Skip to main content

Subaqueous Salts: Salinas and Perennial Lakes

  • Chapter
Evaporites
  • 4985 Accesses

Abstract

Ancient shoalwater platform (saltern) and deepwater (slope and basin) evaporites are dominantly subaqueous precipitates, and, as for the mudflats and pan settings discussed in the previous chapter, when we seek equivalence in the Quaternary record we find our marine-fed choices are limited both in number and scale (Fig. 4.1; Table 4.1). If we consider all nonmarine and marine saline perennial water masses in modern systems as suitable for discussion in this chapter then, as well examples of larger saline perennial lakes, such as Great Salt Lake and Lake Urmia, we must include the feeder-edge brine pools to some larger saline pans and lakes, such as pools or moat facies to lakes Magadi and Natron, and some centripetal depressions to the Turkish lakes such as in Acigolu. In Chap. 12 subaqueous cryogenic continental examples discussed include Karabogazgol and various mirabilite lakes on the Canadian plains. I also arbitrarily split out of this chapter some examples of the larger continental saline pans with feeder pools. This latter group, including most of the South American salars, were discussed in the preceding chapter. Following a similar reasoning, if the bulk of the Holocene column in a lake is dominated by subaqueous textures, then I include it in this chapter, even though Holocene aggradation has moved uppermost part of the Holocene column into a sabkha setting, as in many modern gypsum-filled coastal salinas in southern and western Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Use of the term gypsite by Logan and coworkers to describe a unit that is laminated and dominated by sand-sized gypsum prisms is unfortunate. Outside of the University of Western Australia, the use of the term gypsite follows general sedimentological usage to define a very fine grained silt or mud-sized sediment (pelite, micrite, etc.).

  2. 2.

    In the early 1930s, Lake Urmia was called Lake Rezaiyeh after Reza Shah Pahlavi. In the late 1970s, after the Islamic revolution, the Government of Iran reverted to calling the lake by its previous name – Lake Urmia. Lake Urmia’s ancient Persian name, however, was Chichast (meaning glittering), a reference to the glittering evaporitic salts suspended in the lake water and its shores. In the medieval times the lake came to be known as Lake Kabuda, meaning azure in Persian.

  3. 3.

    South of Lake Natron, within an ephemeral channel of the Engare Sero River, 120 ka hominid footprints are preserved in a tuff bed. It preserves the oldest modern human trackway in East Africa and one of the largest collections of hominid footprints in the world, giving an indication of the size of foraging parties of early modern humans (Richmond et al. 2011; Zimmer et al. 2012).

  4. 4.

    Use of fluoride-rich trona (from the East African rift) as a food tenderiser has led to widespread fluorosis (mottled teeth and skeletal fluorosis) in the local population (Vuhahula et al. 2009; Rango et al. 2009).

  5. 5.

    Colloid grains in a silicasol are minute (10–20 nm) and so have relatively large specific surface areas, making them highly responsive to changing brine chemistries.

  6. 6.

    Solute proportions of the waters of the Dead Sea are relatively rich in calcium, magnesium, potassium and bromine, and relatively poor in sodium, sulphate and carbonate, thus are significantly different from those of modern seawater (Table 4.4). Strictly speaking, in view of the peculiar chemical composition of its waters, the accepted definition of “salinity” based on seawater ionic proportions does not apply to the waters of the Dead Sea and it has been replaced by an “equivalent salinity” based on pycnometry (Anati 1999; Gertman and Hecht 2002) and referred to as “quasi-salinity.” Thus, quasi-salinity is defined as the Dead Sea water density anomaly from 1,000 kg/m3 at an arbitrary reference temperature of 25 °C. For the sake of comparison, a quasi-salinity of 235 kg/m3 is the equivalent of 280 ‰.

  7. 7.

    The Ancient Egyptians used Dead Sea asphalt in the mummification process. The word “mummy” comes from the Arabic word “mummiyah,” which means asphalt. Mummiyah also has what are considered by some to be medicinal properties (Nissenbaum et al. 2002).

  8. 8.

    Lisan is Arabic for tongue and describes the shape of the Lisan Peninsula where the type section was measured.

  9. 9.

    There is the report in the 27th chapter of the Gospel of Matthew in the New Testament that an earthquake was felt in Jerusalem on the day of the crucifixion of Jesus of Nazareth. Williams et al. (2011) tabulated a varved chronology from a late Holocene core from Ein Gedi on the western shore of the Dead Sea between deformed sediments due to a widespread earthquake in 31 BC and deformed sediments due to an early first-century earthquake. Twenty-eight historically documented earthquakes were identified in the 1598-year interval between 140 BC and 1458 AD preserved in the Ein Gedi core. The early first-century seismic event is tentatively assigned a date of 31 AD with an accuracy of ±5 years. Plausible candidates for this event include the earthquake reported in the Gospel of Matthew. That is, there is an earthquake event preserved in the sediments that occurred sometime before or after the crucifixion and it was of sufficient magnitude to be impressed in the popular mind. So, earthquakes were ongoing in the region and one was in effect “borrowed” or time shifted by the author of the Gospel of Matthew. It is highly likely a local earthquake occurred during the time of writing of the Gospel of Matthew and it was “called upon” so as to match the date of the crucifixion. The aforementioned event occurred sometime between 26 and 36 AD and was sufficiently energetic to deform the sediments at Ein Gedi, but not energetic enough to produce a still extant widespread and extra-biblical historical record (unlike the higher magnitude earthquake of 31 BC with its widespread historical documentation).

References

  • Abed, A. M., and R. Yaghan, 2000, On the paleoclimate of Jordan during the last glacial maximum: Palaeogeography Palaeoclimatology Palaeoecology, v. 160, p. 23–33.

    Google Scholar 

  • Abu-Jaber, N. S., 1998, A new look at the chemical and hydrological evolution of the Dead Sea: Geochimica et Cosmochimica Acta, v. 62, p. 1471–1479.

    Google Scholar 

  • Aharon, P., Y. Kolodny, and E. Sass, 1977, Recent hot brine dolomitization in the ‘’Solar Lake,” Gulf of Elat; isotopic, chemical, and mineralogical study: Journal of Geology, v. 85, p. 27–48.

    Google Scholar 

  • Aharon, P., Y. Kolodny, and E. Sass, 1977, Recent hot brine dolomitization in the ‘’Solar Lake,” Gulf of Elat; isotopic, chemical, and mineralogical study: Journal of Geology, v. 85, p. 27–48.

    Google Scholar 

  • Alderman, A. R., and H. C. W. Skinner, 1957, Dolomite sedimentation in the southeast of South Australia: American Journal of Science, v. 255, p. 561–567.

    Google Scholar 

  • Anati, D. A., 1998, Dead Sea water trajectories in the T–S space: Hydrobiologia, v. 381, p. 43–49.

    Google Scholar 

  • Anati, D. A., 1999, The salinity of hypersaline brines: concepts and misconceptions: International Journal of Salt Research, v. 8, p. 1–16.

    Google Scholar 

  • Anati, D. A., Gavrieli, and A. Oren, 1995, The residual effect of the 1991–93 rainy winter on the Dead sea stratification: Israel Journal of Science, v. 44, p. 63–70.

    Google Scholar 

  • Arakel, A. V., 1980, Genesis and diagenesis of Holocene evaporitic sediments in Hutt and Leeman lagoons, Western Australia: Journal of Sedimentary Petrology, v. 50, p. 1305–1326.

    Google Scholar 

  • Aref, M. A. M., O. E. A. Attia, and A. M. A. Wali, 1997, Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, Gulf of Suez, Egypt: Sedimentary Geology, v. 110, p. 123–145.

    Google Scholar 

  • Arnow, T., and D. Stephens, 1990, Hydrologic characteristics of the Great Salt Lake, Utah, 1847–1986: US Geological Survey Water-Supply Paper 2332, 32p.

    Google Scholar 

  • Asmar, B. N., and P. Ergenzinger, 2002, Dynamic simulation of the Dead Sea: Advances in Water Resources, v. 25, p. 263–277.

    Google Scholar 

  • Attia, O. E. A., 2013, Sedimentological characteristics and geochemical evolution of Nabq sabkha, Gulf of Aqaba, Sinai, Egypt: Arabian Journal of Geosciences, v. 6, p. 2045–2059.

    Google Scholar 

  • Attia, O. E. A., 2013, Sedimentological characteristics and geochemical evolution of Nabq sabkha, Gulf of Aqaba, Sinai, Egypt: Arabian Journal of Geosciences, v. 6, p. 2045–2059.

    Google Scholar 

  • Baker, B. H., 1958, Geology of the Magadi Area: Geological Survey of Kenya Report, v. 42, p. 81 p.

    Google Scholar 

  • Baker, P. A., and M. Kastner, 1981, Constraints on the formation of sedimentary dolomite.: Science, v. 213, p. 214–216.

    Google Scholar 

  • Balch, D. P., A. S. Cohen, D. W. Schnurrenberger, B. J. Haskell, B. Valero-Garces, J. W. Beck, H. Cheng, and R. L. Edwards, 2005, Ecosystem and paleohydrological response to Quaternary climate change in the Bonneville Basin, Utah: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 221, p. 99–122.

    Google Scholar 

  • Barkan, E., B. Luz, and B. Lazar, 2001, Dynamics of the carbon dioxide system in the Dead Sea: Geochimica et Cosmochimica Acta, v. 65, p. 1.

    Google Scholar 

  • Bartov, Y., M. Stein, Y. Enzel, A. Agnon, and Z. Reches, 2002, Lake Levels and Sequence Stratigraphy of Lake Lisan, the Late Pleistocene Precursor of the Dead Sea: Quaternary Research, v. 57, p. 9–21.

    Google Scholar 

  • Beadle, L. C., 1974, Inland waters of tropical Africa: London, Longman, 365 p.

    Google Scholar 

  • Begin, Z. B., W. Broecker, B. Buchbinder, Y. Druckman, A. Kaufman, M. Magaritz, and D. Neev, 1985, Dead Sea and Lake Lisan levels in the past 30,000 years: Geological Survey of Israel, Preliminary report, v. GSI/29.8, p. 18 p.

    Google Scholar 

  • Begin, Z. B., A. Ehrlich, and Y. Nathan, 1974, Lake Lisan, the Pleistocene precursor of the Dead Sea: Bulletin Geological Survey Israel, v. 63, p. 30.

    Google Scholar 

  • Behr, H.-J., and C. Röhricht, 2000, Record of seismotectonic events in siliceous cyanobacterial sediments (Magadi cherts), Lake Magadi, Kenya: International Journal of Earth Sciences, v. 89, p. 268–283.

    Google Scholar 

  • Ben-Avraham, Z., T. Niemi, C. Heim, J. Negendank, and A. Nur, 1999, Holocene stratigraphy of the Dead Sea: Correlation of high-resolution seismic reflection profiles to sediment cores: Journal of Geophysical Research-Solid Earth, v. 104, p. 17617–17625.

    Google Scholar 

  • Ben-Avraham, Z., T. M. Niemi, D. Neev, J. K. Hall, and Y. Levy, 1993, Distribution of Holocene sediments and neotectonics in the deep north basin of the Dead Sea: Marine Geology, v. 113, p. 219–231.

    Google Scholar 

  • Benson, L., B. Linsley, J. Smoot, S. Mensing, S. Lund, S. Stine, and A. Sarna-Wojcickig, 2003, Influence of Pacific Decadal Oscillation on the climate of Sierra Nevada, California and Nevada: Quaternary Research, v. 59, p. 151–159.

    Google Scholar 

  • Benson, L., B. Linsley, J. Smoot, S. Mensing, S. Lund, S. Stine, and A. Sarna-Wojcickig, 2003, Influence of Pacific Decadal Oscillation on the climate of Sierra Nevada, California and Nevada: Quaternary Research, v. 59, p. 151–159.

    Google Scholar 

  • Bookman, R., Y. Enzel, A. Agnon, and M. Stein, 2004, Late Holocene lake levels of the Dead Sea: Geological Society of America Bulletin, v. 116, p. 555–571.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1994, Living hydromagnesite stromatolites from Turkey: Sedimentary Geology, v. 92, p. 1–5.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1996, Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey: Journal of Sedimentary Research A: Sedimentary Petrology and Processes, v. 66, p. 991–1002.

    Google Scholar 

  • Buchardt, B., C. Israelson, P. Seaman, and G. Stockmann, 2001, Ikaite tufa towers in Ikka Fjord, southwest Greenland: Their formation by mixing of seawater and alkaline spring water: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 71A, p. 176–189.

    Google Scholar 

  • Burrough, S. L., D. S. G. Thomas, and R. M. Bailey, 2009, Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system: Quaternary Science Reviews, v. 28, p. 1392–1411.

    Google Scholar 

  • Camur, M. Z., and H. Mutlu, 1996, Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Golu) basin, Turkey: Chemical Geology, v. 127, p. 313–329.

    Google Scholar 

  • Closson, D., P. LaMoreaux, N. Abou Karaki, and H. al-Fugha, 2007, Karst system developed in salt layers of the Lisan Peninsula, Dead Sea, Jordan: Environmental Geology, v. 52, p. 155–172.

    Google Scholar 

  • Cohen, T. J., G. C. Nanson, J. D. Jansen, B. G. Jones, Z. Jacobs, J. R. Larsen, J. H. May, P. Treble, D. M. Price, and A. M. Smith, 2012, Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: Varying moisture sources and increased continental aridity: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 356-357, p. 89–108.

    Google Scholar 

  • Colman, S. M., K. Kelts, and D. A. Dinter, 2002, Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy: Sedimentary Geology, v. 148, p. 61–78.

    Google Scholar 

  • Colman, S. M., K. Kelts, and D. A. Dinter, 2002, Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy: Sedimentary Geology, v. 148, p. 61–78.

    Google Scholar 

  • Coshell, L., M. R. Rosen, and K. J. McNamara, 1998, Hydromagnesite replacement of biomineralized aragonite in a new location of Holocene stromatolites, Lake Walyungup, Western Australia: Sedimentology, v. 45, p. 1005–1018.

    Google Scholar 

  • Council, T. C., and P. C. Bennett, 1993, Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds: Geology, v. 21, p. 971–974.

    Google Scholar 

  • Damnati, B., and M. Taieb, 1995, Solar and ENSO signatures in laminated deposits from Lake Magadi (Kenya) during the Pleistocene/Holocene transition: Journal of African Earth Sciences, v. 21, p. 373–382.

    Google Scholar 

  • Darragi, F., M. Gueddari, and B. Fritz, 1983, Mise en evidence d’un fluoro-sulfate de sodium, la kogarkoite, dans les croutes salines du Lac Natron en Tanzanie (Presence of Kogarkoite (Na3SO4F) in the salt paragenesis of Lake Natron in Tanzania: Comptes-Rendus des Seances de l’Academie des Sciences, Serie 2: Mecanique-Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, v. 297, p. 141–144.

    Google Scholar 

  • De Cort, G., I. Bessems, E. Keppens, F. Mees, B. Cumming, and D. Verschuren, 2013, Late-Holocene and recent hydroclimatic variability in the central Kenya Rift Valley: The sediment record of hypersaline lakes Bogoria, Nakuru and Elementeita: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 388, p. 69–80.

    Google Scholar 

  • Degens, E. T., H. K. Wong, S. Kempe, and F. Kurtman, 1984, A Geological Study of Lake Van, Eastern Turkey: Geologische Rundschau, v. 73, p. 701–734.

    Google Scholar 

  • Delfino, D. O., M. D. Wanderley, L. H. Silva e Silva, F. Feder, and F. A. S. Lopes, 2012, Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil: Sedimentary Geology, v. 263–264, p. 85–95.

    Google Scholar 

  • Dellwig, L. F., 1955, Origin of the Salina Salt of Michigan: Journal Sedimentary Petrology, v. 25, p. 83–110.

    Google Scholar 

  • Damnati, B., and M. Taieb, 1995, Solar and ENSO signatures in laminated deposits from Lake Magadi (Kenya) during the Pleistocene/Holocene transition: Journal of African Earth Sciences, v. 21, p. 373–382.

    Google Scholar 

  • Demange, J., G. M. di Paola, J. Lavigne, M. Lopoukhine, and L. Stieljes, 1971, Etudé géothermique de Territore Francais des Afars et des Issas: Nov. 70, Avr. 71, Rapp. 71, SGN 262 GTM Bureau de Recherches Géoliques et Miniéres, Orléans.

    Google Scholar 

  • Deniz, O., and M. Z. Yildiz, 2007, The ecological consequences of level changes in Lake Van: Water Resources, v. 34, p. 707–711.

    Google Scholar 

  • Dietzel, M., and I. Letofsky-Papst, 2002, Stability of magadiite between 20 and 100°C: Clays and Clay Minerals, v. 50, p. 657–666.

    Google Scholar 

  • Eardley, A. J., 1938, Sediments of Great Salt Lake, Utah: Bulletin American Association of Petroleum Geologists, v. 22, p. 1305–1411.

    Google Scholar 

  • Edwards, S., D. McKirdy, Y. Bone, P. Gell, and V. Gostin, 2006, Diatoms and ostracods as mid-Holocene palaeoenvironmental indicators, North Stromatolite Lake, Coorong National Park, South Australia *: Australian Journal of Earth Sciences, v. 53, p. 651–663.

    Google Scholar 

  • Eimanifar, A., and F. Mohebbi, 2007, Urmia Lake (Northwest Iran): a brief review: Saline Systems, v. 3, p. 1–8.

    Google Scholar 

  • El Taki, H., and B. R. Pratt, 2010, Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites : RedRiver strata (Upper Ordovician) of Southern Saskatchewan, Canada: Bulletin Canadian Petroleum Geology, v. 60, p. 37–58.

    Google Scholar 

  • Enzel, Y., R. Bookman, D. Sharon, H. Gvirtzman, U. Dayan, B. Ziv, and M. Stein, 2003, Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall: Quaternary Research, v. 60, p. 263–273.

    Google Scholar 

  • Epstein, J. A., B. Zelvianski, and G. Ron, 1975, Manganese in sodium chloride precipitating for mixing Dead Sea brines: Israel J. Earth Sci., v. 24, p. 112–113.

    Google Scholar 

  • Erol, O., 1978, The Quaternary history of the lake basins of central southern Anatolia, in W. C. Brice, ed., The Environmental History of the Near and Middle East Since the Last Ice Age: London, Academic Press, p. 111–139.

    Google Scholar 

  • Eugster, H. P., 1969, Inorganic bedded cherts from the Magadi area, Kenya: Contributions Mineralogy and Petrology, v. 22, p. 1–31.

    Google Scholar 

  • Eugster, H. P., 1970, Chemistry and origin of the brines of Lake Magadi, Kenya: Special Publ. Geol. Soc., v. 3, p. 215–235.

    Google Scholar 

  • Eugster, H. P., 1980b, Lake Magadi, Kenya, and its precursors, in A. Nissenbaum, ed., Hypersaline brines and evaporitic environments, Elservier Developments in Sedimentology 28, p. 195–232.

    Google Scholar 

  • Eugster, H. P., 1986, Lake Magadi, Kenya; a model for rift valley hydrochemistry and sedimentation?, in L. E. Frostick, R. W. Renaut, I. Reid, and J. J. Tiercelin, eds., Sedimentation in the African rifts, Geological Society Special Publication 25, p. 177–189.

    Google Scholar 

  • Eugster, H. P., and L. A. Hardie, 1978, Saline Lakes, in A. Lerman, ed., Lakes; chemistry, geology, physics: New York, NY, Springer-Verlag, p. 237–293.

    Google Scholar 

  • Evans, G., V. Schmidt, P. Bush, and H. Nelson, 1969, Stratigraphy and geologic history of the sabkha, Abu Dhabi, Persian Gulf: Sedimentology, v. 12, p. 145–159.

    Google Scholar 

  • Fontes, J. C., P. Pouchan, J. F. Saliege, and G. M. Zuppi, 1980, Environmental isotope study of groundwater system in Republic of Djibouti: Arid Zone Hydrology – Proceedings of Advisory Group Meeting, p. 237–267.

    Google Scholar 

  • Friedman, G. M., A. J. Amiel, M. Braun, and D. S. Miller, 1973, Generation of carbonate particles and laminites in algal mats – Examples from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea: Bulletin American Association of Petroleum Geologists, v. 57, p. 541–557.

    Google Scholar 

  • Frumkin, A., 1994a, Hydrology and denudation rates of halite karst: Journal of Hydrology, v. 162.

    Google Scholar 

  • Garber, R. A., 1980, The sedimentology of the Dead Sea: Doctoral thesis, Rennsaler Polytechnic, 170 p.

    Google Scholar 

  • Garber, R. A., and G. M. Friedman, 1983, Coated grains along the Dead Sea shore, in T. Peryt, ed., Coated Grains: New York, Springer Verlag, p. 163–168.

    Google Scholar 

  • Garber, R. A., G. M. Friedman, and A. Nissenbaum, 1981, Concentric aragonitic ooids from the Dead Sea: Journal of Sedimentary Petrology, v. 51, p. 455–458.

    Google Scholar 

  • Garber, R. A., Y. Levy, and G. M. Friedman, 1987, The sedimentology of the Dead Sea: Carbonates and Evaporites, v. 2, p. 43–57.

    Google Scholar 

  • Garber, R. A., Y. Levy, and G. M. Friedman, 1987, The sedimentology of the Dead Sea: Carbonates and Evaporites, v. 2, p. 43–57.

    Google Scholar 

  • Garfunkel, Z., and Z. Ben-Avraham, 1996, The structure of the Dead Sea: Tectonophysics, v. 155–176.

    Google Scholar 

  • Garfunkel, Z., I. Zak, and R. Freund, 1981, Active faulting in the Dead Sea Rift: Tectonophysics, v. 62, p. 37–52.

    Google Scholar 

  • Garrett, D., 2004, Handbook of lithium and natural calcium chloride, Elsevier Academic Press, 460 p.

    Google Scholar 

  • Gasse, F., and J. C. Fontes, 1989, Palaeoenvironments and palaeohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10,000 yr B.P: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 69, p. 67–102.

    Google Scholar 

  • Gavish, E., 1980, Recent sabkhas marginal to the southern coasts of Sinai, Red Sea, in A. Nissenbaum, ed., Hypersaline brines and evaporitic environments, Elsevier, Amsterdam, p. 233–251.

    Google Scholar 

  • Gavrieli, 1997, Halite deposition in the Dead Sea: 1960–1993, in T. Neimi, Z. Ben-Avraham, and J. R. Gat, eds., The Dead Sea, Oxford University Press, p. 161–171.

    Google Scholar 

  • Geddes, M. C., P. De Deckker, and W. C. Williams, 1981, On the chemistry and biota of some saline lakes in Western Australia: Hydrobiologia, v. 81, p. 201–222.

    Google Scholar 

  • Gertman, I., and A. Hecht, 2002, The Dead Sea hydrography from 1992 to 2000: Journal of Marine Systems, v. 35, p. 169–181.

    Google Scholar 

  • Haliva-Cohen, A., M. Stein, S. L. Goldstein, A. Sandler, and A. Starinsky, 2012, Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea basin: Quaternary Science Reviews, v. 50, p. 55–70.

    Google Scholar 

  • Halley, R. B., 1977, Ooid fabric and structure in the Great Salt Lake and the Geologic record: Journal of Sedimentary Petrology, v. 47, p. 1099–1120.

    Google Scholar 

  • Handford, C. R., A. C. Kendall, D. R. Prezbindowski, J. B. Dunham, and B. W. Logan, 1984, Salina-margin tepees, pisoliths and aragonite cements, Lake MacLeod, Western Australia; Their significance in interpreting ancient analogs: Geology, v. 12, p. 523–527.

    Google Scholar 

  • Hardie, L. A., J. P. Smoot, and H. P. Eugster, 1978, Saline lakes and their deposits: a sedimentological approach, in A. Matter, and M. E. Tucker, eds., Modern and Ancient Lake Sediments, v. 2, International Association Sedimentologists Special Publication, p. 7–41.

    Google Scholar 

  • Hay, R. L., 1968, Chert and its sodium-silicate precursors in sodium-carbonate lakes of east Africa: Contributions to Mineralogy and Petrology, v. 17, p. 255–274.

    Google Scholar 

  • Hay, R. L., 1970, Silicate reactions in three lithofacies of a semi arid basin, Olduvai Gorge, Tanzania: Mineralogical Society of America Special Paper, v. 3, p. 237–255.

    Google Scholar 

  • Helvaci, C., H. Mordogan, M. Colak, and I. Gundogan, 2003, Presence and Distribution of Lithium in Borate Deposits and Some Recent Lake Waters of West-Central Turkey: International Geology Review, v. 455.

    Google Scholar 

  • Herut, B., I. Gavrieli, and L. Halicz, 1998, Coprecipitation of trace and minor elements in modern authigenic halites from the hypersaline Dead Sea brine: Geochimica et Cosmochimica Acta, v. 62, p. 1587–1598.

    Google Scholar 

  • Hilaire-Marcel, C., J. Casanova, and M. Taieb, 1987, Isotopic age and lacustrine environments during late Quaternary in the Tanzanian Rift (Lake Natron), in M. R. Rampino, J. E. Sanders, W. S. Newman, and L. K. Konigsson, eds., Climate; history, periodicity, and predictability: New York, NY, United States, Van Nostrand Reinhold Co., p. 117–123.

    Google Scholar 

  • Hoeft, S. E., T. R. Kulp, J. F. Stolz, J. T. Hollibaugh, and R. S. Oremland, 2004, Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer: Applied & Environmental Microbiology, v. 70, p. 2741–2745.

    Google Scholar 

  • Houssein, D. E., and G. Axelsson, 2010, Geothermal resources in the Asal Region, Republic of Djibouti: An update with emphasis on reservoir engineering studies: Geothermics, v. 39, p. 220–227.

    Google Scholar 

  • Icole, M., J.-P. Masse, G. Perinet, and M. Taieb, 1990, Pleistocene lacustrine stromatolites, composed of calcium carbonate, fluorite, and dolomite, from Lake Natron, Tanzania; depositional and diagenetic processes and their paleoenvironmental significance: Sedimentary Geology, v. 69, p. 139–155.

    Google Scholar 

  • Icole, M., and G. Perinet, 1984, Les silicates sodiques et les milieux evaporitiques carbonates bicarbonates sodiques: une revue: Revue de Geologie Dynamique et de Geographie Physique, v. 25, p. 167–176.

    Google Scholar 

  • Irion, G., and G. Mueller, 1968, Huntite, dolomite, magnesite and polyhalite of Recent age from Tuz Golu, Turkey: Nature, v. 220, p. 1309–1310.

    Google Scholar 

  • Jellison, R., and J. M. Melack, 1993, Meromixis in hypersaline Mono Lake, California. 1. Stratification and vertical mixing during the onset, persistence, and breakdown of meromixis: Limnology & Oceanography, v. 38, p. 1008–1019.

    Google Scholar 

  • Jellison, R., J. Romero, and J. M. Melack, 1998, The onset of meromixis during restoration of Mono Lake, California: Unintended consequences of reducing water diversions: Limnology and Oceanography, v. 43, p. 706–711.

    Google Scholar 

  • Jones, B., D. Naftz, R. Spencer, and C. Oviatt, 2009, Geochemical Evolution of Great Salt Lake, Utah, USA: Aquatic Geochemistry, v. 15, p. 95–121.

    Google Scholar 

  • Jones, B. F., H. P. Eugster, and S. L. Rettig, 1977, Hydrogeochemistry of the Lake Magadi Basin, Kenya: Geochimica Cosmochimica Acta, v. 41, p. 53–72.

    Google Scholar 

  • Jones, B. F., S. L. Rettig, and H. P. Eugster, 1967, Silica in alkaline brines: Science, v. 158, p. 1310–1314.

    Google Scholar 

  • Kadioglu, M., Z. Sen, and E. Batur, 1997, The greatest soda-water lake in the world and how it is influenced by climatic change: Ann. Geophysicae, v. 15, p. 1489–1497.

    Google Scholar 

  • Kadioglu, M., Z. Sen, and E. Batur, 1997, The greatest soda-water lake in the world and how it is influenced by climatic change: Ann. Geophysicae, v. 15, p. 1489–1497.

    Google Scholar 

  • Kashima, K., 2002, Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey: Catena, v. 48, p. 3–20.

    Google Scholar 

  • Kastner, M., 1984, Control of dolomite formation: Nature, v. 311, p. 410–411.

    Google Scholar 

  • Kelts, K., and M. Shahrabi, 1986, Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 105–130.

    Google Scholar 

  • Kempe, S., and E. T. Degens, 1978, Lake Van varve record – the past 10,420 years, in E. T. Degens, and F. Kurtman, eds., Geology of Lake Van: Ankara, Turkey, MTA Press, p. 56–63.

    Google Scholar 

  • Kempe, S., J. Kazmierczak, G. Landmann, T. Konuk, A. Riemer, and A. Lipp, 1991, Largest known microbialites discovered in Lake Van, Turkey: Nature, v. 349, p. 605–608.

    Google Scholar 

  • Jones, B., D. Naftz, R. Spencer, and C. Oviatt, 2009, Geochemical Evolution of Great Salt Lake, Utah, USA: Aquatic Geochemistry, v. 15, p. 95–121.

    Google Scholar 

  • Konishi, Y., J. Prince, and B. Knott, 2001, The fauna of thrombolitic microbialites, Lake Clifton, Western Australia: Hydrobiologia, v. 457, p. 39–47.

    Google Scholar 

  • Krull, E., D. Haynes, S. Lamontagne, P. Gell, D. McKirdy, G. Hancock, J. McGowan, and R. Smernik, 2009, Changes in the chemistry of sedimentary organic matter within the Coorong over space and time: Biogeochemistry, v. 92, p. 9–25.

    Google Scholar 

  • Krumbein, W. E., 1975, Biogenic monohydrocalcite spherules in lake sediments of Lake Kivu (Africa) and the Solar Lake (Sinai): Sedimentology, v. 22, p. 631–634.

    Google Scholar 

  • Krumbein, W. E., Y. Cohen, and M. Shilo, 1977, Solar Lake (Sinai) 4. Stromatolitic cyanobacterial mats: Limnology and Oceanography, v. 22, p. 635–656.

    Google Scholar 

  • Krumgalz, B. S., A. Hecht, A. Starinsky, and A. Katz, 2000, Thermodynamic constraints on Dead Sea evaporation: can the Dead Sea dry up?: Chemical Geology, v. 165, p. 1–11.

    Google Scholar 

  • Kushnir, J., 1981, Formation and early diagenesis of varved evaporite sediments in a coastal hypersaline pool: Journal of Sedimentary Petrology, v. 51, p. 1193–1203.

    Google Scholar 

  • Landmann, G., G. M. Abu Qudaira, K. Shawabkeh, V. Wrede, and S. Kempe, 2002, Geochemistry of the Lisan and Damya Formations in Jordan, and implications for palaeoclimate: Quaternary International, v. 89, p. 45–57.

    Google Scholar 

  • Landmann, G., A. Reimer, G. Lemcke, and S. Kempe, 1996, Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey: Palaeogeography Palaeoclimatology Palaeoecology, v. 122, p. 107–118.

    Google Scholar 

  • Larsen, B. D., Z. Ben-Avraham, and H. Shulman, 2002, Fault and salt tectonics in the southern Dead Sea basin: Tectonophysics, v. 346, p. 71–90.

    Google Scholar 

  • Levy, Y., 1984, Halite from the bottom of the Dead Sea: Geolo. Surv. Israel Report GSI/48/84.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Lyons, W. B., H. E. Gaudette, and H. C. Gustafson, 1982, Dissolved organic carbon in pore waters from a hypersaline environment: Organic geochemistry, v. 3, p. 133–135.

    Google Scholar 

  • Lyons, W. B., H. E. Gaudette, and H. C. Gustafson, 1982, Dissolved organic carbon in pore waters from a hypersaline environment: Organic geochemistry, v. 3, p. 133–135.

    Google Scholar 

  • Ma, L., T. K. Lowenstein, B. Li, P. Jiang, C. Liu, J. Zhong, J. Sheng, H. Qiu, and H. Wu, 2010, Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China: Applied Geochemistry, v. 25, p. 1770–1782.

    Google Scholar 

  • Ma, L., T. K. Lowenstein, and J. M. Russell, 2011, A Brine Evolution Model and Mineralogy of Chemical Sediments in a Volcanic Crater, Lake Kitagata, Uganda: Aquatic Geochemistry, v. 17, p. 129–140.

    Google Scholar 

  • Magee, J. W., J. M. Bowler, G. H. Miller, and D. L. G. Williams, 1995, Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia: Palaeogeography Palaeoclimatology Palaeoecology, v. 113, p. 3–42.

    Google Scholar 

  • Maglione, G., 1980, An example of Recent continental evaporitic sedimentation; the Chadian Basin (Africa), in G. Busson, ed., Evaporite deposits; illustration and interpretation of some environmental sequences: London, Editions Technip, marketed Graham & Trotman, p. 5–9 & 74–91(photos).

    Google Scholar 

  • Mauger, C. L., and J. S. Compton, 2011, Formation of modern dolomite in hypersaline pans of the Western Cape, South Africa: Sedimentology, v. 58, p. 1678–1692.

    Google Scholar 

  • Mawson, S. D., 1929, Some South Australian limestones in process of formation: Quarterly Journal of the Geological Society, v. 85, p. 613–623.

    Google Scholar 

  • McCall, J., 2010, Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites: Earth-Science Reviews, v. 103, p. 71–79.

    Google Scholar 

  • McKirdy, D. M., A. J. Hayball, J. K. Warren, E. D., and C. C. von der Borch, 2010, Organic facies of Holocene carbonates in North Stromatolite Lake, Coorong region, South Australia: Cadernos Laboratorio Xeolóxico de Laxe, v. 35, p. 127–146.

    Google Scholar 

  • McLaren, S., and M. W. Wallace, 2010, Plio-Pleistocene climate change and the onset of aridity in southeastern Australia: Global and Planetary Change, v. 71, p. 55–72.

    Google Scholar 

  • McLaren, S., M. W. Wallace, and T. Reynolds, 2012, The Late Pleistocene evolution of palaeo megalake Bungunnia, southeastern Australia: A sedimentary record of fluctuating lake dynamics, climate change and the formation of the modern Murray River: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 317‚Äì318, p. 114–127.

    Google Scholar 

  • Miser, D. E., J. S. Swinnea, and H. Steinfink, 1987, TEM observations and X-ray structure refinement of a twiined dolomite microstructure: American Mineralogist, v. 72, p. 188–193.

    Google Scholar 

  • Mlynarski, M., and J. Zlotnicki, 2001, Fluid circulation in the active emerged Asal rift (east Africa, Djibouti) inferred from self potential and Telluric-Telluric prospecting: Tectonophysics, v. 339.

    Google Scholar 

  • Moreira, N. F., L. M. Walter, C. Vasconcelos, J. McKenzie, and P. J. McCall, 2004, Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system: Geology, v. 32, p. 701–704.

    Google Scholar 

  • Morrow, D. W., and B. D. Ricketts, 1988, Experimental investigation of sulfate inhibition of dolomite and its mineral analogues: Shukla, Vijai, Baker, Paul A. Sedimentology and geochemistry of dolostones, based on a symposium. Special Publication Society of Economic Paleontologists and Mineralogists, v. 43, p. 25–38.

    Google Scholar 

  • Mueller, G., and G. Irion, 1969, ‘Salt-biscuits’; a special growth structure of NaCl in salt sediments of the Tuz Goelue (‘Salt Lake’), Turkey: Journal of Sedimentary Research, v. 39, p. 1604–1607.

    Google Scholar 

  • Mutlu, H., S. Kadir, and A. Akbulut, 1999, Mineralogy and water chemistry of the Lake Acigol, Denizli, Turkey: Carbonates and Evaporites, v. 14, p. 191–199.

    Google Scholar 

  • Neev, D., and K. O. Emery, 1967, The Dead Sea: Depositional processes and environments of evaporites: Israel Mineral Development Geological Survey Bulletin, v. 41, p. 147 p.

    Google Scholar 

  • Neev, D., and J. K. Hall, 1979, Geophysical investigations in the Dead Sea: Sedimentary Geology, v. 25, p. 209–238.

    Google Scholar 

  • Niemi, T., Z. Ben-Avraham, and J. R. Gat, 1997, The Dead Sea – The Lake and its setting, Oxford University Press, 336 p.

    Google Scholar 

  • O’Connor, J. E., 1993, Hydrology, hydraulics, and geomorphology of the Bonneville flood: Geological Society of America Special Paper 274. 83 p.

    Google Scholar 

  • O’Connor, J. E., and J. E. Costa, 2004, The World’s Largest Floods, Past and Present: Their Causes and Magnitudes: U.S. Geological Survey Circular 1254, 3p.

    Google Scholar 

  • Ogniben, L., 1957, Secondary gypsum of the sulphur series, Sicily, and the so-called integration: J. Sediment. Petrology., p. 64–79.

    Google Scholar 

  • Oremland, R. S., P. R. Dowdle, S. Hoeft, J. O. Sharp, J. K. Schaefer, L. G. Miller, J. S. Blum, R. L. Smith, N. S. Bloom, and D. Wallschlaeger, 2000, Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake. California Geochimica et Cosmochimica Acta, v. 64, p. 3073–3084.

    Google Scholar 

  • Orszag-Sperber, F., J. Plaziat, F. Baltzer, and B. H. Purser, 2001, Gypsum salina-coral reef relationships during the Last Interglacial (Marine Isotopic Stage 5e) on the Egyptian Red Sea coast: a Quaternary analogue for Neogene marginal evaporites?: Sedimentary Geology, v. 140, p. 61–85.

    Google Scholar 

  • Pedone, V. A., and R. L. Folk, 1996, Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah: Geology, v. 24, p. 763–765.

    Google Scholar 

  • Picard, L., 1943, Structures and evolution of Palestine with notes on neighbouring countries: Jerusalem Hebrew University Dept. Geol. Bulletin, v. 4, p. 1–134.

    Google Scholar 

  • Plaziat, J. C., F. Baltzer, A. Choukri, O. Conchon, P. Freytet, F. Orszag-Sperber, B. Purser, A. Raguideau, and J. L. Reyss, 1995, Quaternary changes in the Egyptian shoreline of the northwestern Red Sea and Gulf of Suez: Quaternary International, v. 30, p. 11–22.

    Google Scholar 

  • Raab, M., G. M. Friedman, B. Spiro, A. Starinsky, and I. Zak, 2000, The geological history of Pliocene-Pleistocene evaporites in Mount Sedom (Israel) and how strontium and sulfur isotopes relate to their origin: Carbonates & Evaporites, v. 15, p. 93–114.

    Google Scholar 

  • Rango, T., G. Bianchini, L. Beccaluva, T. Ayenew, and N. Colombani, 2009, Hydrogeochemical study in the Main Ethiopian Rift: new insights to the source and enrichment mechanism of fluoride: Environmental Geology, v. 58, p. 109–118.

    Google Scholar 

  • Reimer, A., G. Landmann, and S. Kempe, 2009, Lake Van, Eastern Anatolia, Hydrochemistry and History: Aquatic Geochemistry, v. 15, p. 195–222.

    Google Scholar 

  • Reitner, J., G. Arp, V. Thiel, G. P., G. U., and M. W., 1997, Organic matter in Great Salt Lake ooids (Utah, USA) – First approach to a formation via organic matrices: Facies, v. 36, p. 210–219.

    Google Scholar 

  • Reznik, I. J., I. Gavrieli, and J. Ganor, 2009, Kinetics of gypsum nucleation and crystal growth from Dead Sea brine: Geochimica et Cosmochimica Acta, v. 73, p. 6218–6230.

    Google Scholar 

  • Richmond, B. G., K. G. Hatala, H.-S. W. E. H., V. Rossi, A. Metallo, C. M. Liutkus , B. L. Pobiner, A. Gordon, H. Dingwall, D. G. Green, B. Zimmer, G. Olle Moita, and J. Brett, 2011, Early modern human footprint assemblage from Engare Sero, Tanzania (abs.): Paleoanthropology: A31.

    Google Scholar 

  • Risacher, F., and B. Fritz, 2000, Bromine geochemistry of salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia: Chemical Geology, v. 167, p. 373–392.

    Google Scholar 

  • Rogers, D. B., and S. J. Dreiss, 1995a, Saline groundwater in Mono basin, California .1. Distribution: Waters Resources Research, v. 31, p. 3131–3150.

    Google Scholar 

  • Rogers, D. B., and S. J. Dreiss, 1995b, Saline groundwater in Mono basin, California .2. Long term control of lake salinity by groundwater: Water Resources Research., v. 31, p. 3151–3169.

    Google Scholar 

  • Rosen, M. R., D. E. Miser, M. A. Starcher, and J. K. Warren, 1989, Formation of dolomite in the Coorong region, South Australia: Geochimica et Cosmochimica Acta, v. 53, p. 661–669.

    Google Scholar 

  • Rosen, M. R., D. E. Miser, and J. K. Warren, 1988, Sedimentology, mineralogy and isotopic analysis of Pellet Lake, Coorong region, South Australia.: Sedimentology, v. 35, p. 105–122.

    Google Scholar 

  • Ruegg, J. C., M. Kasser, J. C. Lepine, and A. Tarantola, 1979, Geodesic measurements of rifting associated with a seismo-volcanic crisis in Afar: Geophys. Res. Lett., v. 6, p. 817–820.

    Google Scholar 

  • Russell, M. J., J. K. Ingham, V. Zedef, D. Maktav, F. Sunar, A. J. Hall, and A. E. Fallick, 1999, Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey: Journal of the Geological Society, v. 156, p. 869–888.

    Google Scholar 

  • Ryan, W., and W. Pitman, 1999, Noah’s flood—The new scientific discoveries about the event that changed history: New York, Simon and Schuster, 310 p.

    Google Scholar 

  • Salameh, E., and H. Bannayan, 1993, Water resources of Jordan: Present status and future potentials, Friedrich Ebert Stiftung.

    Google Scholar 

  • Sandberg, P. A., 1975, New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy.: Sedimentology, v. 22, p. 497–537.

    Google Scholar 

  • Sanjuan, B., G. Michard, and A. Michard, 1990, Origine des substances dissoutes dans les eaux des sources thermales et des forages de la région Asal-Ghoubbet (République de Djibouti): Journal of Volcanology & Geothermal Research, v. 43, p. 333–353.

    Google Scholar 

  • Schidlowski, M., U. Matzeigkeit, W. G. Mook, and W. E. Kriumbein, 1985, Carbon isotope geochemistry and 14C ages of microbial mats from Gavish sabkha and Solar Lake, in G. M. Freiedman, and W. E. Krumbein, eds., Hypersalin ecosystems – The Gavish sabkha: New York, Springer -Verlag, p. 381–401.

    Google Scholar 

  • Schreiber, B. C., and D. J. J. Kinsman, 1975, New observations on the Pleistocene evaporites of Montallegro, Sicily and a modern analog: Journal of Sedimentary Petrology, v. 45, p. 469–479.

    Google Scholar 

  • Scott, J. J., R. W. Renaut, L. A. Buatois, and R. B. Owen, 2009, Biogenic structures in exhumed surfaces around saline lakes: An example from Lake Bogoria, Kenya Rift Valley: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 272, p. 176–198.

    Google Scholar 

  • Sebag, D., E. P. Verrecchia, S. J. Lee, and A. Durand, 2001, The natural hydrous sodium silicates from the northern bank of Lake Chad: occurrence, petrology and genesis: Sedimentary Geology, v. 139, p. 15–31.

    Google Scholar 

  • Shearman, D. J., A. McGugan, C. Stein, and A. J. Smith, 1989, Ikaite, CaCO3.6, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, weatern United States: Geol. Soc. Am. Bull., v. 101, p. 913–917.

    Google Scholar 

  • Shirokova, L. S., V. Mavromatis, I. Bundeleva, O. S. Pokrovsky, P. Bénézeth, C. R. Pearce, E. Gérard, S. Balor, and E. H. Oelkers, 2011, Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?: Biogeosciences Discussions, v. 4, p. 6473–6517.

    Google Scholar 

  • Shirokova, L. S., V. Mavromatis, I. A. Bundeleva, O. S. Pokrovsky, P. Bénézeth, E. Gérard, C. R. Pearce, and E. H. Oelkers, 2013, Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes: Aquatic Geochemistry, v. 19, p. 1–24.

    Google Scholar 

  • Smoot, J. P., and T. K. Lowenstein, 1991, Depositional environments of non-marine evaporites, in J. D. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50, Elsevier Science, Developments in Sedimentology, p. 189–347.

    Google Scholar 

  • Sneh, A., 1979, Fan deltas along the Dead Sea rift: Journal Sedimentary Petrology, v. 49, p. 541–552.

    Google Scholar 

  • Spencer, R. J., 1983, The geochemical evolution of Great Salt Lake, Utah: Doctoral thesis, Johns Hopkins University.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, and B. F. Jones, 1985b, Geochemistry of Great Salt Lake, Utah II: Pleistocene-Holocene evolution: Geochimica et Cosmochimica Acta, v. 49, p. 739–747.

    Google Scholar 

  • Spencer, R. J., H. P. Eugster, B. F. Jones, and S. L. Rettig, 1985a, Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850: Geochimica et Cosmochimica Acta, v. 49, p. 727–737.

    Google Scholar 

  • Steinhorn, I., 1983, In situ salt precipitation at the Dead Sea: Limnology and Oceanography, v. 28, p. 580–583.

    Google Scholar 

  • Steinhorn, I., and J. R. Gat, 1983, The Dead Sea: Scientific American, v. 249, p. 102–109.

    Google Scholar 

  • Stevens, L. R., M. Djamali, V. Andrieu-Ponel, and J.-L. Beaulieu, 2012, Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia, Iran: Journal of Paleolimnology, v. 47, p. 645–660.

    Google Scholar 

  • Stieljes, L., 1973, Evolution tectonique récente du rift d’Asal: Review Geographie Physical Geologie Dynamique, v. 15, p. 425–436.

    Google Scholar 

  • Stiller, M., and Y. C. Chung, 1984, Radium in the Dead Sea: A possible tracer for the duration of meromixis: Limnology and Oceanography, v. 29, p. 574–586.

    Google Scholar 

  • Stiller, M.,A. Nissenbaum, R. S. Kaufmann, and A. Long, 1998, Cl-37 in the Dead Sea system – preliminary results: Applied Geochemistry, v. 13, p. 953–960.

    Google Scholar 

  • Stiller, M., and L. Sigg, 1990, Heavy metals in the Dead Sea and their coprecipitation with halite: Hydrobiologia, v. 197, p. 23–33.

    Google Scholar 

  • Stine, S., 1990, Late Holocene fluctuations of Mono Lake, eastern California: Palaeogeography Palaeoclimatology Palaeoecology, v. 78, p. 333–381.

    Google Scholar 

  • Stockhecke, M., M. Sturm, I. Brunner, H.-U. Schmincke, M. Sumita, R. Kipfer, D. Cukur, O. Kwiecien, and F. S. Anselmetti, 2014, Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years: Sedimentology, v. 61, p. 1830–1861.

    Google Scholar 

  • Tekin, E., T. Ayyildiz, I. Gundogan, and F. Orti, 2007, Modern halolites (halite oolites) in the Tuz Golu, Turkey: Sedimentary Geology, v. 195, p. 101–112.

    Google Scholar 

  • Thiel, V., A. Jenisch, G. Landmann, A. Reimer, and W. Michaelis, 1997, Unusual distributions of long-chain alkenones and tetrahymanol from the highly alkaline Lake Van, Turkey: Geochimica et Cosmochimica Acta, v. 61, p. 2053–2064.

    Google Scholar 

  • Tomascak, P. B., N. G. Hemming, and S. R. Hemming, 2003, The lithium isotopic composition of waters of the Mono Basin, California: Geochimica et Cosmochimica Acta, v. 67, p. 601–611.

    Google Scholar 

  • United Nations Environment Programme, 2012, The Drying of Iran’s Lake Urmia and its Environmental Consequences:miller (Article reproduced from UNEP – Global Environmental Alert Service (GEAS): Environmental Development, v. 2, p. 128–137.

    Google Scholar 

  • Van Lith, Y., C. Vasconcelos, R. Warthmann, J. C. F. Martins, and J. A. McKenzie, 2002, Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil): Hydrobiologia, v. 485, p. 35–49.

    Google Scholar 

  • Van Lith,Y., R.Warthmann, C. Vasconcelos, and J.A. McKenzie, 2003, Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation: Sedimentology, v. 50, p. 237–245.

    Google Scholar 

  • Vasconcelos, C., and J.A. McKenzie, 1997, Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil): Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 378–390.

    Google Scholar 

  • Vasconcelos, C., R. Warthmann, J. A. McKenzie, P. T. Visscher, A. G. Bittermann, and Y. van Lith, 2006, Lithifying microbial mats in Lagoa Vermelba, Brazil: Modern Precambrian relics?: Sedimentary Geology, v. 185, p. 175–183.

    Google Scholar 

  • Vasconcelos, C. O., J. A. McKenzie, S. Bernasconi, D. Grujic, and A. J. Tien, 1995, Microbial mediation as a possible mechanism for natural dolomite formation at low temperature: Nature, v. 337, p. 220–222: Nature, v. 337, p. 220–222.

    Google Scholar 

  • Von der Borch, C. C., 1965, The distribution and preliminary geochemistry of modern carbonate sediments of the Coorong area, South Australia: Geochimica et Cosmochimica Acta, v. 29.

    Google Scholar 

  • Von der Borch, C. C., 1976, Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia: Journal of Sedimentary Petrology, v. 46, p. 952–966.

    Google Scholar 

  • Von der Borch, C. C., B. Bolton, and J. K. Warren, 1977, Environmental setting and microstructure of subfossil lithified stromatolites associated with evaporites, Marion Lake, South Australia: Sedimentology, v. 24, p. 693–708.

    Google Scholar 

  • Von der Borch, C. C., and D. Lock, 1979, Geological significance of Coorong dolomites: Sedimentology, v. 26, p. 813–824.

    Google Scholar 

  • Von der Haar, S. P., and D. S. Gorsline, 1977, Hypersaline lagoon deposits and processes in Baja California, Mexico, in H. J. Walker, ed., Research Techniques in Coastal Environments, Geoscience and Man, v. 18, p. 165–177.

    Google Scholar 

  • Vuhahula, E. A. M., J. R. P. Masalu, L. Mabelya, and W. B. C. Wandwi, 2009, Dental fluorosis in Tanzania Great Rift Valley in relation to fluoride levels in water and in “Magadi” (Trona): Desalination, v. 248, p. 610–615.

    Google Scholar 

  • Wacey, D., D. T. Wright, and A. J. Boyce, 2007, A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia: Chemical Geology, v. 244, p. 155–174.

    Google Scholar 

  • Warren, J. K., 1982a, The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia: Journal of Sedimentary Petrology, v. 52, p. 1171–1201.

    Google Scholar 

  • Warren, J. K., 1982b, Hydrologic setting, occurrence, and significance of gypsum in late Quaternary salt lakes, South Australia: Sedimentology, v. 29, p. 609–637.

    Google Scholar 

  • Warren, J. K., 1988, Sedimentology of Coorong dolomite in the Salt Creek region, South Australia: Carbonates and Evaporites, v. 3, p. 175–199.

    Google Scholar 

  • Warren, J. K., 1990, Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia: Journal of Sedimentary Petrology, v. 60, p. 843–858.

    Google Scholar 

  • Warren, J. K., 1991, Sulfate dominated sea-marginal and platform evaporative settings, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Warthmann, R., C. Vasconcelos, H. Sass, and J. A. McKenzie, 2005, Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation: Extremophiles, v. 9, p. 255–261.

    Google Scholar 

  • Weidlich, O., and M. Bernecker, 2004, Quantification of depositional changes and paleo-seismic activities from laminated sediments using outcrop data: Sedimentary Geology, v. 166, p. 11–20.

    Google Scholar 

  • Whiticar, M. J., and E. Suess, 1998, The cold carbonate connection between Mono Lake, California and the Bransfield Strait, Antarctica: Aquatic Geochemistry, v. 4, p. 419–454.

    Google Scholar 

  • Williams, J. B., M. J. Schwab, and A. Brauer, 2011, An early first-century earthquake in the Dead Sea: International Geology Review, v. 54, p. 1219–1228.

    Google Scholar 

  • Williamson, D., M. Taieb, B. Damnati, M. Icole, and N. Thouveny, 1993, Equatorial extension of the younger Dryas event – Rock magnetic evidence from Lake Magadi (Kenya): Global & Planetary Change, v. 7, p. 235–242.

    Google Scholar 

  • Wright, D. T., 1999, The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia: Sedimentary Geology, v. 126, p. 147–157.

    Google Scholar 

  • Yechieli, Y., I. Gavrieli, B. Berkowitz, and D. Ronen, 1998, Will the Dead Sea die?: Geology, v. 28, p. 755–758.

    Google Scholar 

  • Zak, I., and R. Freund, 1981, Asymmetry and basin migration in the Dead Sea rift: Tectonophysics, v. 80, p. 27–38.

    Google Scholar 

  • Zimmer, B., C. Liutkus, S. Carmichael, B. Richmond, S. Hewitt, K. Hatala, W. E. H. Harcourt-Smith, A. Gordon, S. Mana, and J. Brett, 2012, A snapshot in time: Determining the age, environment and social structure of early Homo Sapiens, using trace fossils in the volcaniclastic rocks at the Engare Sero footprint site, Lake Natron, Tanzania (abs.): Geological Society America, Cordilleran Section – 108th Annual Meeting (29–31 March 2012).

    Google Scholar 

  • Zimmerman, S. R. H., S. R. Hemming, N. G. Hemming, P. B. Tomascak, and C. Pearl, 2011, High-resolution chemostratigraphic record of late Pleistocene lake-level variability, Mono Lake, California: Geological Society of America Bulletin, v. 123, p. 2320–2334.

    Google Scholar 

  • Zak, I., and R. Freund, 1980, Strain measurements in eastern marginal shear zone of Mount Sedom salt diapir, Israel: Bulletin American Association Petroleum Geologists, v. 64, p. 568–581.

    Google Scholar 

  • Zak, I., and R. Freund, 1981, Asymmetry and basin migration in the Dead Sea rift: Tectonophysics, v. 80, p. 27–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Subaqueous Salts: Salinas and Perennial Lakes. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_4

Download citation

Publish with us

Policies and ethics