p. 40–46.

    Google Scholar 

  • Dyson, I. A., 2004, Christmas tree diapirs and the development of hydrocarbon reservoirs; A model from the Adelaide Geosyncline, South Australia: In: Salt-sediment interactions and hydrocarbon prospectivity: concepts, applications and case studies for the 21st Century. Papers presented at the 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference, Houston Tx, December 5–8, 2004 (CD publication), p. 79–96.

    Google Scholar 

  • Edmunds, W. M., and P. Smedley, 2013, Fluoride in Natural Waters, in O. Selinus, ed., Essentials of Medical Geology, Springer Netherlands, p. 311–336.

    Google Scholar 

  • Egemeier, S. J., 1981, Cavern development by thermal waters: National Spelological Society Bulletin, v. 43, p. 31–51.

    Google Scholar 

  • Ehrenberg, S. N., P. H. Nadeau, and A. A. M. Aqrawi, 2007, A comparison of Khuff and Arab reservoir potential throughout the Middle East: Bulletin American Association Petroleum Geologists, v. 91, p. 275–286.

    Google Scholar 

  • El Desouky, H. A., P. Muchez, and J. Cailteux, 2009, Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo: Ore Geology Reviews, v. 36, p. 315–332.

    Google Scholar 

  • El Tabakh, M., A. Mory, B. C. Schreiber, and R. Yasin, 2004, Anhydrite cements after dolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, Southern Carnarvon Basin, Western Australia: Sedimentary Geology, v. 164, p. 75–87.

    Google Scholar 

  • El Tabakh, M., B. C. Schreiber, C. Uthaaroon, L. Coshell, and J. K. Warren, 1998a, Diagenetic origin of Basal Anhydrite in the Cretaceous Maha Sarakham Salt – Khorat Plateau, NE Thailand: Sedimentology, v. 45, p. 579–594.

    Google Scholar 

  • El Tabakh, M., C. Utha-Aroon, J. K. Warren, and B. C. Schreiber, 2003, Origin of dolomites in the Cretaceous Maha Sarakham evaporites of the Khorat Plateau, northeast Thailand: Sedimentary Geology, v. 157, p. 235–252.

    Google Scholar 

  • Eliassen, A., and M. R. Talbot, 2005, Solution-collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system: Sedimentology, v. 52, p. 775–794.

    Google Scholar 

  • Elliott, L. A., and J. K. Warren, 1989, Stratigraphy and depositional environment of lower San Andres Formation in subsurface and equivalent outcrops; Chaves, Lincoln, and Roosevelt counties, New Mexico: Bulletin American Association of Petroleum Geologists, v. 73, p. 1307–1325.

    Google Scholar 

  • Ellis, P. M., 1985, Diagenesis of the Lower Cretaceous Edwards Group in the Balcones Fault Zone Area, South-Central Texas: Doctoral thesis, University of Texas – Austin, 652 p.

    Google Scholar 

  • Ellis, P. M., 1986, Post-Miocene carbonate diagenesis of the Lower Cretaceous Edwards Group in the Balcones fault zone area, south-central Texa, in P. L. Abbott, and C. M. Woodruff, eds., The Balcones escarpment, geology, hydrology, ecology and social development in central Texas, Geological Society of America, p. 101–114.

    Google Scholar 

  • Elorza, M. G., and F. G. Santolalla, 1998, Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain): Geoderma, v. 87, p. 1–29.

    Google Scholar 

  • Engel, A. S., M. L. Porter, B. K. Kinkle, and T. C. Kane, 2001, Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia: Geomicrobiology Journal, v. 18, p. 259–274.

    Google Scholar 

  • English, P. M., 2001, Formation of analcime and moganite at Lake Lewis, central Australia: significance of groundwater evolution in diagenesis: Sedimentary Geology, v. 143, p. 219–244.

    Google Scholar 

  • Epstein, J. B., 2001, Hydrology, Hazards, and Geomorphic Development of Gypsum Karst in the Northern Black Hills, South Dakota and Wyoming, in E. L. Kuniansky, ed., U.S. Geological Survey Karst Interest Group Proceedings, St. Petersburg, Florida February 13–16, 2001: Denver, Co, U.S. Geological Survey, Water-Resources Investigations Report 01–4011, p. 30–37.

    Google Scholar 

  • Eriksson, K. A., E. L. Simpson, S. Master, and G. Henry, 2005, Neoarchaean (c.2.58 Ga) halite casts: implications for palaeoceanic chemistry: Journal of the Geological Society, v. 162, p. 789–799.

    Google Scholar 

  • Eugster, H. P., 1967, Hydrous sodium silicate from Lake Magadi, Kenya: precursors of bedded chert: Science, v. 157, p. 1177–1180.

    Google Scholar 

  • Eugster, H. P., 1969, Inorganic bedded cherts from the Magadi area, Kenya: Contributions Mineralogy and Petrology, v. 22, p. 1–31.

    Google Scholar 

  • Ezersky, M., and A. Frumkin, 2013, Fault – Dissolution front relations and the Dead Sea sinkhole problem: Geomorphology, v. 201, p. 35–44.

    Google Scholar 

  • Faure, G., and R. P. Felder, 1981, Isotopic composition of strontium and sulfur in secondary gypsum crystals, Brown Hills, Transantarctic Mountains: Journal of Geochemical Exploration, v. 14, p. 265–270.

    Google Scholar 

  • Fay, R. O., and D. L. J. Hart, 1978, Geology and mineral resources (exclusive of petroleum) of Custer County, Oklahoma: Bull. Okla. Geol. Surv, v. 114.

    Google Scholar 

  • Feng, D., and H. H. Roberts, 2010, Massive barite deposits on the northern Gulf of Mexico continental slope: Precipitation processes: Gulf Coast Association of Geological Societies Transactions, v. 60, p. 261–270.

    Google Scholar 

  • Ferrarase, F., T. Macaluso, G. Madonia, P. A., and U. Sauro, 2002, Solution and recrystallisation processes and associated landforms in gypsum outcrops of Sicily: Geomorphology, v. 49, p. 25–453.

    Google Scholar 

  • Filippi, M., J. Bruthans, L. Palatinus, M. Zare, and N. Asadi, 2011, Secondary halite deposits in the Iranian salt karst: general description and origin: International Journal of Speleology, v. 40, p. 141–162.

    Google Scholar 

  • Finkelstein, D. B., R. L. Hay, and S. P. Altaner, 1999, Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado: Geological Society of America Bulletin, v. 111, p. 1175–1191.

    Google Scholar 

  • Folk, R. L., and J. S. Pittman, 1971, Length-slow chalcedony; a new testament for vanished evaporites: Journal Sedimentary Petrology, v. 41, p. 1045–1058.

    Google Scholar 

  • Folk, R. L., and A. Siedlecka, 1974, The “schizohaline” environment: its sedimentary and diagenetic fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard: Sedimentary Geology, v. 11, p. 1–15.

    Google Scholar 

  • Ford, D., and P. Williams, 1989, Karst geomorphology and geology: London, Chapman and Hall.

    Google Scholar 

  • Ford, D., and P. D. Williams, 2007, Karst hydrology and Geomorphology: New York, John Wiley and Sons, Ltd, 562 p.

    Google Scholar 

  • Ford, D. C., 1997, Principal features of evaporite karst in Canada: Carbonates & Evaporites, v. 12, p. 15–23.

    Google Scholar 

  • Fort, R., and M. Bustillo, 1986, Estudio geológico de los yesos miocenos de la zona este de la cuenca de Madrid: Est. Geol. Sect, v. 42, p. 387–395.

    Google Scholar 

  • Forti, P., S. Galdenzi, and S. M. Sarbu, 2002, The hypogenic caves: a powerful tool for the study of seeps and their environmental effects: Continental Shelf Research, v. 22, p. 2373–2386.

    Google Scholar 

  • Fossen, H., 2010, Structural Geology, Cambridge University Press, 463 p.

    Google Scholar 

  • Frazier, W. J., 1975, Celestite in the Mississippian Pennington Formation, central Tennessee: Southeast. Geol., v. 16, p. 241–248.

    Google Scholar 

  • Frimmel, H. E., and W. Papesch, 1990, Sr, O and C isotope study of the Brixlegg barite deposit, Tyrol (Austria): Economic Geology, v. 85, p. 1162–1171.

    Google Scholar 

  • Frumkin, A., 1994a, Hydrology and denudation rates of halite karst: Journal of Hydrology, v. 162.

    Google Scholar 

  • Frumkin, A., 1994b, Morphology and development of salt caves: National Speleological Society, Bulletin, v. 56, p. 82–95.

    Google Scholar 

  • Frumkin, A., 1996, Determining the exposure age of a karst landscape: Quaternary Research, v. 46, p. 99–106.

    Google Scholar 

  • Frumkin, A., 1998, Salt cave cross-sections and their paleoenvironmental implications: Geomorphology, v. 23, p. 183–191.

    Google Scholar 

  • Frumkin, A., 2000, Speleogenesis in salt – the mount Sedom area, Israel, in A. V. Klimchouk, D. C. Ford, A. N. Palmer, and W. Dreybrodt, eds., Speleogenesis; Evolution of Karst Aquifers, Speleological Society of America, Huntsville, AL, p. 443–451.

    Google Scholar 

  • Frumkin, A., and Y. Elitzur, 2002, Historic Dead Sea Level Fluctuations Calibrated with Geological and Archaeological Evidence: Quaternary Research, v. 57, p. 334–342.

    Google Scholar 

  • Frumkin, A., M. Ezersky, A. Al-Zoubi, E. Akkawi, and A.-R. Abueladas, 2011, The Dead Sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse: Geomorphology, v. 134, p. 102–117.

    Google Scholar 

  • Frumkin, A., and D. C. Ford, 1995, Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel: Earth Surface Processes & Landforms, v. 20, p. 139–152.

    Google Scholar 

  • Frumkin, A., and D. C. Ford, 1995, Rapid entrenchment of stream profiles in the salt caves of Mount Sedom, Israel: Earth Surface Processes & Landforms, v. 20, p. 139–152.

    Google Scholar 

  • Fu, B., P. Aharon, G. R. Byerly, and H. H. Roberts, 1994, Barite chimneys on the Gulf of Mexico slope. Initial reports on their petrography and geochemistry: Geo-Marine Letters, v. 14, p. 81–87.

    Google Scholar 

  • Fu, Q. L., H. R. Qing, K. M. Bergman, and C. Yang, 2008, Dedolomitization and calcite cementation in the Middle Devonian Winnipegosis Formation in Central Saskatchewan, Canada: Sedimentology, v. 55, p. 1623–1642.

    Google Scholar 

  • Fudral, S., C. Yu Lu, and A. Paillet, 2010, Dykes and Pipes of Remobilized Cornieules within the Cornieule Evaporitic-Complex of the Mont Jovet Area (Northwestern French Alps): Geodinamica Acta, v. 23, p. 195–205.

    Google Scholar 

  • Galdenzi, S., 1990, Un modello genetico per la Grotta Grande del Vento: Mem. Ist. It. Speleol., v. II.

    Google Scholar 

  • Galdenzi, S., and T. Maruoka, 2003, Gypsum deposits in the Frasassi Caves, central Italy: Journal of Cave and Karst Studies, v. 65, p. 111–125.

    Google Scholar 

  • Galdenzi, S., and M. Menichetti, 1995, Occurrence of hypogenic caves in a karst region: Examples from central Italy: Environmental Geology, v. 26, p. 39–47.

    Google Scholar 

  • Galve, J. P., F. Gutierrez, P. Lucha, J. Bonachea, J. Remondo, A. Cendrero, M. Gutierrez, M. J. Gimeno, G. Pardo, and J. A. Sanchez, 2009, Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain) Geomorphological mapping and analysis as a basis for risk management: Geomorphology, v. 108, p. 145–158.

    Google Scholar 

  • Gandin, A., and D. T. Wright, 2007, Evidence of vanished evaporites in Neoarchaean carbonates of South Africa: Geological Society, London, Special Publications, v. 285, p. 285–308.

    Google Scholar 

  • Gao, G., and L. S. Land, 1991, Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study: Sedimentology, v. 38, p. 857–870.

    Google Scholar 

  • García-Del-Cura, M. Á., M. E. Sanz-Montero, M. A. De-los-Ríos, and C. Ascaso, 2013, Microbial dolomite in fresh water carbonate deposits: Sedimentology, p. n/a-n/a.

    Google Scholar 

  • Garcia-Guinea, J., S. Morales, A. Delgado, C. Recio, and J. M. Calaforra, 2002, Formation of gigantic gypsum crystals: Journal of the Geological Society, v. 159, p. 347–350.

    Google Scholar 

  • Garleff, K., H. Kugler, A. V. Poschinger, H. Sterr, H. Strunk, and G. Villwock, 1997, Germany, in C. Embleton, and C. Embleton, eds., Geomorphological hazards of Europe, Vol. 5. Developments in Earth Surface Processes, v. 5, p. 147–177.

    Google Scholar 

  • Gasiewicz, A., 2000, Comparative study of major element geochemistry of gypsum-ghost limestones and selenite lithofacies from the Miocene of northern Carpathian Foredeep: implication to the model of massive replacement of solid sulphates by calcium carbonates: Chemical Geology, v. 164, p. 183–218.

    Google Scholar 

  • Gaupp, R., A. Matter, J. Platt, K. Ramseyer, and J. Walzebuck, 1993, Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany: Bulletin-American Association of Petroleum Geologists, v. 77, p. 1111–1128.

    Google Scholar 

  • Gauthier, B. D. M., R. C. W. M. Franssen, and S. Drei, 2000, Fracture networks in Rotliegend gas reservoirs of the Dutch offshore: implications for reservoir behaviour: Geologie en Mijnbouw/Netherlands Journal of Geoscience, v. 79, p. 45–57.

    Google Scholar 

  • Geeslin, J. H., and H. S. Chafetz, 1982, Ordovician Aleman ribbon cherts; an example of silicification prior to carbonate lithification: Journal of Sedimentary Petrology, v. 52, p. 1283–1293.

    Google Scholar 

  • Geisler-Cussey, D., 1987, Middle Muschelkalk Evaporitic deposits in the eastern Paris Basin, in T. M. Peryt, ed., Lecture Notes in Earth Sciences, v. 13: Berlin; New York, Springer-Verlag, p. 89–121.

    Google Scholar 

  • Gendzwill, D., and J. Unrau, 1996, Ground control and seismicity at International Minerals and Chemical (Canada) Global Ltd: CIM Bulletin, v. 89, p. 52–61.

    Google Scholar 

  • Giles, K. A., and T. F. Lawton, 2002, Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico: Bulletin American Association Petroleum Geologists, v. 86, p. 823–840.

    Google Scholar 

  • Goede, A., T. C. Atkinson, and P. J. Rowe, 1992, A giant late Pleistocene halite speleothem from Webbs Cave, Nullarbor Plain, southeastern Western Australia: Helictite, v. 30, p. 3–7.

    Google Scholar 

  • Gómez-Alday, J. J., F. Garcia-Garmilla, and J. Elorza, 2002, Origin of quartz geodes from Lano and Tubilla del Agua sections (middle-upper Campanian, Basque-Cantabrian Basin, northern Spain): isotopic differences during diagenetic processes: Geological Journal, v. 37, p. 117–134.

    Google Scholar 

  • González-Partida, E., A. Carrillo-Chávez, J. O. W. Grimmer, J. Pironon, J. Mutterer, and G. Levresse, 2003, Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type processes: Ore Geology Reviews, v. 23, p. 107–124.

    Google Scholar 

  • González-Sánchez, F., A. Camprubí, E. González-Partida, R. Puente-Solís, C. Canet, E. Centeno-García, and V. Atudorei, 2009, Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb–Zn deposits in the MVT province of northeastern Mexico: Mineralium Deposita, v. 44, p. 343–361.

    Google Scholar 

  • Gorbunova, K. A., 1979, Morphology and hydrogeology of gypsum karst (in Russian): Univ. Perm. All Union Karst and Speology Inst., p. 222–223.

    Google Scholar 

  • Gott, G. B., D. F. Wolcott, and C. G. Bowles, 1974, Stratigraphy of the Inyan Kara Group and localisation of Uranium deposits, Southern Black Hills, South Dakota and Wyoming: US Geol Surv. Prof. Paper, v. 763, p. 1–57.

    Google Scholar 

  • Götzinger, M. A., and W. Grum, 1992, Die Pb-Zn-F Mineralisationen in der Umgebung von Evaporiten der Nördlichen Kalkalpen Österreich – Herkunft und Zusammensetzung der fluiden Phase: Mitt. Ges. Geol. Bergbaustud Österr (Vienna), v. 38, p. 47–56.

    Google Scholar 

  • Gregory, G., C. Killey, and S. Stewart, 2002, Dahl Hit, Saudi Arabia, Cave Survey map; Last accessed on September 15, 2005, http://www.saudicaves.com/ainhit/17ain.jpg.

  • Griffith, E. M., and A. Paytan, 2012, Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications: Sedimentology, v. 59, p. 1817–1835.

    Google Scholar 

  • Groves, I. M., C. E. Carman, and W. J. Dunlap, 2003, Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia: Economic Geology, v. 98, p. 797–818.

    Google Scholar 

  • Guerrero, J., F. Gutiérrez, and J. P. Galve, 2013, Large depressions, thickened terraces, and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): Evidence of glauberite and halite interstratal karstification: Geomorphology, v. 196, p. 162–176.

    Google Scholar 

  • Guilhaumou, N., N. Ellouz, T. M. Jaswal, and P. Mougin, 2000, Genesis and evolution of hydrocarbons entrapped in the fluorite deposit of Koh-i-Maran, (North Kirthar Range, Pakistan): Marine and Petroleum Geology, v. 17, p. 1151–1164.

    Google Scholar 

  • Gustavson, T. C., S. D. Hovorka, and A. R. Dutton, 1994, Origin of satin spar veins in evaporite basins: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 64, p. 88–94.

    Google Scholar 

  • Gustavson, T. C., W. W. Simpkins, A. Alhades, and A. D. Hoadley, 1982, Evaporite dissolution and development of karst features on the Rolling Plains of the Texas Panhandle: Earth Surface Processes and Landforms, v. 7, p. 545–563.

    Google Scholar 

  • Gutierrez, F., 2010, Hazards associated to karst (Chapter 13), in I. Alcántara-Ayala, and A. S. Goudie, eds., Geomorphological Hazards and Disaster Prevention, Cambridge University Press, p. 161–176.

    Google Scholar 

  • Gutiérrez, F., 1996, Gypsum karstification induced subsidence – effects on alluvial systems and derived geohazards (Calatayud Graben, Iberian Range, Spain): Geomorphology, v. 16, p. 277–293.

    Google Scholar 

  • Gutiérrez, F., 2004, Origin of the salt valleys in the Canyonlands section of the Colorado Plateau; Evaporite -dissolution collapse versus tectonic subsidence: Geomorphology, v. 57, p. 423–435.

    Google Scholar 

  • Gutiérrez, F., J. Calaforra, F. Cardona, F. Ortí, J. Durán, and P. Garay, 2008, Geological and environmental implications of the evaporite karst in Spain: Environmental Geology, v. 53, p. 951–965.

    Google Scholar 

  • Gutierrez, F., D. Carbonel, J. Guerrero, J. P. McCalpin, R. Linares, C. Roque, and M. Zarroca, 2012, Late Holocene episodic displacement on fault scarps related to interstratal dissolution of evaporites (Teruel Neogene Graben, NE Spain): Journal of Structural Geology, v. 34, p. 2–19.

    Google Scholar 

  • Gutiérrez, F., and A. H. Cooper, 2002, Evaporite dissolution subsidence in the historical city of Catalayud, Spain: Damage appraisal and prevention: Natural Hazards, v. 25, p. 259–288.

    Google Scholar 

  • Haeri-Ardakani, O., I. Al-Aasm, and M. Coniglio, 2013, Fracture mineralization and fluid flow evolution: an example from Ordovician–Devonian carbonates, southwestern Ontario, Canada: Geofluids, v. 13, p. 1–20.

    Google Scholar 

  • Haeri-Ardakani, O., I. Al-Aasm, and M. Coniglio, 2013, Fracture mineralization and fluid flow evolution: an example from Ordovician–Devonian carbonates, southwestern Ontario, Canada: Geofluids, v. 13, p. 1–20.

    Google Scholar 

  • Hanor, J. S., 2004, A model for the origin of large carbonate and evaporite hosted celestine (SrSO4) deposits: Journal Sedimentary Research, v. 74, p. 168–175.

    Google Scholar 

  • Hao, F., S. T. Li, Y. C. Sun, and Q. M. Zhang, 1998a, Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdonggan Basin, South China Sea: American Association of Petroleum Geologists Bulletin, v. 82, p. 1372–1384.

    Google Scholar 

  • Hardie, L. A., and H. P. Eugster, 1970, The evolution of closed-basin brines: Spec Pub. Mineral. Soc. Am., v. 3, p. 273–290.

    Google Scholar 

  • Harmon, R. S., T. C. Atkinson, and J. L. Atkinson, 1983, The mineralogy of Castleguard Cave, Columbia Icefields, Alberta, Canada: Arctic and Alpine Research, v. 15, p. 503–516.

    Google Scholar 

  • Harwood, G. M., 1980, Calcitized anhydrite and associated sulphides in the English Zechstein First Cycle Carbonate (EZ1 Ca), in H. Fuechtbauer, Peryt, T. M., ed., The Zechstein Basin, with emphasis on carbonate sequences., E. Schweizerbart’sche VbH: Contributions to Sedimentology, v. 9, p. 61–72.

    Google Scholar 

  • Hay, R. L., 1968, Chert and its sodium-silicate precursors in sodium-carbonate lakes of east Africa: Contributions to Mineralogy and Petrology, v. 17, p. 255–274.

    Google Scholar 

  • Hedlund, F. H., 2012, The extreme carbon dioxide outburst at the Menzengraben potash mine, 7 July 1953: Safety Science, v. 50, p. 537–553.

    Google Scholar 

  • Henchiri, M., and N. Slim-S’Himi, 2006, Silicification of sulphate evaporites and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenetic trends: Sedimentology, v. 53, p. 1135–1159.

    Google Scholar 

  • Heward, A. P., S. Chuenbunchom, G. Makel, D. Marsland, and L. Spring, 2000, Nang Nuan oil field, B6/27, Gulf of Thailand: karst reservoirs of meteoric or deep-burial origin?: Petroleum Geoscience, v. 6, p. 15–27.

    Google Scholar 

  • Heydari, E., 1997, The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi: American Association of Petroleum Geologists – Bulletin, v. 81, p. 26–45.

    Google Scholar 

  • Heydari, E., 2000, Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi: Bulletin American Association of Petroleum Geologists, v. 84, p. 100–118.

    Google Scholar 

  • Heydari, E., and L. Baria, 2006, A Microbial Smackover Formation and the Dual Reservoir–Seal System at the Little Cedar Creek Field in Conecuh County of Alabama: Transactions – Gulf Coast Association of Geological Societies, v. 55, p. 294–320.

    Google Scholar 

  • Heydari, L. E., and C. H. Moore, 1989, Burial diagenesis and thermochemical sulfate reduction, Smackover Formation, Southeast Mississippi salt basin: Geology, v. 17, p. 1080–1084.

    Google Scholar 

  • Higgs, R., 2009, The vanishing Carib Halite Formation (Neocomian), Colombia-Venezuela-Trinidad prolific petroleum province: Geological Society, London, Special Publications, v. 328, p. 659–686.

    Google Scholar 

  • Hill, C. A., 1990, Sulphuric acid speleogenesis of Carlsbad Caverns and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas: American Association of Petroleum Geologists Bulletin, v. 74, p. 1685–1694.

    Google Scholar 

  • Hill, C. A., 1995, H2S-related porosity and sulfuric acid oilfield karst, in D. A. Budd, A. H. Saller, and P. M. Harris, eds., Unconformities and porosity in carbonate strata, American Association Petroleum Geologists Memoir 63, p. 301–306.

    Google Scholar 

  • Hill, C. A., 2000, Overview of the geologic history of cave development in the Guadalupe Mountains, New Mexico: Journal of Cave and Karst Studies, v. 62, p. 60–71.

    Google Scholar 

  • Hill, C. A., 2003, Intrastratal karst at the Waste Isolation Pilot Plant site, southeastern New Mexico: Oklahoma Geological Survey Circular 109, p. 197–209.

    Google Scholar 

  • Hill, C. A., and P. Forti, 1997, Cave Minerals of the World, 2nd edn: Huntsville, AL, National Speleological Society of America, 463 p.

    Google Scholar 

  • Hodge, B. L., 1986, Occurrence and exploitation of fluorite, in R. W. Nesbitt, and I. Nichol, eds., Geology in the real world – the Kingsley Dunham volume: London, Inst. Mining Metallurgy, p. p. 165.

    Google Scholar 

  • Holt, R. M., and D. W. Powers, 2010, Evaluation of halite dissolution at a radioactive waste disposal site, Andrews County, Texas: Geological Society of America Bulletin, v. 122, p. 1989–2004.

    Google Scholar 

  • Hose, L. D., A. N. Palmer, M. V. Palmer, D. E. Northup, P. J. Boston, and H. R. DuChene, 2000, Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment: Chemical Geology, v. 169, p. 399–423.

    Google Scholar 

  • Hovorka, S. D., 2000, Understanding the processes of salt dissolution and subsidence: Solution Mining Research Institute Proceedings, p. 11–24 (PDF file); see also http://www.beg. utexas.edu/environqlty/salt/index.htm.

  • Hryniv, S., and T. M. Peryt, 2010, Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydrites of West Poland: Chemie der Erde – Geochemistry, v. 70, p. 137–147.

    Google Scholar 

  • Hryniv, S. P., and T. M. Peryt, 2003, Sulfate cavity filling in the Lower Werra Anhydrite (Zechstein, Permian), Zdrada area, northern Poland: Evidence for early diagenetic evaporite paleokarst formed under sedimentary cover: Journal Of Sedimentary Research, v. 73, p. 451–461.

    Google Scholar 

  • Hurford, A. J., H. R. Grunau, and J. Stöcklin, 1984, Fission track dating of an apatite crystal from Hormoz Island, Iran: Journal of Petroleum Geology, v. 7, p. 365–380.

    Google Scholar 

  • Henchiri, M., and N. Slim-S’Himi, 2006, Silicification of sulphate evaporites and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenetic trends: Sedimentology, v. 53, p. 1135–1159.

    Google Scholar 

  • Icole, M., J.-P. Masse, G. Perinet, and M. Taieb, 1990, Pleistocene lacustrine stromatolites, composed of calcium carbonate, fluorite, and dolomite, from Lake Natron, Tanzania; depositional and diagenetic processes and their paleoenvironmental significance: Sedimentary Geology, v. 69, p. 139–155.

    Google Scholar 

  • Iovine, G., M. Parise, and A. Trocino, 2010, Instability phenomena in the evaporite karst of Calabria, Southern Italy: Zeitschrift für Geomorphologie, v. 54, p. 153–178.

    Google Scholar 

  • Jackson, M. P. A., O. N. Warin, G. M. Woad, and M. R. Hudec, 2003, Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan Copperbelt, central Africa: Geological Society of America Bulletin, v. 115, p. 314–330.

    Google Scholar 

  • Jadoon, I. A. K., and W. Frisch, 1997, Hinterland-vergent tectonic wedge below the Riwat thrust, Himalayan foreland, Pakistan: implications for hydrocarbon exploration: American Association Petroleum Geologists – Bulletin, v. 81, p. 438–448.

    Google Scholar 

  • Jagnow, D. H., C. A. Hill, D. G. Davis, H. R. DuChene, K. I. Cunningham, D. E. Northup, and J. M. Queen, 2000, History of sulfuric acid theory of speleogenesis in the Guadalupe Mountains, New Mexico: Journal of Cave and Karst Studies, v. 62, p. 54–59.

    Google Scholar 

  • James, N. P., G. M. Narbonne, R. W. Dalrymple, and T. K. Kyser, 2005, Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates Geology, v. 33, p. 9–12.

    Google Scholar 

  • Jassim, S. Z., A. S. Jibril, and N. M. S. Numan, 1997, Gypsum karstification in the Middle Miocene Fatha Formation, Mosul area, Northern Iraq: Geomorphology, v. 18, p. 137–149.

    Google Scholar 

  • Jeanbourquin, P., 1988, Nouvelles observations sur les cornieules en Suisse occidentale: Eclogae Geologicae Helvetiae, v. 81, p. 511–538.

    Google Scholar 

  • Jeanbourquin, P., 1994, Early deformation of Ultrahelvetic mélanges in the Helvetic nappes (Western Swiss Alps): Journal of Structural Geology, v. 16, p. 1367–1383.

    Google Scholar 

  • Jennings, J. N., 1985, Karst Geomorphology: London, Blackwell, 293 p.

    Google Scholar 

  • Johnson, C. A., P. Emsbo, F. G. Poole, and R. O. Rye, 2009, Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits: Geochimica et Cosmochimica Acta, v. 73, p. 133–147.

    Google Scholar 

  • Johnson, K., 2008a, Evaporite-karst problems and studies in the USA: Environmental Geology, v. 53, p. 937–943.

    Google Scholar 

  • Johnson, K., 2008b, Gypsum-karst problems in constructing dams in the USA: Environmental Geology, v. 53, p. 945–950.

    Google Scholar 

  • Johnson, K. J., 1996, Gypsum karst in the United States: Inter-national Journal of Speleology, v. 25, p. 183–193.

    Google Scholar 

  • Johnson, K. S., 2005, Subsidence hazards due to evaporite dissolution in the United States: Environmental Geology, v. 48, p. 395–409.

    Google Scholar 

  • Jones, B. F., H. P. Eugster, and S. L. Rettig, 1977, Hydrogeochemistry of the Lake Magadi Basin, Kenya: Geochimica Cosmochimica Acta, v. 41, p. 53–72.

    Google Scholar 

  • Jones, B. F., S. L. Rettig, and H. P. Eugster, 1967, Silica in alkaline brines: Science, v. 158, p. 1310–1314.

    Google Scholar 

  • Jones, C. J. F. P., and A. H. Cooper, 2005, Road construction over voids caused by active gypsum dissolution, with an example from Ripon, North Yorkshire, England: Environmental Geology, v. 48, p. 384–394.

    Google Scholar 

  • Jordan, P., T. Noack, and T. Widmer, 1990, The evaporite shear zone of the Jura Boundary Thrust; new evidence from Wisen Well (Switzerland): Eclogae Geologicae Helvetiae, v. 83, p. 525–542.

    Google Scholar 

  • Jordan, P., and R. Nuesch, 1989, Deformation structures in the Muschelkalk anhydrites of the Schafisheim Well (Jura Over-thrust, northern Switzerland): Eclogae Geologicae Helvetiae, v. 82, p. 429–454.

    Google Scholar 

  • Kacaroglu, F., M. Degirmenci, and O. Cerit, 1997, Karstification in Miocene gypsum – An example from Sivas, Turkey: Environmental Geology, v. 30, p. 88–97.

    Google Scholar 

  • Kamona, A. F., and G. H. Friedrich, 2007, Geology, mineralogy and stable isotope geochemistry of the Kabwe carbonate-hosted Pb-Zn deposit, Central Zambia: Ore Geology Reviews, v. 30, p. 217–243.

    Google Scholar 

  • Karacan, E., and I. Yilmaz, 1997, Collapse dolines in Miocene gypsum – An example from SW Sivas (Turkey): Environmental Geology, v. 29, p. 263–266.

    Google Scholar 

  • Karakitsios, V., and F. Pomonipapaioannou, 1998, Sedimentological study of the Triassic solution collapse breccias of the Ionian Zone (NW Greece): Carbonates & Evaporites, v. 13, p. 207–218.

    Google Scholar 

  • Kasprzyk, A., 1994, Distribution of strontium in the Badenian (Middle Miocene) gypsum deposits of the Nida area, southern Poland: Geological Quarterly (Poland), v. 38, p. 497–512.

    Google Scholar 

  • Kasprzyk, A., 2003, Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland: Sedimentary Geology, v. 158, p. 167–194.

    Google Scholar 

  • Kazakov, A. V., and E. I. Sokolova, 1950, Conditions of formation of fluorite in sedimentary rocks: Akad. Nauk SSSR Geologicheskiy Institut Trudy, v. 114, p. 22–64.

    Google Scholar 

  • Kelley, J. R., L. D. Wakeley, S. W. Broadfoot, M. L. Pearson, C. J. McGrath, T. E. McGill, J. D. Jorgeson, and C. A. Talbot, 2007, Geologic Setting of Mosul Dam and Its Engineering Implications: US Army Corps of Engineers; Engineer Research and Development Center Report ERDC TR-07-10.

    Google Scholar 

  • Kempe, S., 1972, Cave genesis in gypsum with particular reference to underwater conditions: Cave Science, v. 49, p. 1–6.

    Google Scholar 

  • Kendall, A. C., 2001, Late diagenetic calcitization of anhydrite from the Mississippian of Saskatchewan, western Canada: Sedimentology, v. 48, p. 29–55.

    Google Scholar 

  • Kendall, A. C., and K. L. Walters, 1978, The age of metasomatic anhydrite in Mississippian reservoir carbonates, southeastern Sasketchewan: Canadian Journal of Earth Sciences, v. 15, p. 424–430.

    Google Scholar 

  • Kendall, C. G. S. C., and J. K. Warren, 1987, A review of the origin and setting of tepees and their associated fabrics: Sedimentology, v. 34, p. 1007–1027.

    Google Scholar 

  • Kennedy, M., 1993, The Undoolya sequence – Late Proterozoic salt-influenced deposition, Amadeus Basin, central Australia: Australian Journal of Earth Sciences, v. 40, p. 217–228.

    Google Scholar 

  • Kent, P. E., 1970, The salt plugs of the Persian Gulf region: Trans. Leicester Lit. and Phil. Soc, v. 64, p. 56–88.

    Google Scholar 

  • Kent, P. E., 1979, The emergent Hormuz salt plugs of southern Iran: Journal of Petroleum Geology, v. 2, p. 117–144.

    Google Scholar 

  • Kent, P. E., 1987, Island salt plugs in the Middle East and their tectonic implications, in I. Lerche, and J. J. O’Brien, eds., Dynamical geology of salt and related structures, Academic Press, New York, p. 3–37.

    Google Scholar 

  • Kesler, S. E., and L. M. Jones, 1981, Sulfur- and strontium-isotopic geochemistry of celestite, barite and gypsum from the Mesozoic basins of northeastern Mexico: Chemical Geology, v. 31, p. 211–224.

    Google Scholar 

  • Kesler, S. E., J. Ruiz, and L. M. Jones, 1988, Strontium isotope geochemistry of the Galeana Barite District, Nuevo Leon, Mexico: Economic Geology, v. 83, p. 1907–1917.

    Google Scholar 

  • Khoriby, E. M., 2005, Origin of the gypsum-rich silica nodules, Moghra Formation, Northwest Qattara depression, Western Desert, Egypt: Sedimentary Geology, v. 177, p. 41–55.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1976, Origin of limestone buttes, Gypsum Plain, Culberson County, Texas: American Association of Petroleum Geologists, Bulletin, v. 60, p. 2005–2018.

    Google Scholar 

  • Kirkland, D. W., and R. Evans, 1980, Origin of castiles on the Gypsum Plain of Texas and New Mexico: Guidebook New Mexico Geological Society, v. 31, p. 173–178.

    Google Scholar 

  • Klimchouk, A., 2007, Hypogene Speleogenesis: Hydrological and morphogenetic perspective: Carlsbad, New Mexico, National Cave and Karst Research Institute.

    Google Scholar 

  • Klimchouk, A., 2012, Speleogenesis, Hypogenic, in W. B. White, and D. C. Culver, eds., Encyclopedia of Caves (Second Edition): Amsterdam, Academic Press, p. 748–765.

    Google Scholar 

  • Klimchouk, A. B., 1992, Large gypsum caves in the western Ukraine and their genesis: Cave Science, v. 19, p. 3–11.

    Google Scholar 

  • Klimchouk, A. B., 1996, Gypsum karst of the world: Journal of Speleology, v. 25.

    Google Scholar 

  • Klimchouk, A. B., 2000, Speleogenesis of great gypsum mazes in the Western Ukraine, in A. B. Klimchouk, D. Ford, A. N. Palmer, and W. Dreybrodt, eds., Speleogenesis: Evolution of karst aquifers: Huntsville, Natl. Speleol. Soc., p. 261–273.

    Google Scholar 

  • Klimchouk, A. B., 2003, Unconfined versus confined speleo-genetic settings: variations of solution porosity: Speleogenesis and Evolution of Karst Aquifers 1 (2), www.speleogenesis.info, 7 pages. (online journal).

  • Klimchouk, A. B., and S. D. Aksem, 2000, Gypsum karst in the western Ukraine, in G. Günay, K. S. Johnson, D. Ford , and A. I. Johnson, eds., Present State and Future Trends of Karst Studies, IHP-V, Technical Documents in Hydrology, 49(II), UNESCO, Paris, p. 67–80.

    Google Scholar 

  • Klimchouk, A. B., and V. N. Andrejchuk, 2003, Karst breakdown mechanisms from observations in the gypsum caves of the Western Ukraine: Implications for Subsidence Hazard Assessment, Speleogenesis and Evolution of Karst Aquifers, The Virtual Scientific Journal: www.speleogenesis.info.

  • Korotkov, A. N., 1974, Caves of the Pinego-Severodvinskaja karst (in Russain): Geog. Soc. USSR, Leningrad.

    Google Scholar 

  • Krainer, K., and C. Spotl, 1998, Abiogenic silica layers within a fluviolacustrine succession, Balzano volcanic complex, Northern Italy – A Permian analogue for Magadi-type cherts: Sedimentology, v. 45, p. 489–505.

    Google Scholar 

  • Krauskopf, K. B., 1967, Introduction to Geochemistry, Mc-Graw-Hill, 721 p.

    Google Scholar 

  • Kroeger, K. F., and W. Stinnesbeck, 2003, The Minas Viejas Formation (Oxfordian) in the Area of Galeana, Northeastern Mexico: Significance of Syndepositional Volcanism and Related Barite Genesis in the Sierra Madre Oriental: Chapter 23, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, American Association of Petroleum Geologists Memoir 79, p. 515–528.

    Google Scholar 

  • Kupfer, D., 1976, Shear zones inside Gulf Coast salt stocks help to delineate spines of movement: Bulletin American Association of Petroleum Geologists, v. 60, p. 1434–1447.

    Google Scholar 

  • Kushnir, J., 1982, The partitioning of seawater cations during the transformation of gypsum to anhydrite: Geochimica et Cosmochimica Acta, v. 46, p. 433–446.

    Google Scholar 

  • Lambert, S. J., 1983, Dissolution of Evaporites in and around the Delaware Basin, Southeastern New Mexico and West Texas: Sandia Nat’l. Labs. Report SAND82-0461, Albuquerque, NM, 96 pp.

    Google Scholar 

  • Lamont-Black, J., P. L. Younger, R. A. Forth, A. H. Cooper, and J. P. Bonniface, 2002, A decision-logic framework for investigating subsidence problems potentially attributable to gypsum karstification: Engineering Geology, v. 65, p. 205–215.

    Google Scholar 

  • Land, L., 2013, Geophysical records of anthropogenic sinkhole formation in the Delaware Basin region, Southeast New Mexico and West Texas, USA: Carbonates and Evaporites, v. 28, p. 183–190.

    Google Scholar 

  • Land, L. S., and D. R. Prezbindowski, 1981, The origin and evolution of saline formation water, Lower Cretaceous carbonates, South-central Texas, U.S.A.: Journal of Hydrology, v. 54, p. 51–74.

    Google Scholar 

  • Larsen, D., and L. J. Crossey, 1996, Depositional environments and paleolimnology of an ancient caldera lake – Oligocene Creede Formation, Colorado: Geological Society of America Bulletin, v. 108, p. 526–544.

    Google Scholar 

  • Last, W. M., 1993, Salt dissolution features in saline lakes of the northern Great Plains, western Canada: Geomorphology, v. 8, p. 321–334.

    Google Scholar 

  • Lavoie, D., D. F. Sangster, M. M. Savard, and F. Fallara, 1998, Breccias in the lower part of the Mississippian Windsor Group and their relation to Pb-Zn mineralisation: a summary: Economic Geology, v. 93, p. 734–735.

    Google Scholar 

  • Laznicka, P., 1988, Breccias and coarse fragmentites: petrology, environments, associations, ores: Developments in Economic Geology, v. 25: New York, Elsevier, 832 p.

    Google Scholar 

  • Lee, M. R., 1990, The sedimentology and diagenesis of the Raisby Formation (Z1 carbonate), northern England.: Masters thesis, University of Newcastle upon Tyne; Department of Geology.

    Google Scholar 

  • Lee, M. R., 1994, Emplacement and diagenesis of gypsum and anhydrite in the late Permian Raisby Formation, north-east England: Proceedings – Yorkshire Geological Society, v. 50, p. 143–155.

    Google Scholar 

  • Lee, M. R., 1995, Calcite concretions in carbonate rocks of the late Permian Raisby Formation, north-east England: Proceedings – Yorkshire Geological Society, v. 50, p. 245–253.

    Google Scholar 

  • Lee, M. R., and G. M. Harwood, 1989, Dolomite calcitization and cement zonation related to uplift of the Raisby Formation (Zechstein carbonate), Northeast England: Sedimentary Geology, v. 65, p. 285–305.

    Google Scholar 

  • Leitner, C., F. Neubauer, J. L. Urai, and J. Schoenherr, 2011, Structure and evolution of a rocksalt-mudrock-tectonite: The haselgebirge in the Northern Calcareous Alps: Journal of Structural Geology, v. 33, p. 970–984.

    Google Scholar 

  • Lemon, N. M., 1985, Physical Modelling of Sedimentation Adjacent to Diapirs and Comparison with Late Precambrian Oratunga Breccia Body in Central Flinders Ranges, South Australia: American Association Petroleum Geologists Bulletin, v. 69, p. 1327–1328.

    Google Scholar 

  • Lemon, N. M., 1988, Diapir recognition and modelling with examples from the Late Proterozoic Adelaide Geosyncline, Central Flinders Ranges, South Australia: Doctoral thesis, Univesity of Adelaide.

    Google Scholar 

  • Lemon, N. M., 2000, A Neoproterozoic fringing stromatolite reef complex, Flinders Ranges, South Australia: Precambrian Research, v. 100, p. 109–120.

    Google Scholar 

  • Leslie, A. B., G. M. Harwood, and A. C. Kendall, 1997, Geochemical variations within a laminated evaporite deposit: Evidence for brine composition during formation of the Permian Castile Formation, Texas and New Mexico, USA: Sedimentary Geology, v. 110, p. 223–235.

    Google Scholar 

  • Lindsay, J. F., 1987, Upper Proterozoic evaporites in the Amadeus Basin, central Australia, and their role in basin tectonics: Geological Society of America Bulletin, v. 99, p. 852–865.

    Google Scholar 

  • Lock, B. E., 2000, Geologic Mapping of Salt Mines in Salt Diapirs: Approaches and Examples from South Louisiana: Gulf Coast Association of Geological Societies Transactions, v. 50, p. 567–582.

    Google Scholar 

  • Lock, B. E., and D. H. Kupfer, 2003, Salt Mines of South Louisiana, A field seminar for the GCAGS 2003 Convention: Louisiana Geological Survey; Guidebook Series no. 7, Louisiana State University, Baton Rouge. 85 p.

    Google Scholar 

  • Lorentz, J. C., 2006, Assessment of the geological evidence for karst in the Rustler Formation at the WIPP Site, in L. Land, V. Lueth, B. Raatz, P. Boston, and D. Love, eds., Caves and Karst of Southeastern New Mexico, New Mexico Geological Society, Guidebook 57, p. 243–252.

    Google Scholar 

  • Lowry, D. C., 1967, Halite speleothems from the Nullarbor Plain, Western Australia: Helicite, v. 6, p. 14–20.

    Google Scholar 

  • Lu, F. H., and W. J. Meyers, 2003, Sr, S, and OSO4 Isotopes and the Depositional Environments of the Upper Miocene Evaporites, Spain: Journal of Sedimentary Research, v. 73, p. 444–450.

    Google Scholar 

  • Lu, F. H., W. J. Meyers, and G. N. Hanson, 2002, Trace elements and environmental significance of Messinian gypsum deposits, the Nijar Basin, southeastern Spain: Chemical Geology, v. 192, p. 149–161.

    Google Scholar 

  • Lu, F. H., W. J. Meyers, and M. A. Schoonen, 2001, S and OSO4 isotopes, simultaneous modeling, and environmental significance of the Nijar messinian gypsum, Spain: Geochimica et Cosmochimica Acta, v. 65, p. 3081–3092.

    Google Scholar 

  • Lu, Y., and A. H. Cooper, 1997, Gypsum karst geohazards in China, in B. F. Beck, and J. B. Stephenson, eds., Engineering Geology and hydrogeology of Karst Terrains: Proceedings of the Sixth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst Springfield, Missouri, 6-9 April 1997, Balkema, Rotterdam, p. 117–126.

    Google Scholar 

  • Lucia, F. J., 1961, Dedolomitization in the Tansill (Permian) formation: Geol. Soc. America Bull., v. 72, p. 1107–1109.

    Google Scholar 

  • Luczaj, J. A., and R. H. Goldstein, 2000, Diagenesis of the lower Permian Krider member, southwest Kansas, USA: Fluid-inclusion, U-Pb, and fission-track evidence for reflux dolomitization during latest Permian time: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 762–773.

    Google Scholar 

  • Luebking, G. A., M. W. Longman, and W. J. Carlisle, 2001, Unconformity-related chert/dolomite production in the Pennsylvanian Amsden Formation, Wolf Springs fields, Bull Mountains basin of central Montana: American Association of Petroleum Geologists Bulletin, v. 85, p. 131–148.

    Google Scholar 

  • Lugli, S., 2001, Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum-anhydrite transitions and carbonate metasomatism: Sedimentary Geology, v. 140, p. 107–122.

    Google Scholar 

  • Lugli, S., R. Dominici, M. Barone, E. Costa, and C. Cavozzi, 2007, Messinian halite and residual facies in the Crotone basin (Calabria, Italy): Geological Society, London, Special Publications, v. 285, p. 169–178.

    Google Scholar 

  • Lugli, S., G. Morteani, and D. Blamart, 2002, Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources: Mineralium Deposita, v. 37, p. 480–494.

    Google Scholar 

  • Lynch, G., and P. S. Giles, 1996, The Ainslie Detachment: a regional flat-lying extensional fault in the Carboniferous evaporitic Maritimes Basin of Nova Scotia, Canada: Canadian Journal of Earth Sciences, v. 33, p. 169–181.

    Google Scholar 

  • Macaluso, T., and U. Sauro, 1996, Weathering and Karren on exposed gypsum surfaces: International Journal of Speleology, v. 25, p. 115–126.

    Google Scholar 

  • Machel, H. G., 2013, Secondary anhydrites in deeply buried Devonian carbonates of the Alberta Basin, Canada: Carbonates and Evaporites, p. 1–14.

    Google Scholar 

  • Maliva, R. G., 1987, Quartz geodes; early diagenetic silicified anhydrite nodules related to dolomitization: Journal of Sedimentary Petrology, v. 57, p. 1054–1059.

    Google Scholar 

  • Maltsev, V. A., and D. C. Ford, 1991, The influence of seasonal changes of cave microclimate upon the genesis of gypsum formations in caves: NSS Bulletin, v. 52, p. 99–103.

    Google Scholar 

  • Maltsev, V. A., and D. I. Malishevsky, 1990, On hydrothermal phases during later stages of the evolution of Cup Coutunn Cave system, Turkmenia, USSR: NSS Bulletin, v. 52, p. 95–98.

    Google Scholar 

  • Manzi, V., S. Lugli, F. R. Lucchi, and M. Roveri, 2005, Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out?: Sedimentology, v. 52, p. 875–902.

    Google Scholar 

  • Martin, J. M., H. M. Ortega, and R. J. Torres, 1984, Genesis and evolution of strontium deposits of the Granada Basin (southeastern Spain): evidence of diagenetic replacement of a stromatolite belt: Sedimentary Geology, v. 39, p. 281–298.

    Google Scholar 

  • Martinez, J. D., and R. Boehner, 1997, Sinkholes in glacial drift underlain by gypsum in Nova Scotia, Canada: Carbonates and Evaporites, v. 12, p. 84–90.

    Google Scholar 

  • Martinez, J. D., K. S. Johnson, and J. T. Neal, 1998, Sinkholes in Evaporite Rocks: American Scientist, v. 86, p. 38.

    Google Scholar 

  • Martini, J. E. J., P. E. Wipplinger, and F. G. Moen, 1997, Mbobo Mkulu Cave, South Africa, in C. A. Hill, and P. Forti, eds., Cave Minerals of the World: Huntsville, Alabama, National Speleological Society, p. 336–339.

    Google Scholar 

  • Matsubara, S., A. Kato, and E. Hashimoto, 1992, Celestine from the Asaka gypsum mine, Koriyama City, Fukushima Prefecture, Japan: Min. J. (Japan), v. 16, p. 16–20.

    Google Scholar 

  • McBride, E. F., L. S. Land, and L. E. Mack, 1987, Diagenesis of aeolian and fluvial feldspathic sandstones, Norphlet Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama.: American Association of Petroleum Geologists Bulletin, v. 71, p. 1019–1034.

    Google Scholar 

  • McGregor, D. R., E. C. Pendery, and D. L. McGregor, 1963, Solution caves in gypsum, north central Texas: Journal of Geology, v. 71, p. 108–115.

    Google Scholar 

  • McNeil, B., H. F. Shaw, and A. H. Rankin, 1998, The timing of cementation in the Rotliegend sandstones of the southern North Sea – A petrological and fluid inclusion study of cements: Journal of Petroleum Geology, v. 21, p. 311–327.

    Google Scholar 

  • McWhae, J. R. H., 1953, The Carboniferous breccia of Bellefjordan: Geol. Mag., v. 90, p. 287–298.

    Google Scholar 

  • Mége, D., L. Le Deit, T. Rango, and T. Korme, 2013, Gravity tectonics of topographic ridges: Halokinesis and gravitational spreading in the western Ogaden, Ethiopia: Geomorphology, v. 193, p. 1–13.

    Google Scholar 

  • Michalzik, D., 1996, Lithofacies, diagenetic spectra and sedimentary cycles of Messinian (late Miocene) evaporites in SE Spain: Sedimentary Geology, v. 106, p. 203–222.

    Google Scholar 

  • Middleton, G. V., 1961, Evaporite solution breccias from the Mississippian of southwest Montana: Journal of Sedimentary Petrology, v. 31, p. 189–195.

    Google Scholar 

  • Middleton, K., M. Coniglio, R. Sherlock, and S. K. Frape, 1993, Dolomitization of Middle Ordovician carbonate reservoirs, southwestern Ontario: Bulletin of Canadian Petroleum Geology,, v. 41, p. 150–163.

    Google Scholar 

  • Milliken, K. L., 1979, The silicified evaporite syndrome; two aspects of silicification history of former evaporite nodules from southern Kentucky and northern Tennessee: Journal Sedimentary Petrology, v. 49, p. 245–256.

    Google Scholar 

  • Mohr, M., J. K. Warren, P. A. Kukla, J. L. Urai, and A. Irmen, 2007, Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany): Geology, v. 35, p. 963–966.

    Google Scholar 

  • Morley, C. K., 2012, Late Cretaceous-Early Palaeogene tectonic development of SE Asia: Earth-Science Reviews, v. 115, p. 37–75.

    Google Scholar 

  • Morrow, D. W., 1982, Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks: Bulletin of Canadian Petroleum Geology, v. 30, p. 227–229.

    Google Scholar 

  • Mossman, D. J., and M. J. Brown, 1986, Stratiform barite in sabkha sediments, Walton-Cheverie, Nova Scotia: Economic Geology, v. 81, p. 2016–2021.

    Google Scholar 

  • Mount, T., 1975, Diapirs and diapirism in the Adelaide ‘Geosyncline”: Doctoral thesis, University of Adelaide.

    Google Scholar 

  • Muchez, P., C. Peeters, W. Viaene, and E. Keppens, 1992, Stable isotopic composition of an evaporite dissolution breccia in the Lower Vis√©an limestones of SE Belgium: Chemical Geology, v. 102, p. 119–127.

    Google Scholar 

  • Muchez, P., P. Vanderhaeghen, H. El Desouky, J. Schneider, A. Boyce, S. Dewaele, and J. Cailteux, 2008, Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo): Mineralium Deposita, v. 43, p. 575–589.

    Google Scholar 

  • Müller, G., 1962, Zür Geochemie des Strontiums in Ozeanen Evaporiten unter besonderer Berücksichtigung der sedimentären Coelestinlagerstätten von Hemmelte-West (Süd-Oldenburg): Geologie, Supplement 35.

    Google Scholar 

  • Munoz, M., A. J. Boyce, P. Courjault-Rade, A. E. Fallick, and F. Tollon, 1999, Continental basinal origin of ore fluids from southwestern Massif central fluorite veins (Albigeois, France): evidence from fluid inclusion and stable isotope analyses: Applied Geochemistry, v. 14, p. 447–458.

    Google Scholar 

  • Murray, R. C., 1964, Origin and diagenesis of gypsum and anhydrite: Journal of Sedimentary Petrology, v. 34, p. 512–523.

    Google Scholar 

  • Myers, A. J., 1962, A fossil sinkhole: Oklahoma Geological Notes, v. 22, p. 13–15.

    Google Scholar 

  • Nagy, Z. R., I. D. Somerville, J. M. Gregg, S. P. Becker, K. L. Shelton, and A. G. Sleeman, 2005, Sedimentation in an actively tilting half-graben: sedimentology and stratigraphy of Late Tournaisian-Viséan (Mississippian, Lower Carboniferous) carbonate rocks in south County Wexford, Ireland: Sedimentology, v. 52, p. 489–512.

    Google Scholar 

  • Neal, J. T., 1995, Supai salt karst features: Holbrook Basin, Arizona, in B. F. Beck, ed., Karst geohazards: engineering and environmental problems in karst terrane. Proc. 5th conference, Gatlinburg 1995, Balkema, p. 53–59.

    Google Scholar 

  • Neal, J. T., R. Colpitts, and K. S. Johnson, 1998, Evaporite Karst in the Holbrook Basin, Arizona, in J. Borchers, ed., Joseph F. Poland Symposium on Land Subsidence: Sudbury, MA, Assoc. Eng. Geologists Spec. Pub. 8, p. 373–384.

    Google Scholar 

  • Neal, J. T., R. Colpitts, and K. S. Johnson, 2001, Evaporite Karst in the Holbrook Basin, Arizona: SMRI (Solution MIning Research Institute) Report presented at the Fall 2001 Meeting 7–10 October 2001 Albuquerque, New Mexico, USA.

    Google Scholar 

  • Nickless, E. F. P., S. J. Booth, and P. N. Mosley, 1975, Celestite deposits of the Bristol area: Inst. Min. Metall., Trans., Sect. B., v. 84, p. 62–63.

    Google Scholar 

  • Nielsen, P., R. Swennen, J. A. D. Dickson, A. E. Fallick, and E. Keppens, 1997, Spheroidal dolomites in a Visean karst system – bacterial induced origin?: Sedimentology, v. 44, p. 177–195.

    Google Scholar 

  • Okere, D., and S. Toothill, 2012, New insights into hydrocarbon plays in the Caspian Sea, Kazakhstan: Petroleum Geoscience, v. 18, p. 253–268.

    Google Scholar 

  • Olaussen, S., 1981, Formation of celestite in the Wenlock, Oslo region Norway – evidence for evaporitic depositional environments: Journal of Sedimentary Petrology, v. 51.

    Google Scholar 

  • Olive, W. W., 1957, Solution-subsidence troughs, Castile Formation of Gypsum Plain, Texas and New Mexico: Geological Society of America, v. 68, p. 351–358.

    Google Scholar 

  • Olson, R. A., 1984, Genesis of paleokarst and strata-bound zinc-lead sulfide deposits in a Proterozoic dolostone, northern Baffin Island, Canada: Economic Geology, v. 79, p. 1056–1103.

    Google Scholar 

  • Onac, B. P., 2005, Minerals, in D. C. Culver, and W. B. White, eds., Encyclopedia of Caves, Academic Press, New York, p. 371–378.

    Google Scholar 

  • Ordóñez, S., R. Fort, and M. Bustillo, 1989, Caracterización geoquímica de la ruptura sedimentaria entre los yesos de la unidad salina e intermedia de la cuenca de Madrid: Est. Geol. Sect, v. 45, p. 45–53.

    Google Scholar 

  • Orozco, M., J. M. Molina, A. Crespo-Blanc, and F. M. Alonso-Chaves, 1999, Palaeokarst and rauhwacke development, mountain uplift and subaerial sliding of tectonic sheets (northern Sierra de los Filabres, Betic Cordilleras, Spain): Geologie en Mijnbouw, v. 78, p. 103–117.

    Google Scholar 

  • Ortí, F., J. García-Veigas, L. Rosell, M. J. Jurado, and R. Utrilla, 1996, Formaciones salinas de las cuencas triásicas de la Península Ibérica: caracterización petrológica y geoquímica: Cuader. Geol. Ibér, v. 20.

    Google Scholar 

  • Orti, F., C. Helvaci, L. Rosell, and I. Gundogan, 1998, Sulphate-borate relations in an evaporitic lacustrine environment – the Sultancayir gypsum (Miocene, western Anatolia): Sedimentology, v. 45, p. 697–710.

    Google Scholar 

  • Ortí, F., J. J. Pueyo, D. Geisler, and N. Dulau, 1984, Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain): Rev. Inst. Invest. Geol. Diput. Prov. Barc., v. 38–39, p. 169–220.

    Google Scholar 

  • Orti, F., and L. Rosell, 2000, Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain): Sedimentology, v. 47, p. 665–685.

    Google Scholar 

  • Paine, J. G., 1994, Subsidence beneath a playa basin on the Southern High Plains, U. S.A.; evidence from shallow seismic data: Geological Society of America Bulletin, v. 106, p. 233–242.

    Google Scholar 

  • Palmer, A. N., and M. V. Palmer, 1995, The Kaskaskia paleokarst of the northern Rocky Mountains and Black Hills, northwestern U.S.A: Carbonates and Evaporites, v. 10, p. 148–160.

    Google Scholar 

  • Palmer, A. N., and M. V. Palmer, 1998, Geochemistry of Cueva de Villa Luz, Mexico, an active H2S cave [abs.]. : Journal of Cave and Karst Studies, v. 60, p. 188.

    Google Scholar 

  • Palmer, A. N., and M. V. Palmer, 2000, Hydrochemical interpretation of cave patterns in the Guadalupe Mountains, New Mexico: Journal of Cave and Karst Studies, v. 62, p. 91–108.

    Google Scholar 

  • Pape, H., C. Clauser, J. Iffland, R. Krug, and R. Wagner, 2005, Anhydrite cementation and compaction in geothermal reservoirs; interaction of pore-space structure with flow, transport, P-T conditions, and chemical reactions: International Journal of Rock Mechanics and Mining Sciences (1997), v. 42, p. 1056–1069.

    Google Scholar 

  • Papioanou, F. P., and Z. Carotsieris, 1993, Dolomitization patterns in Jurassic-Cretaceous dissolution-collapse breccias of Mainalon Mountain (Tripolis Unit, Central Peloponnesus-Greece): Carbonates & Evaporites, v. 8, p. 9–22.

    Google Scholar 

  • Parafiniuk, J., 1989, Strontium and barium minerals in the sulfur deposits from the Tarnobrzeg region (SE Poland): Arch. Min., v. 43, p. 41–60.

    Google Scholar 

  • Parnell, J., 1986, Devonian Magadi-type cherts in the Orcadian Basin, Scotland: Journal of Sedimentary Petrology, v. 56, p. 495–500.

    Google Scholar 

  • Paukstys, B., A. H. Cooper, and J. Arustiene, 1999, Planning for gypsum geohazards in Lithuania and England: Engineering Geology, v. 52, p. 93–103.

    Google Scholar 

  • Peckmann, J., J. Paul, and V. Thiel, 1999, Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany): Sedimentary Geology, v. 126, p. 205–222.

    Google Scholar 

  • Peirce, H. W., 1981, Major Arizona salt deposits: Field Notes, Arizona Geological Survey, v. 11, p. 1–5.

    Google Scholar 

  • Peryt, T. M., F. Orti, and L. Rosell, 1993, Sulfate platform-basin transition of the lower Werra Anhydrite (Zechstein, Upper Permian), western Poland; facies and petrography: Journal of Sedimentary Petrology, v. 63, p. 646–658.

    Google Scholar 

  • Peters, J. M., M. Shuster, H. A. Al-Siyabi, J. B. Filbrandt, J. P. Grotzinger, and M. J. Newall, 2003, Surface-piercing salt domes of interior North Oman, and their significance for the Ara carbonate ‘stringer’ hydrocarbon play: GeoArabia, v. 8, p. 231–270.

    Google Scholar 

  • Peterson, M. N. A., and C. C. Von der Borch, 1965, Chert: modern inorganic deposition in a carbonate precipitating localitty: Science, v. 149, p. 1501–1503.

    Google Scholar 

  • Pfeiffer, D., and J. Hahn, 1976, Karst of Germany, in M. Herak, and V. T. Stringfield, eds., Karst: Important karst regions of the Northern Hemisphere: Amsterdam, Elsevier, p. 189–223.

    Google Scholar 

  • Philipp, S. L., 2008, Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England: Geological Magazine, v. 145, p. 831–844.

    Google Scholar 

  • Pierre, C., and J. M. Rouchy, 1988, Carbonate replacements after sulphate evaporites in the Middle Miocene of Egypt: Journal of Sedimentary Petrology, v. 58, p. 446–456.

    Google Scholar 

  • Piqué, A., A. Canals, F. Grandia, and D. A. Banks, 2008, Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events: Chemical Geology, v. 257, p. 139–152.

    Google Scholar 

  • Pirajno, F., and K. Grey, 2002, Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: a rift-related playa lake and thermal spring environment?: Precambrian Research, v. 113, p. 169–192.

    Google Scholar 

  • Pirlet, H., L. M. Wehrmann, B. Brunner, N. Frank, J. Dewanckele, D. van Rooij, A. Foubert, R. Swennen, L. Naudts, M. Boone, V. Cnudde, and J.-P. Henriet, 2010, Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland: Sedimentology, v. 57, p. 786–805.

    Google Scholar 

  • Playa, E., F. Orti, and L. Rosell, 2000, Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence: Sedimentary Geology, v. 133, p. 135–166.

    Google Scholar 

  • Playa, E., and L. Rosell, 2005, The celestite problem in gypsum Sr geochemistry: An evaluation of purifying methods of gypsiferous samples: Chemical Geology, v. 221, p. 102–116.

    Google Scholar 

  • Polyak, V. J., and N. Guven, 1996, Alunite, natroalunite and hydrated halloysite in Carlsbad Cavern and Lechuguilla Cave, New Mexico: Clays & Clay Minerals, v. 44, p. 843–850.

    Google Scholar 

  • Polyak, V. J., W. C. Mcintosh, N. Guven, and P. Provencio, 1998, Age of Carlsbad cavern and related caves from 40Ar/39Ar of alunite: Science, v. 279, p. 1919–1922.

    Google Scholar 

  • Pomoni-Papaioannou, F., and V. Karakitsios, 2002, Facies analysis of the Trypali carbonate unit (Upper Triassic) in central-western Crete (Greece): an evaporite formation transformed into solution-collapse breccias: Sedimentology, v. 49, p. 1113–1132.

    Google Scholar 

  • Powers, D. W., R. L. Beauheim, R. M. Holt, and D. L. Hughes, 2006, Evaporite karst features and processes at Nash Draw, Eddy County, New Mexico, in L. Land, V. Lueth, B. Raatz, P. Boston, and D. Love, eds., Caves and Karst of Southeastern New Mexico: New Mexico Geological Society, Guidebook 57, p. 253–266.

    Google Scholar 

  • Presley, M. W., 1987, Evolution of Permian evaporite basin in Texas Panhandle: American Association of Petroleum Geologists Bulletin, v. 71, p. 167–190.

    Google Scholar 

  • Pulido-Bosch, A., J. M. Calaforra, P. Pulido-Leboeuf, and S. Torres-García, 2004, Impact of quarrying gypsum in a semidesert karstic area (Sorbas, SE Spain): Environmental Geology, v. 46, p. 583–590.

    Google Scholar 

  • Purvis, K., 1989, Zoned authigenic magnesites in the Rotliegend Lower Permian, southern North Sea: Sedimentary Geology, v. 65, p. 307–318.

    Google Scholar 

  • Queen, J. M., A. N. Palmer, and M. V. Palmer, 1979, Carbonate replacement of sulfate; new mechanism for porosity generation in carbonate rocks marginal to evaporite basins: Am. Assoc. Pet. Geol., Bull., v. 63, p. 512–513.

    Google Scholar 

  • Quinlan, J. F., 1978, Types of karst, with emphasis on cover beds in their classification and development: Doctoral thesis, University of Texas at Austin.

    Google Scholar 

  • Quinlan, J. F., R. O. Ewers, J. A. Raty, and K. S. Johnson, 1986, Gypsum karst and salt karst of the United States of America: Atti simposio internazionale sul carsismo nelle evaporiti; Le Grotte d’Italia, v. 12, p. 419–420.

    Google Scholar 

  • Quijada, I. E., P. Suarez-Gonzalez, M. I. Benito, S. Lugli, and R. Mas, 2014, From carbonate–sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain): Sedimentary Geology, v. 312, p. 76–93.

    Google Scholar 

  • Quijada, I. E., P. Suarez-Gonzalez, M. I. Benito, S. Lugli, and R. Mas, 2014, From carbonate–sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain): Sedimentary Geology, v. 312, p. 76–93.

    Google Scholar 

  • Rahn, P. H., and A. D. Davis, 1996, Gypsum foundation problems in the Black Hills area, Dakota: Environmental and Engineering Geoscience, v. 2, p. 213–223.

    Google Scholar 

  • Raines, M. A., and T. A. Dewers, 1997, Dedolomitization as a driving mechanism for karst generation in Permian Blaine Formation, southwest Oklahoma, USA: Carbonates & Evaporites, v. 12, p. 24–31.

    Google Scholar 

  • Richardson, C. K., and H. D. Holland, 1979, The solubility of fluorite in hydrothermal solutions, an experimental study: Geochim. Cosmochim. Acta, v. 43, p. 1313–1325.

    Google Scholar 

  • Rodríguez-Aranda, J. P., 1995, Sedimentología de los Sistemas de Llanura Lutítica-lago Salino del Mioceno en la Zona Oriental de la Cuenca de Madrid (Tarancón-Auñon): Doctoral thesis, Universidad Complutense, Madrid, 474 p.

    Google Scholar 

  • Rodríguez-Aranda, J. P., J. P. Calvo, and M. E. Sanz-Montero, 2002, Lower Miocene gypsum palaeokarst in the Madrid Basin (central Spain): dissolution diagenesis, morphological relics and karst end-products: Sedimentology, v. 49, p. 1385–1400.

    Google Scholar 

  • Rooney, T. P., B. F. Jones, and J. T. Neal, 1969, Magadiite from Alkali Lake, Oregon: American Mineralogist, v. 54, p. 1034–1043.

    Google Scholar 

  • Rosell, L., and F. Ortí, 1992, Geochemical characteristics and facies analysis of a Miocene lacustrine gypsum deposit (Calatayud basin, Zaragoza, Spain) Abstract: IGCP-324 Glopals, Annual Meeting, p. 39–41.

    Google Scholar 

  • Rosell, L., F. Orti, A. Kasprzyk, E. Playa, and T. M. Peryt, 1998, Strontium geochemistry of Miocene primary gypsum – Messinian of southeastern Spain and Badenian of Poland: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 63–79.

    Google Scholar 

  • Rosell, O. L., and C. F. Orti, 1980, Presencia de analcima y observaciones diageneticas en la anhidrita basal de la cuenca potasica de Navarra (Eocene superior, Cuenca del Ebro, Espana): Lectures and communications from the First symposium on diagenesis of sediments and sedimentary rocks. Univ. Barcelona, Dep. Petrol. y Geoquim., Barcelona, Spain. Revista del Instituto de Investigaciones Geologicas de la Diputacion Provincial de Barcelona, v. 34, p. 223–235.

    Google Scholar 

  • Rosen, M. R., D. E. Miser, and J. K. Warren, 1988, Sedimentology, mineralogy and isotopic analysis of Pellet Lake, Coorong region, South Australia.: Sedimentology, v. 35, p. 105–122.

    Google Scholar 

  • Rouchy, J. M., 1986, Sedimentologie des formations anhydritiques givetiennes et dinantiennes du segment varisque franco-belge: Bulletin de la Societe Belge de Geologie, v. 95, p. 111–127.

    Google Scholar 

  • Rouchy, J. M., A. Laumondais, and E. Groessens, 1987, The Lower Carboniferous (Visean) evaporites in northern France and Belgium; depositional, diagenetic and deformational guides to reconstruct a disrupted evaporitic basin: Peryt, Tadeusz M. (ed) Evaporite basins. Lecture Notes in Earth Sciences, v. 13, p. 31–67.

    Google Scholar 

  • Runnegar, B., W. Dollase, R. Ketcham, M. Colbert, and W. Carlson, 2001, Early Archean sulfates from Western Australia first formed as hydrothermal barites, not gypsum evaporites: Geological Society of America, Annual Meeting, November 5–8, 2001; Session No. 166.

    Google Scholar 

  • Salter, D. I., and I. M. West, 1966, Calciostrontianite in the basal Purbeck Beds of Durlston Head, Dorset: Mineralogical Magazine, v. 35, p. 146–150.

    Google Scholar 

  • Salvany, J. M., 1989, Las formaciones evaporíticas del terciario continental de la cuenca del Ebro en Navarra y la Rioja: Litoestratigrafia, petrología y sedimentología: Doctoral thesis, Universitat de Barcelona.

    Google Scholar 

  • Sanchez-Moral, S., J. C. Cañaveras, L. Laiz, C. Saiz-Jimenez, J. Bedoya, and L. Luque, 2003, Biomediated Precipitation of Calcium Carbonate Metastable Phases in Hypogean Environments: A Short Review: Geomicrobiology Journal, v. 20, p. 491–501.

    Google Scholar 

  • Sancho, C., J. L. Peña, R. Mikkan, C. Osácar, and Y. Quinif, 2004, Morphological and speleothemic development in Brujas Cave (SouthernAndean Range,Argentine): palaeoenvironmental significance: Geomorphology, v. 57, p. 367–384.

    Google Scholar 

  • Sanz-Montero, M. E., J. P. Rodriguez-Aranda, and J. P. Calvo, 2006, Mediation of Endoevaporitic Microbial Communities in Early Replacement of Gypsum by Dolomite:A Case Study from Miocene Lake Deposits of the Madrid Basin, Spain: Journal of Sedimentary Research, v. 76, p. 1257–1266.

    Google Scholar 

  • Sanz-Montero, M. E., J. P. RodrÌguez-Aranda, and M.A. GarcÌa del Cura, 2009, Bioinduced precipitation of barite and celestite in dolomite microbialites: Examples from Miocene lacustrine sequences in the Madrid and Duero Basins, Spain: Sedimentary Geology, v. 222, p. 138–148.

    Google Scholar 

  • Sanz-Rubio, E., S. Sanchez-Moral, J. C. Canaveras, J. P. Calvo, and J. M. Rouchy, 2001, Calcitization of Mg-Ca carbonate and Ca sulphate deposits in a continental Tertiary basin (Calatayud Basin, NE Spain): Sedimentary Geology, v. 140, p. 123–142.

    Google Scholar 

  • Sarbu, S. M., T. C. Kane, and B. K. Kinkle, 1996, A chemoautotrophically based cave ecosystem: Science, v. 272, p. 1953–1955.

    Google Scholar 

  • Sarbu, S. M., B. K. Kinkle, L. Vlasceanu, T. C. Kane, and R. Popa, 1994, Microbiological characterisation of a sulphide-rich groundwater system: Geomicrobiology Journal, v. 12, p. 175–182.

    Google Scholar 

  • Sassen, R., D. A. DeFreitas, N. L. Eaker, H. H. Roberts, and C. Zhang, 2004, Brine vents on the Gulf of Mexico slope: Hydrocarbons, carbonate-barite-uranium mineralisation, red beds and life in an extreme environment: In, 24 Gulf Coast Section SEPM Foundation Bob F. Perkins Conference; Salt-sediment Interactions and Hydrocarbon productivity:Concepts,Applications and Casde Studies for the 21st Century, p. 444–63.

    Google Scholar 

  • Saunders, J. A., and R. C. Thomas, 1996, Origin of exotic minerals in Mississippi salt dome cap rocks – Results of reaction path modeling: Applied Geochemistry, v. 11, p. 667–676.

    Google Scholar 

  • Sauro, F., N. Tisato, J. De Waele, S. M. Bernasconi, T. R. R. Bontognali, and E. Galli, 2014, Source and genesis of sulphate and phosphate–sulphate minerals in a quartz-sandstone cave environment: Sedimentology, v. 61, p. 1433–1451.

    Google Scholar 

  • Schaad, W., 1995, The origin of Rauhwackes (Cornieules) by the karstification of gypsum [German]: Eclogae Geologicae Helvetiae, v. 88, p. 59–90.

    Google Scholar 

  • Schlager, W., and H. Bolz, 1977, Clastic accumulation of sulfate evaporites in deep water: Journal of Sedimentary Petrology, v. 47, p. 600–609.

    Google Scholar 

  • Schlüter, T., and R. Kohring, 2002, Palaeopathological fish bones from phosphorites of the Lake Manyara area, Northern Tanzania – Fossil evidence of a physiological response to survival in an extreme biocenosis: Environmental Geochemistry and Health, v. 24, p. 131–140.

    Google Scholar 

  • Scholle, P. A., L. Stemmerik, and O. Harpoth, 1990, Origin of major karst-associated celestite mineralization in Karstryggen, central East Greenland: Journal of Sedimentary Petrology, v. 60, p. 397–410.

    Google Scholar 

  • Scholle, P. A., L. Stemmerik, D. Ulmer-Scholle, G. Diliegro, and F. H. Henk, 1993, Palaeokarst-influenced depositional and diagenetic patterns in Upper Permian carbonates and evaporites, Karstryggen Area, Central East Greenland: Sedimentology, v. 40, p. 895–918.

    Google Scholar 

  • Scholle, P. A., D. S. Ulmer, and L. A. Melin, 1992, Late-stage calcites in the Permian Capitan Formation and its equivalents, Delaware Basin margin, West Texas and New Mexico; evidence for replacement of precursor evaporites: Sedimentology, v. 39, p. 207–234.

    Google Scholar 

  • Schorn, A., F. Neubauer, and M. Bernroider, 2013b, Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps: Journal of Structural Geology, v. 46, p. 57–75.

    Google Scholar 

  • Schorn, A., F. Neubauer, J. Genser, and M. Bernroider, 2013a, The Haselgebirge evaporitic melange in central Northern Calcareous Alps (Austria): Part of the Permian to Lower Triassic rift of the Meliata ocean?: Tectonophysics, v. 583, p. 28–48.

    Google Scholar 

  • Schorn, A., and F. Neubauer, 2014, The structure of the Hallstatt evaporite body (Northern Calcareous Alps, Austria): A compressive diapir superposed by strike-slip shear?: Journal of Structural Geology, v. 60, p. 70–84.

    Google Scholar 

  • Schreiber, B. C., 1988a, Subaqueous evaporite deposition, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, Columbia University Press.

    Google Scholar 

  • Schreiber, B. C., and E. Schreiber, 1977, The salt that was: Geology, v. 5, p. 527–528.

    Google Scholar 

  • Schubel, K. A., and B. M. Simonson, 1990, Petrography and diagenesis of cherts of Lake Magadi, Kenya: Journal of Sedimentary Petrology, v. 60, p. 761–776.

    Google Scholar 

  • Schultze-Lam, S., and T. J. Beveridge, 1994, Nucleation of celestite and strontianite on a cyanobacterial S-layer: Applied and Environmental Microbiology, v. 60, p. 447–453.

    Google Scholar 

  • Sessler, W., 1990, Influence of subrosion on three different types of salt deposits, in D. Heling, P. Rothe, U. Förstner, and P. Stoffers, eds., Sediments and Environmental Geochemistry: Berlin, Springer-Verlag, p. 179–196.

    Google Scholar 

  • Shearman, D. J., and J. G. Fuller, 1969, Anhydrite diagenesis, calcitization, and organic laminites, Winnipegosis Formation, Middle Devonian, Saskatchewan: Bull. Can. Pet. Geol., v. 17, p. 496–525.

    Google Scholar 

  • Shearman, D. J., J. Khouri, and S. Taha, 1961, On the replacement of dolomite by calcite in some Mesozoic limestones from the French Jura: Proceddings Geologists’ Assoc., London, v. 72, p. 1–12.

    Google Scholar 

  • Shearman, D. J., A. McGugan, C. Stein, and A. J. Smith, 1989, Ikaite, CaCO3.6, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, weatern United States: Geol. Soc. Am. Bull., v. 101, p. 913–917.

    Google Scholar 

  • Shearman, D. J., and A. J. Smith, 1985, Ikaite, the parent mineral of jarrowite-type pseudomorphs: Proceedings of the Geologists’ Association, v. 96, p. 305–314.

    Google Scholar 

  • Shen, Y., J. Farquhar, A. Masterson, A. J. Kaufman, and R. Buick, 2009, Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics: Earth and Planetary Science Letters, v. 279, p. 383–391.

    Google Scholar 

  • Shen, Y., J. Farquhar, A. Masterson, A. J. Kaufman, and R. Buick, 2009, Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics: Earth and Planetary Science Letters, v. 279, p. 383–391.

    Google Scholar 

  • Sheppard, R. A., and F. A. Mumpton, 1984, Sedimentary fluorite in a lacustrine zeolitic tuff of the Gila Conglomerate near Buckhorn, Grant County, New Mexico: Journal of Sedimentary Petrology, v. 54, p. 853–860.

    Google Scholar 

  • Simpson, F., 1988, Solution-generated collapse (SGC) structures associated with bedded evaporites; significance to base-metal and hydrocarbon localization: Geoscience Canada, v. 15, p. 89–93.

    Google Scholar 

  • Simpson, F., 1988, Solution-generated collapse (SGC) structures associated with bedded evaporites; significance to base-metal and hydrocarbon localization: Geoscience Canada, v. 15, p. 89–93.

    Google Scholar 

  • Simpson, F., 1988, Solution-generated collapse (SGC) structures associated with bedded evaporites; significance to base-metal and hydrocarbon localization: Geoscience Canada, v. 15, p. 89–93.

    Google Scholar 

  • Smith, D. B., 1972, Foundered strata, collapse breccias and subsidence features of the English Zechstein, in G. Richter-Bernberg, ed., Geology of saline deposits: Paris, UNESCO, p. 255–269.

    Google Scholar 

  • Sommaruga, A., 1999, Decollement tectonics in the Jura foreland fold-and-thrust belt: Marine and Petroleum Geology, v. 16, p. 111–134.

    Google Scholar 

  • Soriano, M. A., and J. L. Simon, 1995, Alluvial dolines in the central Ebro Basin, Spain – A spatial and developmental hazard analysis: Geomorphology, v. 11, p. 295–309.

    Google Scholar 

  • Souissi, F., J. L. Dandurand, and J. P. Fortune, 1997, Thermal evolution of fluids during fluorite deposition in the Zaghouan Province, northeastern Tunisia: Mineralium Deposita, v. 32, p. 257–270.

    Google Scholar 

  • Southgate, P. N., I. B. Lambert, T. H. Donnelly, R. Henry, H. Etminan, and G. Weste, 1989, Depositional environments and diagenesis in Lake Parakeelya: a Cambrian alkaline playa from the Officer Basin, South Australia: Sedimentology, v. 36, p. 1091–1112.

    Google Scholar 

  • Speed, R. C., 1975, Carbonate breccia (rauhwacke) nappes of the Carson Sink region, Nevada: Geol. Soc. America Bull., v. 86, p. 473–486.

    Google Scholar 

  • Speed, R. C., and R. N. Clayton, 1975, Origin of marble by replacement of gypsum in carbonate breccia nappes, Carson Sink region, Nevada: Journal of Geology, v. 83, p. 223–237.

    Google Scholar 

  • Spötl, C., 1989b, Complex zoning and resorption in breunnerite from Hall in Tyrol, Austria: Evidence from back-scattered electron microscopy: Mineralogy and Petrology, v. 40, p. 225–233.

    Google Scholar 

  • Spötl, C., F. J. Longstaffe, K. Ramseyer, M. J. Kunk, and R. Wiesheu, 1998, Fluid-rock reactions in an evaporitic melange, Permian Haselgebirge, Austrian Alps: Sedimentology, v. 45, p. 1019–1044.

    Google Scholar 

  • Spötl, C., and E. Pak, 1996, A strontium and sulfur isotopic study of Permo-Triassic evaporites in the Northern Calcareous Alps, Austria: Chemical Geology, v. 131, p. 219–234.

    Google Scholar 

  • Sprynskyy, M., M. Lebedynets, and A. Sadurski, 2009, Gypsum karst intensification as a consequence of sulphur mining activity (Jaziv field, Western Ukraine): Environmental Geology, v. 57, p. 173–181.

    Google Scholar 

  • Stafford, K. W., R. Nance, L. Rosales-Lagarde, and P. J. Boston, 2008a, Epigene and Hypogene Gypsum karst manifestations of the Castile formation: Eddy County, new Mexico and Culbesron County, Texas, USA: International Journal of Speleology, v. 37, p. 83–98.

    Google Scholar 

  • Stafford, K. W., L. Rosales-Lagarde, and P. J. Boston, 2008b, Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison., v. 70, no. 1, p. 35–46.: Journal of Cave and Karst Studies, v. 70, p. 35–46.

    Google Scholar 

  • Stanton Jr, R. J., 1966, The solution brecciation process: Geological Society of America Bulletin, v. 77, p. 843–847.

    Google Scholar 

  • Stein, M., A. Starinsky, A. Katz, S. L. Goldstein, M. Machlus, and A. Schramm, 1997, Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea: Geochimica et Cosmochimica Acta, v. 61, p. 3975–3992.

    Google Scholar 

  • Stenson, R. E., 1990, The morphometry and spatial distribution of surface depressions in gypsum, with examples from Nova Scotia, Newfoundland and Manitoba: MSc thesis, McMaster University, 134 p.

    Google Scholar 

  • Stenson, R. E., and D. C. Ford, 1993, Rillenkarren on gypsum in Nova Scotia: Geographie Physique et Quaternaire, v. 47, p. 239–243.

    Google Scholar 

  • Stewart, F. H., 1968, Geochemistry of marine evaporite deposits: Geological Society America Special Paper, v. 88, p. 539–540.

    Google Scholar 

  • Sullivan, L. A., and A. J. Koppi, 1993, Barite pseudomorphs after lenticular gypsum in a buried soil from central Australia: Australian Journal of Soil Research, v. 31, p. 393–396.

    Google Scholar 

  • Sullivan, M. D., R. S. Haszeldine,A. J. Boyce, G. Rogers, and A. E. Fallick, 1994, Late anhydrite cements mark basin inversion; isotopic and formation water evidence, Rotliegend Sandstone, North Sea: Marine and Petroleum Geology, v. 11, p. 46–54.

    Google Scholar 

  • Supajanya, T., and M. C. Friederich, 1992, Salt tectonics of the Sakon Nakhon Basin, northeastern Thailand: Journal of Southeast Asian Earth Sciences, v. 7, p. 258–259.

    Google Scholar 

  • Surdam, R. C., and H. P. Eugster, 1976, Mineral reactions in sedimentary deposits of Lake Magadi region, Kenya: Geological Society of America Bulletin, v. 87, p. 1739–1752.

    Google Scholar 

  • Surdam, R. C., H. P. Eugster, and R. H. Mariner, 1972, Magadi-type chert in Jurassic and Eocene to Pleistocene rocks Wyoming: Geol. Soc. Am. Bull., v. 83, p. 1739–1752.

    Google Scholar 

  • Swart, P. K., U. G. Wortmann, R. M. Mitterer, M. J. Malone, P. L. Smart, D. A. Feary, and A. C. Hine, 2000, Hydrogen sulfide–hydrates and saline fluids in the continental margin of South Australia: Geology, v. 28, p. 1039–1042.

    Google Scholar 

  • Swennen, R., W. Viaene, and C. Cornelissen, 1990, Petrography and geochemistry of the Belle Roche breccia (lower Visean, Belgium): evidence for brecciation by evaporite dissolution: Sedimentology, v. 37, p. 859–878.

    Google Scholar 

  • Swennen, R., W. Viaene, L. Jacobs, and O. J. Van, 1981, Occurrence of calcite pseudomorphs after gypsum in the Lower Carboniferous of the Vesder region (Belgium): Bulletin de la Societe Belge de Geologie, v. 90, p. 231–247.

    Google Scholar 

  • Taberner, C., J. D. Marshall, J. P. Hendry, C. Pierre, and M. F. Thirlwall, 2002, Celestite formation, bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada, NE Spain): Sedimentology, v. 49, p. 171–190.

    Google Scholar 

  • Talbot, C. J., 1998, Extrusions of Hormuz salt in Iran: Geological Society, London, Special Publications, v. 143, p. 315–334.

    Google Scholar 

  • Talbot, C. J., and R. J. Jarvis, 1984, Age, budget and dynamics of an active salt extrusion in Iran: Journal of Structural Geology, v. 6, p. 521–533.

    Google Scholar 

  • Taylor, P. M., and H. S. Chafetz, 2004, Floating rafts of calcite crystals in cave pools, central Texas, U.S.A; crystal habit vs. saturation state: Journal of Sedimentary Research, v. 74, p. 328–341.

    Google Scholar 

  • Tekin, E., B. Varol, and G. M. Friedman, 2001, A prelimenary study: Celestite-bearing gypsum in the Tertiary Sivas basin, Central-Eastern Turkey: Carbonates & Evaporites, v. 16, p. 93–101.

    Google Scholar 

  • Thierry, P., A. Prunier-Leparmentier, C. Lembezat, E. Vanoudheusden, and J. Vernoux, 2009, 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France): Engineering Geology, v. 105, p. 51–64.

    Google Scholar 

  • Thomson, A., P. D. Hine, J. R. Greig, and D. W. Peach, 1996, Assessment of subsidence arising from gypsum dissolution: Technical Report for the Department of the Environment. Symonds Group Ltd, East Grinstead. 288 p.

    Google Scholar 

  • Tisato, N., F. Sauro, S. M. Bernasconi, R. H. C. Bruijn, and J. De Waele, 2012, Hypogenic contribution to speleogenesis in a predominant epigenic karst system: A case study from the Venetian Alps, Italy: Geomorphology, v. 151‚Äì152, p. 156–163.

    Google Scholar 

  • Tolmachev, V.,A. Ilyin, B. Gantov, M. Leonenko, V. Khomenko, and I. A. Savarensky, 2003, The main results of engineering karstology research conducted in Dzerzhinsk, Russia (1952–2002), in B. Beck, ed., Sinkholes and the engineering and environmental impacts of karst: proceedings of the ninth multidisciplinary conference, September 6–10, 2003, Huntsville, Alabama, American Society of Civil Engineers, p. 502–516.

    Google Scholar 

  • Tolmachev, V., and M. Leonenko, 2011, Experience in Collapse Risk Assessment of Building on Covered Karst Landscapes in Russia, in P. E. van Beynen, ed., Karst Management, Springer Netherlands, p. 75–102.

    Google Scholar 

  • Tolmachev, V. V., S. E. Pidyashenko, and T. A. Balashova, 1999, The system of antikarst protection on railways of Russia, in B. F. Beck, A. J. Pettit, and J. G. Herring, eds., Hydrogeology and Engineering Geology of Sinkholes and Karst – 1999. Proceedings of the Seventh Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. Harrisburg/Hershey, Pennsylvania, April 10–14, 1999: Rotterdam, A. A. Balkema., p. 423–429.

    Google Scholar 

  • Tolmachev, V. V., S. E. Pidyashenko, and T. A. Balashova, 1999, The system of antikarst protection on railways of Russia, in B. F. Beck, A. J. Pettit, and J. G. Herring, eds., Hydrogeology and Engineering Geology of Sinkholes and Karst – 1999. Proceedings of the Seventh Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. Harrisburg/Hershey, Pennsylvania, April 10–14, 1999: Rotterdam, A. A. Balkema., p. 423–429.

    Google Scholar 

  • Torabi-Kaveh, M., M. Heidari, and M. Miri, 2012, Karstic features in gypsum of Gachsaran Formation (case study; Chamshir Dam reservoir, Iran): Carbonates and Evaporites, v. 27, p. 291–297.

    Google Scholar 

  • Toulemont, M., 1984, Le karst gypseux du Lutetien superieur de la region parisienne; caracteristiques et impact sur le milieu urbain: Revue de Geologie Dynamique et de Geographie Physique, v. 25, p. 213–228.

    Google Scholar 

  • Trzhtsinsky, Y., 2002, Human-induced activation of gypsum karst in the southern Priangaria (East Siberia, Russia): Carbonates and Evaporites, v. 17, p. 154–158.

    Google Scholar 

  • Tsui, P. C., and D. M. Cruden, 1984, Deformation associated with gypsum karst in the Salt River Escarpment, northeastern Alberta: Canadian Journal of Earth Sciences, v. 21, p. 949–959.

    Google Scholar 

  • Tucker, M. E., 1976a, Quartz replaced anhydrite nodules (‘Bristol Diamonds’) from the Triassic of the Bristol District: Geological Magazine, v. 113, p. 569–574.

    Google Scholar 

  • Tucker, M. E., 1976b, Replaced evaporites from the late Precambrian of Finnmark, Arctic Norway: Sedimentary Geology, v. 16, p. 193–204.

    Google Scholar 

  • Ulmer-Scholle, D. S., and P. A. Scholle, 1994, Replacement of evaporites within the Permian Park City Formation, Bighorn Basin, Wyoming, USA: Sedimentology, v. 41, p. 1203–1222.

    Google Scholar 

  • Ulmer-Scholle, D. S., P. A. Scholle, and P. V. Brady, 1993, Silicification of evaporites in Permian (Guadalupian) backreef carbonates of the Delaware Basin, west Texas and New Mexico: Journal of Sedimentary Petrology, v. 63, p. 955–965.

    Google Scholar 

  • Utha-aroon, C., L. Coshell, and J. K. Warren, 1995, Early and late dissolution in the Maha Sarakham Formation: Implications for basin stratigraphy: International Conference on Geology, Geochronoilogy and Mineral Resources of Indochina 22–25 November 1995, Khon Kaen, Thailand, p. 275–286.

    Google Scholar 

  • Utrilla, R., 1985, Estudi sedimentológic i geoquímic de les salines de la Trinitat (Delta de l’Ebre) i San Pedro del Pinatar (Mar Menor): Masters thesis, Universitat de Barcelona.

    Google Scholar 

  • Van Alstine, R. E., 1976, Continental rifts and lineaments associated with major fluorospar districts: Economic Geology, v. 71, p. 977–987.

    Google Scholar 

  • Vlasceanu, L., S. M. Sarbu, A. S. Engel, and B. K. Kinkle, 2000, Acidic, cave-wall biofilms located in the Frasassi Gorge, Italy: Geomicrobiology Journal, v. 17, p. 125–139.

    Google Scholar 

  • Von der Borch, C. C., 1965, The distribution and preliminary geochemistry of modern carbonate sediments of the Coorong area, South Australia: Geochimica et Cosmochimica Acta, v. 29.

    Google Scholar 

  • Von der Borch, C. C., B. Bolton, and J. K. Warren, 1977, Environmental setting and microstructure of subfossil lithified stromatolites associated with evaporites, Marion Lake, South Australia: Sedimentology, v. 24, p. 693–708.

    Google Scholar 

  • Von Engelhardt, W. H., H. Fuchtbauer, and G. Muller, 1977, Sedimentary petrology, Halsted Press, New York.

    Google Scholar 

  • Von Gehlen, K., H. Nielsen, and W. Ricke, 1962, S-Isotopen Verhaltnisse in Baryt und Sulfiden aus hydrothermalen Gangen im Schwarzwald und jüngeren Barytgangen in Suddeutschland und ihre genetische Bedeutung: Geochim Cosmochim. Acta, v. 26, p. 1189–1207.

    Google Scholar 

  • Von Morlot, A., 1847, Ueber Dolomit und seine künstliche Darstellung aus Kalkstein: Naturwissenschaftliche Abhandlungen (Ed. W. Haidinger), Wien, 1, 305–315.

    Google Scholar 

  • Von Morlot, A., 1847, Ueber Dolomit und seine künstliche Darstellung aus Kalkstein: Naturwissenschaftliche Abhandlungen (Ed. W. Haidinger), Wien, 1, 305–315.

    Google Scholar 

  • Waldron, J. W. F., C. G. Roselli, J. Utting, and S. K. Johnston, 2010, Kennetcook thrust system: late Paleozoic transpression near the southern margin of the Maritimes Basin, Nova Scotia: Canadian Journal of Earth Sciences, v. 47, p. 137–159.

    Google Scholar 

  • Walsh, P., and D. D. Schultz-Ela, 2003, Mechanics of graben evolution in the Canyonlands National Park, Utah: Geological Society America Bulletin, v. 115, p. 259–270.

    Google Scholar 

  • Walters, R. F., 1978, Land subsidence in central Kansas related to salt dissolution: Kansas Geological Survey Bulletin 214, p. 1–82.

    Google Scholar 

  • Waltham, T., F. Bell, and M. Culshaw, 2005, Sinkholes and Subsidence: Karst and Cavernous Rocks in Engineering and Construction: Berlin Heidelberg, Springer Praxis Books, 382 p.

    Google Scholar 

  • Wang, G., G. You, and Y. Xu, 2008, Investigation on the Nanjing gypsum mine flooding, in H. Liu, A. Deng, and J. Chu, eds., Geotechnical Engineering for Disaster Mitigation and Rehabilitation: Berlin, Springer, p. 920–930.

    Google Scholar 

  • Warrak, M., 1974, The petrography and origin of dedolomitized, veined or brecciated carbonate rock, the “cornieules” in the Frejus region, French Alps: Journ. Geol. Soc. Lond., v. 130, p. 229–247.

    Google Scholar 

  • Warren, J. K., 1982a, The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia: Journal of Sedimentary Petrology, v. 52, p. 1171–1201.

    Google Scholar 

  • Warren, J. K., 1997, Evaporites, brines and base metals: brines, flow and “the evaporite that was”: Australian Journal of Earth Sciences, v. 44, p. 149–183.

    Google Scholar 

  • Warren, J. K., 1999, Evaporites: their evolution and economics: Oxford, UK, Blackwell Scientific, 438 p.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J. K., 2008, Salt as sediment in the Central European Basin system as seen from a deep time perspective (Chapter 5.1), in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 249–276.

    Google Scholar 

  • Warren, J. K., K. G. Havholm, M. R. Rosen, and M. J. Parsley, 1990, Evolution of gypsum karst in the Kirschberg Evaporite Member near Fredericksburg, Texas: Journal of Sedimentary Petrology, v. 60, p. 721–734.

    Google Scholar 

  • Warren, J. K., and R. H. Kempton, 1997, Evaporite Sedimentology and the Origin of Evaporite-Associated Mississippi Valley-type Sulfides in the Cadjebut Mine Area, Lennard Shelf, Canning Basin, Western Australia., in I. P. Montanez, J. M. Gregg, and K. L. Shelton, eds., Basinwide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations: Tulsa OK, SEPM Special Publication, v. 57, p. 183–205.

    Google Scholar 

  • Watney, W. L., S. E. Nissen, S. Bhattacharya, and D. Young, 2003, Evaluation of the Role of Evaporite Karst in the Hutchinson, Kansas, Gas Explosions, January 17 and 18, 2001, in K. S. Johnson, and J. T. Neal, eds., Evaporite karst and engineering/environmental problems in the United State, Oklahoma Geological Survey Circular 109, p. 119–147.

    Google Scholar 

  • West, I. M., 1964, Evaporite diagenesis in the lower Purbeck beds of Dorset: Proceedings – Yorkshire Geological Society, v. 34, p. 315–330.

    Google Scholar 

  • West, I. M., 1965, Macrocell structure and enterolithic veins in British Purbeck gypsum and anhydrite: Proceedings of Yorkshire Geological Society, v. 35, p. 47–58.

    Google Scholar 

  • West, I. M., 1973, Vanished evaporites; significance of strontium minerals: Journal of Sedimentary Petrology, v. 43, p. 278–279.

    Google Scholar 

  • West, I. M., 1979, Review of evaporite diagenesis in the Purbeck Formation of southern England, Symposium on: West European Jurassic Sedimentation – “Sedimentation Jurassique W. European”, Association of French Sedimentologists Special Publication No. 1, p. 407–416.

    Google Scholar 

  • Wheeler, W. H., and D.A. Textoris, 1978, Triassic limestone and chert of playa origin in North Carolina: Journal of Sedimentary Petrology, v. 48, p. 765–776.

    Google Scholar 

  • White, A. H., and B. C. Youngs, 1980, Cambrian alkali playa-lacustrine sequence in the northeastern Officer Basin, South Australia.: Journal of Sedimentary Petrology, v. 50, p. 1279–1286.

    Google Scholar 

  • White, W. B., 1988, Geomorphology and hydrology of karst terrains: New York, Oxford University Press, 464 p.

    Google Scholar 

  • Wiggins, W. D., P. M. Harris, and R. C. Burruss, 1993, Geochemistry of post-uplift calcite in the Permian Basin of Texas and New Mexico: Geological Society of America Bulletin, v. 105, p. 779–790.

    Google Scholar 

  • Wigley, T. M. L., J. J. Drake, J. F. Quinlan, and D. C. Ford, 1973, Geomorphology and geochemistry of a gypsum karst near Canal Flats, British Columbia: Canadian J. Earth Science, v. 10, p. 113–129.

    Google Scholar 

  • Williams, G. K., 1984, Some musings on the Devonian Elk Point Basin, western Canada: Bulletin of Canadian Petroleum Geology, v. 32, p. 216–232.

    Google Scholar 

  • Wilson, H. H., 1975, Sub Salt Origin of Exotic Blocks in Piercement Domes Reveals the Probability of Oligo-Miocene Salt in the Gulf of Mexico Region: Gulf Coast Association of Geological Societies Transactions, v. 25, p. 109.

    Google Scholar 

  • Winter, B., J. Valley, J. Simo, G. Nadon, and C. Johnson, 1995, Hydraulic seals and their origin – Evidence from the stable isotope geochemistry of dolomites in the Middle Ordovician St-Peter Sandstone, Michigan Basin: Bulletin American Association of Petroleum Geologists, v. 79, p. 30–48.

    Google Scholar 

  • Wood, M. W., and H. F. Shaw, 1976, The geochemistry of celestites from the Yates area near Bristol (U.K.): Chem. Geol., v. 17, p. 179–193.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and M. M. Cross, 2000, The influence of rock fabric and mineralogy on thermochemical sulfate reduction: Khuff Formation, Abu Dhabi: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 1210–1221.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and N. H. Oxtoby, 1995, Gas souring by thermochemical sulfate reduction at 140° C: Bulletin-American Association of Petroleum Geologists., v. 79, p. 854–863.

    Google Scholar 

  • Woronick, R. E., and L. S. Land, 1985, Late burial diagenesis, Lower Cretaceous Pearsall and Lower Glen Rose Formations, south Texas ( USA). in N. Schneidermann, and P. M. Harris, eds., Carbonate cements, SEPM, Tulsa; Special Publication 36, p. 265–275.

    Google Scholar 

  • Wright, D. T., 1999, The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia: Sedimentary Geology, v. 126, p. 147–157.

    Google Scholar 

  • Yaoru, L., and A. H. Cooper, 1997, Gypsum karst geohazards in China, in B. F. Beck, and J. B. Stephenson, eds., The Engineering Geology and Hydrogeology of Karst Terranes. Proceedings of the 6th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Springfield, MO, 6–9 April, 1997, p. 117–126.

    Google Scholar 

  • Yechieli, Y., M.Abelson,A. Bein, O. Crouvi, and V. Shtivelman, 2006, Sinkhole “swarms” along the Dead Sea coast: Reflection of disturbance of lake and adjacent groundwater systems: Geological Society of America Bulletin, v. 118, p. 1075–1087.

    Google Scholar 

  • Yilmaz, I. ü. k., M. Marschalko, and M. Bednarik, 2011, Gypsum collapse hazards and importance of hazard mapping: Carbonates and Evaporites, v. 26, p. 193–209.

    Google Scholar 

  • Zahm, C., and R. G. Loucks, 2011, Fracture and non-matrix pore development related to evaporite paleokarst collapse, Lower Cretaceous Comanche Shelf, Texas: American Association of Petroleum Geologists Search and Discovery Article #30215.

    Google Scholar 

  • Zarei, M., E. Raeisi, and C. J. Talbot, 2012, Karst development on a mobile substrate: Konarsiah salt extrusion, Iran: Geological Magazine, v. 149, p. 412–422.

    Google Scholar 

  • Zaritsky, P. V., 1961, Celestite from the Lower Permian deposits of the Donbas: Akademiya Nauk SSR, Doklady, v. 133, p. 801–804.

    Google Scholar 

  • Zechner, E., M. Konz, A. Younes, and P. Huggenberger, 2011, Effects of tectonic structures, salt solution mining, and density-driven groundwater hydraulics on evaporite dissolution (Switzerland): Hydrogeology Journal, v. 19, p. 1323–1334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Salt Dissolution and Pointers to Vanished Evaporites: Karst, Breccia, Nodules and Cement. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_7

Download citation

Publish with us

Policies and ethics