Skip to main content

Depositional Chemistry and Hydrology

  • Chapter
Evaporites

Abstract

In Chap. 1, an evaporite is defined as a salt rock originally precipitated from a saturated surface or nearsurface brine by hydrologies driven by solar evaporation. There is no assumption as to the origin of the parent brine; it may be marine (thalassic), nonmarine (athalassic) or a hybrid. By implication, there is a need for aridity and for water loss to exceed inflow. This means deposition and diagenesis in evaporites is more climate dependent than in either siliciclastic or carbonate sediments; reaction rates and reversibility are an order of magnitude faster. Suites of precipitated salts follow the geochemical make-up of the parent brine, while primary textures indicate hydrological stability and energy levels of the time of precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Semi-arid deserts have a mean annual precipitation of between 250 and 500 mm. Arid deserts have less than 250 mm of annual rainfall. Extremely arid or hyperarid deserts have at least 12 consecutive months without rainfall. Worldwide, some 4 % of the earth surface is hyperarid, 15 % arid, and 23 % semi-arid.

  2. 2.

    Sensible heat flux is the heat energy is transferred from the Earth’s surface to the atmosphere by conduction and convection.

  3. 3.

    The term “soda lake” defines a class of saline lakes with water/brine chemistries having an excess in total alkalinity (\( \approx \left[HC{O}_{3-}\right]+2\;\left[C{O}_3\right] \), i.e., the sum of the charges of the bicarbonate ion plus carbonate ion) is in excess over the charges of the alkaline earth ions, magnesium and calcium: \( \left[HC{O}_3\right]+2\;\left[{\mathrm{CO}}_2\right]>2\;\left[{\mathrm{Mg}}^{2+}\right]+2\;\left[{\mathrm{Ca}}^{2+}\right] \) when such lake waters concentrate the high CO2 level causes a rise in pH and eventually, if evaporation proceeds, various sodium carbonate minerals precipitate. The largest soda lake in the world is Lake Van in Turkey. Many soda lakes are located on or near plate tectonic boundaries within continental land masses (rifts and collision zones). About a third of the soda lakes in the world are located in a high-altitude collision belt, stretching from Tibet, through Qinghai Province to the Inner Mongolia Autonomous Region. Precipitation of salts in most of these soda lakes is cryogenically driven.

  4. 4.

    Tholin [after the ancient Greek word θολός (tholós) meaning “not clear”] is a heteropolymer molecule formed by solar ultraviolet irradiation of simple organic compounds such as methane or ethane along with ethylene, acetylene an hydrogen cyanide. Tholins do not form naturally in our modern-day Earth atmosphere, due to the presence of oxygen, but are found in great abundance on the surface of icy bodies in the outer solar system. They usually have a reddish-brown appearance and on the early Archaean or even late Hadean earth may have been the first microbial food for heterotrophic microorganisms before autotrophy evolved.

  5. 5.

    Barnes et al. (2011) use the word ‘hydrological’ to refer generally to ‘volatilological’, i.e., any substance on a planetary surface that undergoes processes physically similar to those of water in the Earth’s hydrological cycle passing from a liquid to a gaseous state, and leaving behind solutes. In the case of Titan, the fluids passing from a liquid to a gaseous state are dominated by methane and ethane.

References

  • Adams, J. B., A. R. Gillespie, M. P. A. Jackson, D. R. Montgomery, T. P. Dooley, J. P. Combe, and B. C. Schreiber, 2009, Salt tectonics and collapse of Hebes Chasma, Valles Marineris, Mars: Geology, v. 37, p. 691–694.

    Google Scholar 

  • Adams, J. F., and M. L. Rhodes, 1960, Dolomitisation by seepage refluxion: American Association of Petroleum Geologists Bulletin, v. 44, p. 1912–1920.

    Google Scholar 

  • Aharon, P., Y. Kolodny, and E. Sass, 1977, Recent hot brine dolomitization in the ‘’Solar Lake,” Gulf of Elat; isotopic, chemical, and mineralogical study: Journal of Geology, v. 85, p. 27–48.

    Google Scholar 

  • Alley, N. F., 1998, Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin: Palaeogeography Palaeoclimatology Palaeoecology, v. 144, p. 239–263.

    Google Scholar 

  • Allison, G. B., and C. J. Barnes, 1985, Estimation of evaporation from the normally ‘dry’ Lake Frome in South Australia: Journal of Hydrology, v. 78, p. 229–242.

    Google Scholar 

  • Allwood, A. C., M. R. Walter, I. W. Burch, and B. S. Kamber, 2007, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth: Precambrian Research, v. 158, p. 198–227.

    Google Scholar 

  • Alpers, C. N., R. O. Rye, D. K. Nordstrom, L. D. White, and B.-S. King, 1992, Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lakes: Chemical Geology, v. 92, p. 203–226.

    Google Scholar 

  • Anbar, A. D., 2008, Elements and Evolution: Science, v. 322, p. 1481–1483.

    Google Scholar 

  • Andreason, M. W., 1992, Coastal siliciclastic sabkhas and related evaporative environments of the Permian Yates Formation, North Ward-Estes field, Ward County, Texas: American Association of Petroleum Geologists Bulletin, v. 76, p. 1735–1759.

    Google Scholar 

  • Antrett, P., A. A. Vackiner, P. Kukla, N. Klitzsch, and H. Stollhofen, 2012, Impact of arid surface megacracks on hydrocarbon reservoir properties: Bulletin American Association Petroleum Geologists, v. 96, p. 1279–1299.

    Google Scholar 

  • Asmar, B. N., and P. Ergenzinger, 1999, Estimation of evaporation from the Dead Sea: Hydrological Processes, v. 13, p. 2743–2750.

    Google Scholar 

  • Ayora, C., D. I. Cendon, C. Taberner, and J. J. Pueyo, 2001, Brine-mineral reactions in evaporite basins: Implications for the composition of ancient oceans: Geology, v. 29, p. 251–254.

    Google Scholar 

  • Ayora, C., J. Garciaveigas, and J. Pueyo, 1994, The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation: Geochimica et Cosmochimica Acta, v. 58, p. 3379–3394.

    Google Scholar 

  • Banin, A., 2002, Mars soil formation and properties: The ‘Acid Fog’ hypothesis in view of recent evidence (abstract): Second Astrobiology Science Conference; NASA AMES Research Center – April 7–11, 200.

    Google Scholar 

  • Barley, M. E., J. S. R. Dunlop, J. E. Glover, and D. I. Groves, 1979, Sedimentary evidence for an Archaean shallow-water volcanic-sedimentary facies, eastern Pilbara Block, Western Australia: Earth and Planetary Science Letters, v. 43, p. 74–84.

    Google Scholar 

  • Barnes, J. W., J. Bow, J. Schwartz, R. H. Brown, J. M. Soderblom, A. G. Hayes, G. Vixie, S. p. Le Mou√©lic, S. Rodriguez, C. Sotin, R. Jaumann, K. Stephan, L. A. Soderblom, R. N. Clark, B. J. Buratti, K. H. Baines, and P. D. Nicholson, 2011, Organic sedimentary deposits in Titan – dry lakebeds: Probable evaporite: Icarus, v. 216, p. 136–140.

    Google Scholar 

  • Bein, A., S. D. Hovorka, R. S. Fisher, and E. Roedder, 1991, Fluid inclusions in bedded Permian halite, Palo Duro Basin, Texas; evidence for modification of seawater in evaporite brinepools and subsequent early diagenesis: Journal of Sedimentary Petrology, v. 61, p. 1–14.

    Google Scholar 

  • Bekker, A., and H. D. Holland, 2012, Oxygen overshoot and recovery during the early Paleoproterozoic: Earth and Planetary Science Letters, v. 317-318, p. 295–304.

    Google Scholar 

  • Bellanca, A., and R. Neri, 1986, Evaporite carbonate cycles of the Messinian, Sicily; stable isotopes, mineralogy, textural features, and environmental implications: Journal of Sedimentary Petrology, v. 56, p. 614–621.

    Google Scholar 

  • Benan, C. A. A., and G. Kocurek, 2000, Catastrophic flooding of an aeolian dune field: Jurassic Entrada and Todilto Formations, Ghost Ranch, New Mexico, USA: Sedimentology, v. 47, p. 1069–1080.

    Google Scholar 

  • Benison, K. C., 2006, A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits: Geology, v. 34, p. 385–388.

    Google Scholar 

  • Benison, K. C., and B. B. Bowen, 2013, Extreme sulfur-cycling in acid brine lake environments of Western Australia: Chemical Geology, v. 351, p. 154–167.

    Google Scholar 

  • Benison, K. C., and R. H. Goldstein, 1999, Permian paleoclimate data from fluid inclusions in halite: Chemical Geology, v. 154, p. 113–132.

    Google Scholar 

  • Benison, K. C., and R. H. Goldstein, 2002, Recognizing acid lakes and groundwaters in the rock record: Sedimentary Geology, v. 151, p. 177–185.

    Google Scholar 

  • Bigham, J. M., and D. K. Nordstrom, 2000, Ion and aluminum hydroxysulfates from acid surface waters, in C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, eds., Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, No. 40, p. 351–403.

    Google Scholar 

  • Bigham, J. M., and D. K. Nordstrom, 2000, Ion and aluminum hydroxysulfates from acid surface waters, in C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, eds., Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, No. 40, p. 351–403.

    Google Scholar 

  • Bischoff, J. L., R. Julia, W. E. C. I. Shanks, and R. J. Rosenbauer, 1994, Karstification without carbonic acid; bedrock dissolution by gypsum-driven dedolomitization: Geology, v. 22, p. 995–998.

    Google Scholar 

  • Blättler, C. L., and J. A. Higgins, 2014, Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca: Geology, v. 42, p. 711–714.

    Google Scholar 

  • Bobst, A. L., T. K. Lowenstein, T. E. Jordan, L. V. Godfrey, T. L. Ku, and S. D. Luo, 2001, A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile: Palaeogeography Palaeoclimatology Palaeoecology, v. 173, p. 21–42.

    Google Scholar 

  • Böhlke, J. K., G. E. Ericksen, and K. Revesz, 1997, Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A: Chemical Geology, v. 136, p. 135–152.

    Google Scholar 

  • Bonython, C. W., 1966, Factors determining the rate of solar evaporation in the production of salt, Second Symposium on Salt, North Ohio Geol. Soc,, p. 152–167.

    Google Scholar 

  • Borchert, H., 1977, On the formation of Lower Cretaceous potassium salts and tachyhydrite in the Sergipe Basin (Brazil) with some remarks on similar occurrences in West Africa (Gabon, Angola etc.), in D. D. Klemm, and H. J. Schneider, eds., Time and strata-bound ore deposits.: Berlin, Germany, Springer-Verlag, p. 94–111.

    Google Scholar 

  • Borchert, H., and R. O. Muir, 1964, Salt deposits--The origin, metamorphism and deformation of evaporites: London, D. Van Nostrand Co., Ltd., 338 p.

    Google Scholar 

  • Bornemann, O., R. Fischbeck, and G. Baüerle, 2000, Investigation of deformation textures of salt rock from various Zechstein units and their relationship to the formation of salt diapirs in NW Germany, in R. M. Geertman, ed., 8th World Salt Symposium: Amsterdam, Elsevier, p. 89–94.

    Google Scholar 

  • Bots, P., L. G. Benning, R. E. M. Rickaby, and S. Shaw, 2011, The role of SO4 in the switch from calcite to aragonite seas: Geology, v. 39, p. 331–334.

    Google Scholar 

  • Boulter, C. A., and J. E. Glover, 1986, Chert with relict hopper moulds from Rocklea Dome, Pilbara Craton, Western Australia; an Archean halite-bearing evaporite: Geology, v. 14, p. 128–131.

    Google Scholar 

  • Bowen, B. B., and K. C. Benison, 2009, Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia: Applied Geochemistry, v. 24, p. 268–284.

    Google Scholar 

  • Bowler, J. M., 1986, Spatial variability and hydrologic evolution of Australian lake basins; analogue for Pleistocene hydrologic change and evaporite formation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 21–41.

    Google Scholar 

  • Bradley, W. H., and H. P. Eugster, 1969, Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming: U. S. Geological Survey Professional Paper, v. 469B, p. 71p.

    Google Scholar 

  • Brennan, S. T., and T. K. Lowenstein, 2002, The major-ion composition of Silurian seawater: Geochimica et Cosmochimica Acta, v. 66, p. 2683–2700.

    Google Scholar 

  • Brennan, S. T., T. K. Lowenstein, and J. Horita, 2004, Seawater chemistry and the advent of biocalcification: Geology, v. 32, p. 473–476.

    Google Scholar 

  • Brett, R., 1992, The Cretaceous-Tertiary extinction; a lethal mechanism involving anhydrite target rocks: Geochimica et Cosmochimica Acta, v. 56, p. 3603–3606.

    Google Scholar 

  • Bridges, J. C., and M. M. Grady, 1999, A halite-siderite-anhydrite-chlarapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars: Meteoritics, v. 34, p. 407–415.

    Google Scholar 

  • Bridges, J. C., and M. M. Grady, 2000, Evaporite mineral assemblages in the nakhlite (martian) meteorites: Earth & Planetary Science Letters, v. 176, p. 267–279.

    Google Scholar 

  • Briggs, L. I., 1958, Evaporite facies: Journal of Sedimentary Petrology, v. 28, p. 46–56.

    Google Scholar 

  • Brocks, J. J., G. D. Love, R. E. Summons, A. H. Knoll, G. A. Logan, and S. A. Bowden, 2005, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea: Nature, v. 437, p. 866–870.

    Google Scholar 

  • Buick, R., and J. S. R. Dunlop, 1990, Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia: Sedimentology, v. 37, p. 247–277.

    Google Scholar 

  • Calder, I. R., and C. Neal, 1984, Evaporation from saline lakes: a combination equation approach: Hydrological Sciences Journal, v. 29, p. 89–97.

    Google Scholar 

  • Canfield, D. E., K. B. SØRensen, and A. Oren, 2004, Biogeochemistry of a gypsum-encrusted microbial ecosystem: Geobiology, v. 2, p. 133–150.

    Google Scholar 

  • Carlson, C. A., F. M. Phillips, D. Elmore, and H. W. Bentley, 1990, Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica: Geochimica et Cosmochimica Acta, v. 54, p. 311–318.

    Google Scholar 

  • Carpenter, A. B., 1978, Origin and chemical evolution of brines in sedimentary basins: Oklahoma Geological Survey Circular, v. 79, p. 60–77.

    Google Scholar 

  • Casas, E., 1992, Modern carnallite mineralisation and Late Pleistocene to Holocene brine evolution in the nonmarine Qaidam Basin, China: Doctoral thesis, State University of New York at Binghampton.

    Google Scholar 

  • Cendón, D., J. J. Pueyo, C. Ayora, J. G. Veigas, and M.-M. Blanc-Valleron, 2010, Exploring the hydrochemical evolution of brines leading to sylvite precipitation in ancient evaporite basins (abs.): Geophysical Research Abstracts, v. 12, EGU20103807-1.

    Google Scholar 

  • Ceriani, a., A. Di Giulo, H. Goldstein, and C. Rossi, 2002, Diagenesis associated with cooling during burial: An example from Lower Cretaceous reservoir sandstones (Sirt basin, Libya): Bulletin American Association Petroleum Geologists, v. 86, p. 1573–1591.

    Google Scholar 

  • Channer, D. M. D., C. E. J. de Ronde, and E. T. C. Spooner, 1997, The Cl-Br-I composition of ≈3.23 Ga seawater: Implications for the geological evolution of ocean halide chemistry: Earth and Planetary Science Letters, v. 150, p. 325–335.

    Google Scholar 

  • Chivas, A. R., A. S. Andrew, W. B. Lyons, M. I. Bird, and T. H. Donnelly, 1991, Isotopic constraints on the origin of salts in Australian playas; I, Sulphur: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 84, p. 309–322.

    Google Scholar 

  • Clarke, J. D. A., 1994, Evolution of the Lefroy and Cowan palaeodrainage channels, Western Australia: Australian Journal of Earth Sciences,, v. 41, p. 55–68.

    Google Scholar 

  • Clayton, R. H., and L. Thorpe, 1982, Geology of the Nanisivik zinc- lead deposit: Geological Association of Canada, Special Paper, v. 25, p. 739–758.

    Google Scholar 

  • Clayton, R. H., and L. Thorpe, 1982, Geology of the Nanisivik zinc- lead deposit: Geological Association of Canada, Special Paper, v. 25, p. 739–758.

    Google Scholar 

  • Closson, D., 2005, Structural control of sinkholes and subsidence hazards along the Jordanian Dead Sea coast: Environmental Geology, v. 47, p. 290–301.

    Google Scholar 

  • Closson, D., and N. Abou Karaki, 2009, Human-induced geological hazards along the Dead Sea coast: Environmental Geology, v. 58, p. 371–380.

    Google Scholar 

  • Cloud, P. E., 1972, A working model of the primitive earth: Am. J. Sci., v. 272, p. 537–548.

    Google Scholar 

  • Cohen, T. J., G. C. Nanson, J. D. Jansen, B. G. Jones, Z. Jacobs, J. R. Larsen, J. H. May, P. Treble, D. M. Price, and A. M. Smith, 2012, Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: Varying moisture sources and increased continental aridity: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 356-357, p. 89–108.

    Google Scholar 

  • Cooper, A. M., 1991, Late Proterozoic hydrocarbon potential and its association with diapirism in Blinman #2, Central Flinders Ranges.: Honours thesis, University of Adelaide – National Centre Petroleum Geology and Geophysics.

    Google Scholar 

  • Cordier, D., J. W. Barnes, and A. G. Ferreira, 2013, On the chemical composition of Titan’s dry lakebed evaporites: Icarus, v. 226, p. 1431–1437.

    Google Scholar 

  • Cortecci, G., T. Boschetti, M. Mussi, C. Herrera Lameli, C. Mucchino, and M. Barbieri, 2005, New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile: Geochemical Journal, v. 39, p. 547–571.

    Google Scholar 

  • Crabaugh, M., and G. Kocurek, 1993, Entrada Sandstone – example of a wet eolian system, in K. Pye, ed., The Dynamics and Environmental Context of Aeolian Sedimentary Systems, Geological Society London, Special Publication No. 72, p. 103–126.

    Google Scholar 

  • Cytryn, E., D. Minz, R. S. Oremland, and Y. Cohen, 2000, Distribution and Diversity of Archaea Corresponding to the Limnological Cycle of a Hypersaline Stratified Lake (Solar Lake, Sinai, Egypt): Applied & Environmental Microbiology, v. 66, p. 3269–3276.

    Google Scholar 

  • De Ronde, C. E. J., M. J. Dewit, and E. T. C. Spooner, 1994, Early Archean (>3.2 Ga) Fe-oxide rich, hydrothermal discharge vents in the Barberton Greenstone belt, South Africa: Geological Society of America Bulletin, v. 106, p. 86–104.

    Google Scholar 

  • De Ronde, C. E. J., and T. W. Ebbesen, 1996, 3.3 BY age of organic compound formation near sea-floor hot springs: Geology, v. 24, p. 791–794.

    Google Scholar 

  • Dean, W. E., 1978, Trace and minor elements in evaporites, in W. Dean, and B. C. Schreiber, eds., Marine evaporites, Society of Economic Paleontologists and Mineralogists, Short course notes, v. 4,, p. 86–104.

    Google Scholar 

  • Deffeyes, K. S., F. J. Lucia, and P. K. Weyl, 1965, Dolomitization of Recent and Plio-Pleistocene sediments by marine evaporite waters on Bonaire, Netherlands Antilles, in L. C. Pray, and R. C. Murray, eds., Dolomitization and limestone diagenesis A symposium. Soc. Econ. Paleontologists and Mineralogists Spec. Pub., v. 13, p. 71–88.

    Google Scholar 

  • Dejonghe, L., 1990, The sedimentary structures of barite: examples from the Chaudfontaine ore deposit, Belgium: Sedimentology, v. 37, p. 303–323.

    Google Scholar 

  • Demicco, R. V., T. K. Lowenstein, L. A. Hardie, and R. J. Spencer, 2005, Model of seawater composition for the Phanerozoic: Geology, v. 33, p. 877–880.

    Google Scholar 

  • Dickson, J. A. D., I. P. Montanez, and A. H. Saller, 2001, Hypersaline burial diagenesis delineated by component isotopic analysis, Late Paleozoic limestones, west Texas: Journal of Sedimentary Research, v. 71, p. 372–379.

    Google Scholar 

  • Dimroth, E., and M. M. Kimberley, 1975, Precambrian atmospheric oxygen; evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron: Canadian Journal of Earth Sciences, v. 13, p. 1161–1185.

    Google Scholar 

  • Drake, N. A., F. D. Eckardt, and K. H. White, 2004, Sources of sulphur in gypsiferous sediments and crusts and pathways of gypsum redistribution in southern Tunisia: Earth Surface Processes And Landforms, v. 29, p. 1459–1471.

    Google Scholar 

  • Dutkiewicz, A., A. L. Herczeg, and J. C. Dighton, 2000, Past changes to isotopic and solute balances in a continental playa: clues from stable isotopes of lacustrine carbonates: Chemical Geology, v. 165, p. 309–329.

    Google Scholar 

  • Dutkiewicz, A., and C. C. von der Borch, 1995, Lake Greenly, Eyre Peninsula, South Australia; sedimentology, palaeoclimatic and palaeohydrologic cycles: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 113, p. 43–56.

    Google Scholar 

  • Eastoe, C. J., A. Long, and L. P. Knauth, 1999, Stable chlorine isotopes in the Palo Duro Basin, Texas: Evidence for preservation of Permian evaporite brines: Geochimica et Cosmochimica Acta, v. 63, p. 1375–1382.

    Google Scholar 

  • Eastoe, C. J., A. Long, L. S. Land, and J. R. Kyle, 2001, Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution: Chemical Geology, v. 176, p. 343–360.

    Google Scholar 

  • Eastoe, C. J., and T. Peryt, 1999, Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region: Terra Nova, v. 11, p. 118–123.

    Google Scholar 

  • Eastoe, C. J., T. M. Peryt, O. Y. Petrychenko, and D. Geisler-Cussey, 2007, Stable chlorine isotopes in Phanerozoic evaporites: Applied Geochemistry, v. 22, p. 575–588.

    Google Scholar 

  • Ece, O. I., and F. Coban, 1994, Geology, occurrence and genesis of Eskisesehir Sepiolites, Turkey: Clay and Clay Minerals, v. 42, p. 81–92.

    Google Scholar 

  • Eckardt, F. D., and B. Spiro, 1999, The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia: Sedimentary Geology, v. 123, p. 255–273.

    Google Scholar 

  • Eckardt, F. D., H. Viles, N. Drake, G. A. S., and K. White, 2001, The role of playas in pedogenic gypsum crust formation in the Central Namib Desert: A theoretical model: Earth Surface Processes and Landforms, v. 26, p. 1177–1193.

    Google Scholar 

  • Edgell, H. S., 1991, Proterozoic salt basins of the Persian Gulf area and their role in hydrocarbon generation: Precambrian Research, v. 54, p. 1–14.

    Google Scholar 

  • Edgett, K. S., and T. J. Parker, 1997, Water on early Mars – Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani: Geophysical Research Letters, v. 24, p. 2897–2900.

    Google Scholar 

  • Eggenkamp, H. G. M., R. Kreulen, and A. F. K. Van Groos, 1995, Chlorine stable isotope fractionation in evaporites: Geochimica et Cosmochimica Acta, v. 59, p. 5169–5175.

    Google Scholar 

  • Eisenberg, L., 2003, Giant stromatolites and a supersurface in the Navajo Sandstone, Capitol Reef National Park, Utah: Geology, v. 31, p. 111–114.

    Google Scholar 

  • Eugster, H. P., 1970, Chemistry and origin of the brines of Lake Magadi, Kenya: Special Publ. Geol. Soc., v. 3, p. 215–235.

    Google Scholar 

  • Eugster, H. P., 1970, Chemistry and origin of the brines of Lake Magadi, Kenya: Special Publ. Geol. Soc., v. 3, p. 215–235.

    Google Scholar 

  • Eugster, H. P., 1970, Chemistry and origin of the brines of Lake Magadi, Kenya: Special Publ. Geol. Soc., v. 3, p. 215–235.

    Google Scholar 

  • Eugster, H. P., 1980a, Geochemistry of Evaporitic Lacustrine Deposits: Annual Review of Earth and Planetary Sciences, v. 8, p. 35–63.

    Google Scholar 

  • Eugster, H. P., 1980b, Lake Magadi, Kenya, and its precursors, in A. Nissenbaum, ed., Hypersaline brines and evaporitic environments, Elservier Developments in Sedimentology 28, p. 195–232.

    Google Scholar 

  • Eugster, H. P., and L. A. Hardie, 1978, Saline Lakes, in A. Lerman, ed., Lakes; chemistry, geology, physics: New York, NY, Springer-Verlag, p. 237–293.

    Google Scholar 

  • Eugster, H. P., and B. F. Jones, 1978, Behavior of major solutes during closed-basin brine evolution: American Journal of Science, v. 279, p. 609–631.

    Google Scholar 

  • Ezersky, M., and A. Frumkin, 2013, Fault – Dissolution front relations and the Dead Sea sinkhole problem: Geomorphology, v. 201, p. 35–44.

    Google Scholar 

  • Ferguson, J., G. Jacobsen, W. R. Evans, R. A. Wooding, C. J. Barnes, and S. W. Tyler, 1992, Advection and diffusion of groundwater brines in modern and ancient salt lakes, Nulla groundwater discharge complex, Murray Basin, southeast Australia, in J. Kharaka, and A. S. Maest, eds., Rock-Water Interactions Proceedings: Balkema, Rotterdam.

    Google Scholar 

  • Fike, D. A., J. P. Grotzinger, L. M. Pratt, and R. E. Summons, 2006, Oxidation of the Ediacaran Ocean: Nature, v. 444, p. 744–747.

    Google Scholar 

  • Fisher, W. L., and P. U. Rodda, 1969, Edwards Formation (Lower Cretaceous), Texas: Dolomitization in a Carbonate Platform System: Bulletin American Association Petroleum Geologists, v. 53, p. 55–72.

    Google Scholar 

  • Fontes, J. C., and R. Letolle, 1976, 18O and 34S in the upper Bartonian gypsum deposits of the Paris Basin: Chem. Geol., v. 18, p. 285–295.

    Google Scholar 

  • Forsythe, R. D., and J. R. Zimbelman, 1995, A case for ancient evaporite basins on Mars: Journal of Geophysical Research-Planets, v. 100, p. 5553–5563.

    Google Scholar 

  • Fouke, B. W., C. J. Beets, W. J. Meyers, G. N. Hanson, and A. J. Melillo, 1996, Sr-87/Sr-86 chronostratigraphy and dolomitization history of the Seroe Domi Formation, Curacao (Netherlands Antilles): Facies, v. 35, p. 293–320.

    Google Scholar 

  • Frumkin, A., M. Ezersky, A. Al-Zoubi, E. Akkawi, and A.-R. Abueladas, 2011, The Dead Sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse: Geomorphology, v. 134, p. 102–117.

    Google Scholar 

  • Frutos, J., and M. Cisternas, 2003, Isotopic Differentiation in Volcanic-Epithermal Surface Sulfur Deposits of Northern Chile: d34S < 0 in “Fertile” Systems (Au-Ag-Cu Ore Deposits below), versus d34S > 0 & for “Barren” Systems: Short Papers IV South American Symposium on Isotope Geology (Salvador, Brazil, 2003), p. 733–735.

    Google Scholar 

  • Fryberger, S. G., A. M. Al Sari, and T. J. Clisham, 1983, Eolian dune, interdune, sand sheet, and siliciclastic sabkha sediments of an offshore prograding sand sea, Dhahran area, Saudi Arabia: Bulletin American Association of Petroleum Geologists, v. 67, p. 280–312.

    Google Scholar 

  • Fryberger, S. G., A. M. Al Sari, T. J. Clisham, A. R. R. Syed, and G. A. H. Khattab, 1984, Wind sedimentation in the Jafurah sand sea, Saudi Arabia: Sedimentology, v. 31, p. 413–431.

    Google Scholar 

  • Gandin, A., and D. T. Wright, 2007, Evidence of vanished evaporites in Neoarchaean carbonates of South Africa: Geological Society, London, Special Publications, v. 285, p. 285–308.

    Google Scholar 

  • Garber, R. A., P. M. Harris, and J. M. Borer, 1990, Occurrence and significance of magnesite in Upper Permian (Guadalupian) Tansill and Yates formations, Delaware Basin, New Mexico: American Association of Petroleum Geologists Bulletin, v. 74, p. 119–134.

    Google Scholar 

  • García-Veigas, J., L. Rosell, I. Zak, E. Play‡, C. Ayora, and A. Starinsky, 2009, Evidence of potash salt formation in the Pliocene Sedom Lagoon (Dead Sea Rift, Israel): Chemical Geology, v. 265, p. 499–511.

    Google Scholar 

  • Garcia-Veigas, J., D. I. Cendon, J. J. Pueyo, and T. M. Peryt, 2011a, Zechstein saline brines in Poland, evidence of overturned anoxic ocean during the Late Permian mass extinction event: Chemical Geology, v. 290, p. 189–201.

    Google Scholar 

  • García-Veigas, J., L. Rosell, F. OrtÌ, I. Gundogan, and C. HelvacI, 2011b, Mineralogy, diagenesis and hydrochemical evolution in a probertite-glauberite-halite saline lake (Miocene, Emet Basin, Turkey): Chemical Geology, v. 280, p. 352–364.

    Google Scholar 

  • Garea, B. B., and C. J. R. Braithwaite, 1996, Geochemistry, isotopic composition and origin of the Beda dolomites, block NC74F, SW Sirt Basin, Libya: Journal of Petroleum Geology, v. 19, p. 289–304.

    Google Scholar 

  • Garrett, D., 2004, Handbook of lithium and natural calcium chloride, Elsevier Academic Press, 460 p.

    Google Scholar 

  • Garrett, D. E., 1998, Borates: Deposits, processing, properties and use: Amsterdam, Elsevier.

    Google Scholar 

  • Ginau, A., M. Engel, and H. Bruckner, 2012, Holocene chemical precipitates in the continental sabkha of Tayma (NW Saudi Arabia): Journal of Arid Environments, v. 84, p. 26–37.

    Google Scholar 

  • Glennie, K. W., and A. T. Buller, 1983, The Permian Weissliegend of NW Europe: the partial deformation of eolian sands caused by the Zechstein transgression: Sedimentary Geology, v. 35, p. 43–81.

    Google Scholar 

  • Glennie, K. W., and A. T. Buller, 1983, The Permian Weissliegend of NW Europe: the partial deformation of eolian sands caused by the Zechstein transgression: Sedimentary Geology, v. 35, p. 43–81.

    Google Scholar 

  • Gomis-Yagues, V., N. Boluda-Botella, and F. Ruiz-Bevia, 2000, Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion: Journal of Hydrology, v. 228, p. 48–55.

    Google Scholar 

  • Goodall, T. M., C. P. North, and K. W. Glennie, 2000, Surface and subsurface sedimentary structures produced by salt crusts: Sedimentology, v. 47, p. 99–118.

    Google Scholar 

  • Goodfellow, W. D., and I. R. Jonasson, 1984, Ocean stagnation and ventilation defined by d34S secular trends in pyrite and barite, Selwyn Basin, Yukon: Geology, v. 12, p. 583–586.

    Google Scholar 

  • Gore, D. B., D. C. Creagh, J. S. Burgess, E. A. Colhoun, A. P. Spate, and A. S. Baird, 1996, Composition, distribution and origin of surficial salts in the Vestfold Hills, East Antarctica: Antarctic Science, v. 8, p. 73–84.

    Google Scholar 

  • Groeneveld, D. P., J. L. Huntington, and D. D. Barz, 2010, Floating brine crusts, reduction of evaporation and possible replacement of fresh water to control dust from Owens Lake bed, California: Journal of Hydrology, v. 392, p. 211–218.

    Google Scholar 

  • Grotzinger, J. P., and J. F. Kasting, 1993, New constraints on Precambrian ocean composition: Journal of Geology, v. 101, p. 235–243.

    Google Scholar 

  • Habicht, K. S., and D. E. Canfield, 1996, Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle: Nature, v. 382, p. 342–343.

    Google Scholar 

  • Halevy, I., S. E. Peters, and W. W. Fischer, 2012, Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle: Science, v. 337, p. 331–334.

    Google Scholar 

  • Handford, C. R., 1991, Marginal marine halite; sabkhas and salinas, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50, Elsevier Developments in Sedimentology, p. 1–66.

    Google Scholar 

  • Hardie, L. A., 1984, Evaporites: Marine or non-marine?: American Journal of Science, v. 284, p. 193–240.

    Google Scholar 

  • Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Hardie, L. A., 1991, On the significance of evaporites: Annual Review Earth and Planetary Science, v. 19, p. 131–168.

    Google Scholar 

  • Hardie, L. A., 1996, Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.

    Google Scholar 

  • Hartig, K. A., G. S. Soreghan, R. H. Goldstein, and M. H. Engel, 2011, Dolomite in Permian paleosols of the Bravo Dome field, U.S.A.; Permian reflux followed by late recrystallization at elevated temperature: Journal of Sedimentary Research, v. 81, p. 248–265.

    Google Scholar 

  • Harvie, C. E., J. H. Weare, L. A. Hardie, and H. P. Eugster, 1980, Evaporation of sea water; calculated mineral sequences: Science, v. 208, p. 498–500.

    Google Scholar 

  • Havholm, K. G., and G. Kocurek, 1994, Factors controlling eolian sequence stratigraphy: clues from super bounding surface features in the Middle Jurassic Page Sandstone: Sedimentology, v. 41, p. 913–934.

    Google Scholar 

  • Hay, W. W., 1996, Tectonics and climate: Geologische Rundschau, v. 85, p. 409–437.

    Google Scholar 

  • Hay, W. W., A. Migdisov, A. N. Balukhovsky, C. N. Wold, S. Flogel, and E. Soding, 2006, Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, p. 3–46.

    Google Scholar 

  • Hemley, J. J., P. B. Hostetler, A. J. Gude, and W. T. Mountjoy, 1969, Some stability relations of alunite: Economic Geology, v. 64, p. 599–612.

    Google Scholar 

  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998, A Neoproterozoic Snowball Earth: Science, v. 281, p. 1342–1346.

    Google Scholar 

  • Hofmann, H. J., K. Grey, A. H. Hickman, and R. I. Thorpe, 1999, Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia: Bulletin Geological Society of America, v. 111, p. 1256–1262.

    Google Scholar 

  • Holland, H. D., J. Horita, and W. Seyfried, 1996, On the secular variations in the composition of phanerozoic marine potash evaporites: Geology, v. 24, p. 993–996.

    Google Scholar 

  • Holland, H. D., and H. Zimmermann, 2000, The Dolomite Problem Revisited: Int. Geol. Rev., v. 42, p. 481–490.

    Google Scholar 

  • Holser, W. T., 1966, Bromide geochemistry of salt rocks: Second Symposium on Salt, Ohio Geological Society, p. 248–275.

    Google Scholar 

  • Holser, W. T., 1977, Catastrophic chemical events in the history of the ocean: Nature, v. 267.

    Google Scholar 

  • Holser, W. T., 1979, Mineralogy of evaporites, in R. G. Burns, ed., Marine Minerals, v. 6, Mineralogical Society America, Reviews in Mineralogy, p. 211–294.

    Google Scholar 

  • Holser, W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in H. D. Holland, and A. F. Trendall, eds., Patterns of Change in Earth Evolution: Berlin, Springer-Verlag, p. 123–143.

    Google Scholar 

  • Holser, W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in H. D. Holland, and A. F. Trendall, eds., Patterns of Change in Earth Evolution: Berlin, Springer-Verlag, p. 123–143.

    Google Scholar 

  • Holser, W. T., 1984, Gradual and abrupt shifts in ocean chemistry during Phanerozoic time, in H. D. Holland, and A. F. Trendall, eds., Patterns of Change in Earth Evolution: Berlin, Springer-Verlag, p. 123–143.

    Google Scholar 

  • Holt, N. M., J. García-Veigas, T. K. Lowenstein, P. S. Giles, and S. Williams-Stroud, 2014, The major-ion composition of Carboniferous seawater: Geochimica et Cosmochimica Acta, v. 134, p. 317–334.

    Google Scholar 

  • Hovorka, S. D., 1992, Halite pseudomorphs after gypsum in bedded anhydrite; clue to gypsum-anhydrite relationships: Journal of Sedimentary Petrology, v. 62, p. 1098–1111.

    Google Scholar 

  • Hryniv, S. P., and T. M. Peryt, 2003, Sulfate cavity filling in the Lower Werra Anhydrite (Zechstein, Permian), Zdrada area, northern Poland: Evidence for early diagenetic evaporite paleokarst formed under sedimentary cover: Journal Of Sedimentary Research, v. 73, p. 451–461.

    Google Scholar 

  • Hsu, K. J., and C. Siegenthaler, 1969, Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem: Sedimentology, v. 12, p. 448–453.

    Google Scholar 

  • Huston, D. L., and G. A. Logan, 2004, Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere: Earth and Planetary Science Letters, v. 220, p. 41–45.

    Google Scholar 

  • Jackson, M. J., M. D. Muir, and K. A. Plumb, 1987, Geology of the southern McArthur Basin, Bureau Mineral Resources, Canberra, Australia, Bulletin 220, 173 p.

    Google Scholar 

  • Jacobson, G., G. E. Calf, J. Jankowski, and P. S. McDonald, 1989, Groundwater chemistry and palaeorecharge in the Amadeus Basin, central Australia: Journal of Hydrology, v. 109, p. 237–266.

    Google Scholar 

  • Jacobson, G., and J. Jankowski, 1989, Groundwater-discharge processes at a central Australian playa: Journal of Hydrology, v. 105, p. 275–295.

    Google Scholar 

  • Jagniecki, E. A., and K. C. Benison, 2010, Criteria for the recognition of acid-precipitated halite: Sedimentology, v. 57, p. 273–292.

    Google Scholar 

  • Jagniecki, E. A., D. M. Jenkins, T. K. Lowenstein, and A. R. Carroll, 2013, Experimental study of shortite (Na2Ca2(CO3)3) formation and application to the burial history of the Wilkins Peak Member, Green River Basin, Wyoming, USA: Geochimica et Cosmochimica Acta, v. 115, p. 31–45.

    Google Scholar 

  • Jankowski, J., and G. Jacobson, 1989, Hydrochemical evolution of regional groundwaters to playa brines in central Australia: Journal of Hydrology, v. 108, p. 123–173.

    Google Scholar 

  • Jankowski, J., and G. Jacobson, 1990, Hydrochemical processes in groundwater-discharge playas, central Australia: Hydrological Processes, v. 4, p. 59–70.

    Google Scholar 

  • Jiang, L., C. F. Cai, R. H. Worden, K. K. Li, and L. Xiang, 2013, Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China: Geofluids, v. 13, p. 232–245.

    Google Scholar 

  • Jones, B. F., J. S. Hanor, and W. R. Evans, 1994, Sources of dissolved salts in the central Murray Basin, Australia: Chemical Geology, v. 111, p. 135–154.

    Google Scholar 

  • Jones, G. D., F. F. Whitaker, P. F. Smart, and W. E. Sanford, 2002, Fate of reflux brines in carbonate platforms: Geology, v. 30, p. 371–374.

    Google Scholar 

  • Jones, G. D., and Y. Xiao, 2005, Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models: Bulletin American Association Petroleum Geologists, v. 89, p. 577–601.

    Google Scholar 

  • Jordan, T. E., N. Muñoz, M. Hein, T. K. Lowenstein, L. Godfrey, and J. Yu, 2002, Active faulting and folding without topographic expression in an evaporite basin, Chile: Geological Society of America Bulletin, v. 114, p. 1406–1421.

    Google Scholar 

  • Kah, L. C., T. W. Lyons, and J. T. Chesley, 2001, Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution: Precambrian Research, v. 111, p. 203–234.

    Google Scholar 

  • Kah, L. C., T. W. Lyons, and T. D. Frank, 2004, Low marine sulphate and protracted oxygenation of the Proterozoic biosphere: Nature, v. 431, p. 834–838.

    Google Scholar 

  • Kamali, M. R., N. M. Lemon, and S. N. Apak, 1995, Porosity generation and reservoir potential of Ouldburra Formation carbonates, Officer Basin, South Australia: APEA Journal, v. 35, p. 106–120.

    Google Scholar 

  • Kampf, S. K., S. W. Tyler, C. A. Ortiz, J. F. Munoz, and P. L. Adkins, 2005, Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile: Journal of Hydrology, v. 310, p. 236–252.

    Google Scholar 

  • Karcz, I., and I. Zak, 1987, Bedforms in salt deposits of the Dead sea brines: Journal of Sedimentary Petrology, v. 57, p. 723–735.

    Google Scholar 

  • Kargel, J. S., J. Z. Kaye, J. W. Head, G. M. Marion, R. Sassen, J. Crowley, O. Ballesteros, S. A. Grant, and D. L. Hogenboom, 2000, Europa’s crust and ocean: Origin, composition, and the prospects for life: Icarus, v. 148, p. 226–265.

    Google Scholar 

  • Kargel, J. S., R. L. Kirk, B. Fegley, and A. H. Treiman, 1994, Carbonate sulphate on Venus: Icarus, v. 112, p. 219–252.

    Google Scholar 

  • Kaufman, A. J., and S. Xiao, 2003, High levels in the Proterozoic atmosphere estimated from analyses of individual microfossils: Nature, v. 425, p. 279–282.

    Google Scholar 

  • Kempe, S., and E. T. Degens, 1985, An early soda ocean?: Chemical Geology, v. 53, p. 95–108.

    Google Scholar 

  • Kempe, S., and J. Kazmierczak, 1994, The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes: Bulletin de la Institut Oceanographique (Monaco), v. 13, p. 61–117.

    Google Scholar 

  • Kendall, A. C., 1989, Brine mixing in the Middle Devonian of Western Canada and its possible significance to regional dolomitization: Sedimentary Geology, v. 64, p. 271–285.

    Google Scholar 

  • Kendall, A. C., 1992, Evaporites, in R. G. Walker, and N. P. James, eds., Facies Models: Responses to sea level change, Geological Association of Canada, p. 375–409.

    Google Scholar 

  • Kinsman, D. J. J., 1976, Evaporites; relative humidity control of primary mineral facies: Journal of Sedimentary Petrology, v. 46, p. 273–279.

    Google Scholar 

  • Knauth, L. P., 1998, Salinity history of the Earth’s early ocean: Nature, v. 395, p. 554–555.

    Google Scholar 

  • Kocurek, G., M. Carr, R. Ewing, K. G. Havholm, Y. C. Nagar, and A. K. Singhvi, 2007, White Sands Dune Field, New Mexico: Age, dune dynamics and recent accumulations: Sedimentary Geology, v. 197, p. 313–331.

    Google Scholar 

  • Kocurko, M. J., 1979, Dolomitization by spray-zone brine seepage, San Andres, Colombia: Journal of Sedimentary Petrology, v. 49, p. 209–214.

    Google Scholar 

  • Köppen, W., 1900, Versuch einer Klassification der Klimate, vorzsugsweise nach ihren Beziehungen zur Pflanzenwelt: Geographraphische Zeitschrift, v. 6, p. 593–611.

    Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259–263.

    Google Scholar 

  • Kovalevich, V. M., 1975, Thermometric studies of inclusions in artificial crystals of halite: Fluid Inclusion Research, v. 8, p. 96.

    Google Scholar 

  • Kovalevich, V. M., 1976, Halite of the salt deposits of Miocene age from the Forecarpathians: Fluid Inclusion Research, v. 9, p. 72.

    Google Scholar 

  • Kovalevich, V. M., T. M. Peryt, and O. I. Petrichenko, 1998, Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite.: Journal of Geology, v. 106, p. 695–712.

    Google Scholar 

  • Kovalevych, V., J. Paul, and T. M. Peryt, 2009, Fluid inclusions in halite from the Rot (Lower Triassic) salt deposit in Central Germany: Evidence for seawater chemistry and conditions of salt deposition and recrystallisation: Carbonates and Evaporites, v. 24, p. 45–57.

    Google Scholar 

  • Krupp, R., T. Oberthür, and W. Hirdes, 1994, The early Precambrian atmosphere and hydrosphere: Thermodynamic constraints from mineral deposits: Economic Geology, v. 89, p. 1581–1598.

    Google Scholar 

  • Küster, Y., M. Schramm, O. Bornemann, and B. Leiss, 2009, Bromide distribution characteristics of different Zechstein 2 rock salt sequences of the Southern Permian Basin: a comparison between bedded and domal salts: Sedimentology, v. 56, p. 1368–1391.

    Google Scholar 

  • Laborde, M., 1983, Determination of Brine Evaporation Rates in Solar Ponds as a Function of Magnesium Chloride Concentration. t.: 6th Int Symposium on Salt. North Ohio Geological Society, v. 2, p. 407–416.

    Google Scholar 

  • Langford, R. P., 2003, The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes: Quaternary International, v. 104, p. 31–39.

    Google Scholar 

  • Leary, D. A., and J. N. Vogt, 1986, Diagenesis of the San Andres Formation (Guadalupian), Central Basin Platform, Permian Basin, in D. G. Bebout, Harris, P. M., ed., Hydrocarbon Reservoir Studies San Andres/Grayburg Formations, Permian Basin, SEPM Special Publ. No. 26, p. 67–68.

    Google Scholar 

  • Li, J. R., T. K. Lowenstein, and I. R. Blackburn, 1997, Responses of evaporite mineralogy to inflow water sources and climate during the past 100 Ky in Death Valley California: Geological Society of America Bulletin, v. 109, p. 1361–1371.

    Google Scholar 

  • Kovalevych, V., W. Zang, T. Peryt, O. Khmelevska, S. Halas, I. Iwasinska-Budzyk, P. Boult, and P. Heithersay, 2006a, Deposition and chemical composition of early Cambrian salt in the eastern Officer Basin, South Australia: Australian Journal of Earth Sciences, v. 53, p. 577–593.

    Google Scholar 

  • Kovalevych, V. M., T. Marshall, T. M. Peryt, O. Y. Petrychenko, and S. A. Zhukova, 2006b, Chemical composition of seawater in Neoproterozoic: Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia): Precambrian Research, v. 144, p. 39–51.

    Google Scholar 

  • Liu, W. G., Y. K. Xiao, Z. C. Peng, Z. S. An, and X. X. He, 2000, Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin: Geochimica et Cosmochimica Acta, v. 64, p. 2177–2183.

    Google Scholar 

  • Lock, D. E., 1986, The formation of modern epsomite deposits near Lake Eyre, and their significance for Early-Cainozoic weathering in central Australia: Sediments down under. 12th International Sedimentological Congress, sponsored by the International Association of Sedimentologists, Bureau of Mineral Resources, Geology and Geophysics, Geological Society of Australia and the Geological Society of New Zealand, Canberra, Australia, 24–30 August, 1986. Abstracts. Canberra: International Sedimentological Congress., p. 189.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Logan, G. A., J. M. Hayes, G. B. Hieshima, and R. E. Summons, 1995, Terminal Proterozoic reorganisation of biogeochemical cycles: Nature, v. 376, p. 53–56.

    Google Scholar 

  • Long, A., C. J. Eastoe, A. S. Kaufmann, J. G. Martin, L. Wirt, and J. B. Finley, 1993, High precision of chlorine stable isotope ratios: Geochemica et Cosmochimica Acta, v. 57, p. 2907–2912.

    Google Scholar 

  • Long, D. T., N. E. Fegan, W. B. Lyons, M. E. Hines, P. G. Macumber, and A. M. Giblin, 1992a, Geochemistry of acid brines: Lake Tyrrell, Victoria, Australia.: Chemical Geology, v. 1–2.

    Google Scholar 

  • Long, D. T., N. E. Fegan, J. D. McKee, W. B. Lyons, M. E. Hines, and P. G. Macumber, 1992b, Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia.: Chemical Geology, v. 96, p. 183–202.

    Google Scholar 

  • Loope, D. B., 1984, DIscussion: Origin of extensive bedding planes in aeolian sandstones: a defence of Stoke’s hypothesis: Sedimentology, v. 31, p. 123–125.

    Google Scholar 

  • Loope, D. B., and Z. E. Haverland, 1988, Giant desiccation fissures filled with calcareous eolian sand, Hermosa Formation (Pennsylvanian), southeastern Utah: Sedimentary Geology, v. 56, p. 403–413.

    Google Scholar 

  • Lowe, D. R., 1983, Restricted shallow-water sedimentation of early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia: Precambrian Research, v. 19, p. 239–283.

    Google Scholar 

  • Lowe, D. R., and M. M. Tice, 2004, Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CH4, and O2 with an overriding tectonic control: Geology, v. 32, p. 493–496.

    Google Scholar 

  • Lowe, D. R., and G. F. Worrell, 1999, Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton greenstone belt, South Africa: Special Paper – Geological Society of America, v. 329, p. 167–188.

    Google Scholar 

  • Lowenstein, T. K., and L. A. Hardie, 1985, Criteria for the recognition of salt-pan evaporites: Sedimentology, v. 32, p. 627–644.

    Google Scholar 

  • Lowenstein, T. K., L. A. Hardie, M. N. Timofeeff, and R. V. Demicco, 2003a, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857–860.

    Google Scholar 

  • Lowenstein, T. K., B. A. Schubert, and M. N. Timofeeff, 2010, Microbial communities in fluid inclusions and long-term survival in halite: GSA Today, p. 4–9.

    Google Scholar 

  • Lowenstein, T. K., and R. J. Spencer, 1990, Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Lowenstein, T. K., M. N. Timofeeff, S. T. Brennan, H. L. A., and R. V. Demicco, 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294.

    Google Scholar 

  • Lucas, S. G., and O. R. Anderson, 1994, Ochoan (Upper Permian) stratigraphy and age determinations, southeastern New Mexico and West Texas: Bulletin American Association of Petroleum Geologists, v. 78, p. 496.

    Google Scholar 

  • Lucia, F. J., 1968, Recent sediments and diagenesis of south Bonaire, Netherlands Antilles: Journal of Sedimentary Petrology, p. 845–858.

    Google Scholar 

  • Lucia, F. J., 1972, Recognition of evaporite-carbonate shoreline sedimentation, in J. K. Rigby, and W. K. Hamblin, eds., Recognition of ancient sedimentary environments, v. 16, Soc. Econ. Paleontol. Mineral., Spec. Publ., p. 190–191.

    Google Scholar 

  • Lucia, F. J., and R. P. Major, 1994, Porosity evolution through hypersaline reflux dolomitization, in B. Purser, M. Tucker, and D. Zenger, eds., Dolomites – A Volume in Honour of Dolomieu, International Association of Sedimentologists Special Publication No. 21, p. 325–341.

    Google Scholar 

  • Last, F. M., and W. M. Last, 2012, Lacustrine carbonates of the northern Great Plains of Canada: Sedimentary Geology, v. 277–278, p. 1–31.

    Google Scholar 

  • Lyons, W. B., S. W. Tyler, H. E. Gaudette, and D. T. Long, 1995, The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia: Journal of Hydrology, v. 167, p. 225–239.

    Google Scholar 

  • Macumber, P. G., 1992, Hydrological processes in the Tyrell Basin, southeastern Australia: Chemical Geology, v. 96, p. 1–18.

    Google Scholar 

  • Magee, J. W., J. M. Bowler, G. H. Miller, and D. L. G. Williams, 1995, Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia: Palaeogeography Palaeoclimatology Palaeoecology, v. 113, p. 3–42.

    Google Scholar 

  • Maiklem, W. R., 1971, Evaporative drawdown – a mechanism for water level lowering and diagenesis in the Elk Point Basin: Bulletin Canadian Petroleum Geology, v. 19, p. 487–503.

    Google Scholar 

  • Maisonneuve, J., 1982, The composition of the Precambrian ocean waters: Sedimentary Geology, v. 31, p. 1–11.

    Google Scholar 

  • Malek, E., G. E. Bingham, and G. D. McCurdy, 1990, Evapotranspiration from the margin and moist playa of a closed desert valley: Journal of Hydrology, v. 120, p. 15–34.

    Google Scholar 

  • Marion, G. M., R. Farren, and A. Komrowski, 1999, Alternative pathways for seawater freezing: Cold Regions Science and Technology, v. 29, p. 259–266.

    Google Scholar 

  • Mattes, B. W., and S. Conway-Morris, 1990, Carbonate/ evaporite deposition in the Late Precambrian-Early Cambrian Ara Formation of southern Oman, in A. H. F. Robertson, M. P. Searle, and A. C. Ries, eds., The geology and tectonics of the Oman region, v. 49, Geological Society Special Publications, p. 617–636.

    Google Scholar 

  • Mauger, C. L., and J. S. Compton, 2011, Formation of modern dolomite in hypersaline pans of the Western Cape, South Africa: Sedimentology, v. 58, p. 1678–1692.

    Google Scholar 

  • McArthur, J. M., J. Turner, W. B. Lyons, A. O. Osborn, and M. F. Thirlwall, 1991, Hydrochemistry on the Yilgarn Block, Western Australia: ferrolysis and mineralization in acidic brines: Geochimica et Cosmochimica Acta, v. 55, p. 1273–1288.

    Google Scholar 

  • McArthur, J. M., J. Turner, W. B. Lyons, and M. F. Thirlwall, 1989, Salt sources and water-rock interaction on the Yilgarn Block, Australia: isotopic and major element tracers: Applied Geochemistry, v. 4, p. 79–92.

    Google Scholar 

  • McCaffrey, M. A., B. Lazar, and H. D. Holland, 1987, The evaporation path of seawater and the coprecipitation of Br(-) and K(+) with halite: Journal of Sedimentary Petrology, v. 57, p. 928–937.

    Google Scholar 

  • McCord, T. B., G. B. Hansen, F. P. Fanale, R. Carlson, W. , D. L. Matson, T. V. Johnson, W. D. Smythe, J. K. Crowley, P. D. Martin, A. Ocampo, C. A. Hibbitts, and J. C. Granahan, 1998, Salts on Europa’s surface detected by Galileo’s near infrared mapping Spectrometer: Science, v. 280, p. 1242–1245.

    Google Scholar 

  • McCord, T. B., P. Hayne, J.-P. Combe, G. B. Hansen, J. W. Barnes, S. b. Rodriguez, S. p. Le Mou√©lic, E. K. H. Baines, B. J. Buratti, C. Sotin, P. Nicholson, R. Jaumann, R. Nelson, and V. T. the Cassini, 2008, Titan’s surface: Search for spectral diversity and composition using the Cassini VIMS investigation: Icarus, v. 194, p. 212–242.

    Google Scholar 

  • McKay, C. P., 1996, Elemental composition, solubility, and optical properties of Titan’s organic haze: Planetary & Space Science, v. 44, p. 741–747.

    Google Scholar 

  • Melim, L. A., and P. A. Scholle, 2002, Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): seepage reflux revisited: Sedimentology, v. 49, p. 1207–1227.

    Google Scholar 

  • Meng, F., P. Ni, J. D. Schiffbauer, X. Yuan, C. Zhou, Y. Wang, and M. Xia, 2011, Ediacaran seawater temperature: Evidence from inclusions of Sinian halite: Precambrian Research, v. 184, p. 63–69.

    Google Scholar 

  • Michalski, J., and P. B. Niles, 2012, Atmospheric origin of Martian interior layered deposits: Links to climate change and the global sulfur cycle: Geology, v. 40, p. 419–422.

    Google Scholar 

  • Montgomery, D. R., and A. Gillespie, 2005, Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits: Geology, v. 33, p. 625–628.

    Google Scholar 

  • Montgomery, D. R., S. M. Som, M. P. A. Jackson, B. C. Schreiber, A. R. Gillespie, and J. B. Adams, 2009, Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels: Geological Society of America Bulletin, v. 121, p. 117–133.

    Google Scholar 

  • Moore, C. H., 2001, Carbonate Reservoirs – Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, v. 55, Elsevier, 444 p.

    Google Scholar 

  • Moore, C. H., A. Chowdhury, and L. Chan, 1988, Upper Jurassic Smackover dolomitization, Gulf of Mexico; a tale of two waters, in V. Skula, and P. A. Baker, eds., Sedimentology and geochemistry of dolostones, SEPM Special Publication No. 43, p. 175–189.

    Google Scholar 

  • Morrow, D. W., M. Zhao, and L. D. Stasiuk, 2002, The gas-bearing Devonian Presqu’ile Dolomite of the Cordova embayment region of British Columbia, Canada: Dolomitization and the stratigraphic template: Bulletin American Association of Petroleum Geologists, v. 86, p. 1609–1638.

    Google Scholar 

  • Morse, J. W., and F. Mackenzie, T., 1998, Hadean ocean carbonate geochemistry: Aquatic Geochemistry, v. 4, p. 301–319.

    Google Scholar 

  • Mountney, N. P., and D. B. Thompson, 2002, Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation, Cheshire Basin, UK: Sedimentology, v. 49, p. 805–833.

    Google Scholar 

  • Müller, S., and G. Teitz, 1971, Dolomite replacing “cement A” in biocalcarenites from Fuerteventura, Canary Islands, Spain, in D. P. Bricker, ed., Carbonate Cements: Baltimore, John Hopkins Press, p. 376 p.

    Google Scholar 

  • Murray, R. C., 1969, Hydrology of South Bonaire, Netherlands Antilles; a rock selective dolomitization model: Journal of Sedimentary Petrology, v. 39, p. 1007–1013.

    Google Scholar 

  • Myers, D. M., and C. W. Bonython, 1958, The theory of recovering salt from sea water by solar evaporation: Journal of Applied Chemistry (Australia), v. 8, p. 207–219.

    Google Scholar 

  • Neal, J. T., A. M. Langer, and P. F. Kerr, 1968, Giant desiccation polygons of Great Basin playas: Geological Society of America Bulletin, v. 79, p. 69–90.

    Google Scholar 

  • Newell, A. J., 2001, Bounding surfaces in a mixed eolian-fluvial system (Rotliegend, Wessex Basin, SW UK): Marine and Petroleum Geology, v. 18, p. 339–347.

    Google Scholar 

  • Newson, T. A., and M. Fahey, 2003, Measurement of evaporation from saline tailings storages: Engineering Geology, v. 70, p. 217–233.

    Google Scholar 

  • Nijman, W., K. H. de Bruijne, and M. E. Valkering, 1999, Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia: Precambrian Research, v. 95, p. 245-.

    Google Scholar 

  • Nordstrom, D. K., 1982a, The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3 SO3 at 298 K: Geochimica et Cosmochimica Acta, v. 46, p. 681–692.

    Google Scholar 

  • Nordstrom, D. K., 1982b, Aqueous pyrite oxidation and the consequent formation of secondary iron minerals, in J. A. Kittrick, D. S. Fanning, and L. R. Hossner, eds., Acid Sulfate Weathering, v. 10: Madison, WI, USA, Soil Science Society of America Special Publication, p. 37–56.

    Google Scholar 

  • Nunn, J. A., and N. B. Harris, 2007, Subsurface seepage of seawater across a barrier: A source of water and salt to peripheral salt basins: Geological Society of America Bulletin, v. 119, p. 1201–1217.

    Google Scholar 

  • Palmer, M. R., and C. Helvaci, 1995, The boron isotope geochemistry of the Kirka borate deposit, western Turkey: Geochimica et Cosmochimica Acta, v. 59, p. 3599–3605.

    Google Scholar 

  • Palmer, M. R., and C. Helvaci, 1997, The boron isotope geochemistry of the Neogene borate deposits of western Turkey: Geochimica et Cosmochimica Acta, v. 61, p. 3161–3169.

    Google Scholar 

  • Paris, G., J. Gaillardet, and P. Louvat, 2010, Geological evolution of seawater boron isotopic composition recorded in evaporites: Geology, v. 38, p. 1035–1038.

    Google Scholar 

  • Patterson, R. J., and D. J. J. Kinsman, 1981, Hydrologic framework of a sabkha along the Arabian Gulf: Bulletin American Association of Petroleum Geologists, v. 65, p. 1457–1475.

    Google Scholar 

  • Peng, Q. M., M. R. Palmer, and J. W. Lu, 1998, Geology and geochemistry of the Paleoproterozoic borate deposits in Liaoning-Jilin, northeastern China: evidence of metaevaporites: Hydrobiologia, v. 381, p. 51–57.

    Google Scholar 

  • Peryt, T. M., C. Pierre, and S. P. Gryniv, 1998, Origin of polyhalite deposits in the Zechstein (Upper Permian) Zdrada Platform (northern Poland): Sedimentology, v. 45, p. 565–578.

    Google Scholar 

  • Peters, S. E., and R. R. Gaines, 2012, Formation of the “Great Unconformity” as a trigger for the Cambrian explosion: Nature, v. 484, p. 363–366.

    Google Scholar 

  • Petrichenko, O. I., 1979, Translated title: Methods of inclusions in minerals of saline deposits: Fluid Inclusion Research, v. 12, p. 214–274.

    Google Scholar 

  • Petrychenko, O. Y., T. M. Peryt, and E. I. Chechel, 2005, Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites: Chemical Geology, v. 219, p. 149–161.

    Google Scholar 

  • Petrides, B., I. Cartwright, and T. Weaver, 2006, The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia: Hydrogeology Journal, v. 14, p. 1522–1543.

    Google Scholar 

  • Pierre, C., 1982, Teneurs en isotopes stables (18O, 2H, 13C, 34S) et conditions de genese des evaporites marines; application a quelques milieux actuels et au Messinien de la Mediterranee: Doctoral thesis, Orsay, Paris-Sud.

    Google Scholar 

  • Pierre, C., 1985, Polyhalite replacement after gypsum at Ojo de Liebre Lagoon (Baja California, Mexico); an early diagenesis by mixing of marine brines and continental waters: Schreiber, B. Charlotte, Harner, H. Lincoln. Sixth international symposium on salt, v. 6, p. 257–265.

    Google Scholar 

  • Pierre, C., 1988, Application of stable isotope geochemistry to the study of evaporites, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, Columbia University Press, p. 300–344.

    Google Scholar 

  • Pirajno, F., and K. Grey, 2002, Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: a rift-related playa lake and thermal spring environment?: Precambrian Research, v. 113, p. 169–192.

    Google Scholar 

  • Pope, K. O., K. H. Baines, A. C. Ocampo, and B. A. Ivanov, 1994, Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model: Earth & Planetary Science Letters, v. 128, p. 719–725.

    Google Scholar 

  • Purvis, K., 1989, Zoned authigenic magnesites in the Rotliegend Lower Permian, southern North Sea: Sedimentary Geology, v. 65, p. 307–318.

    Google Scholar 

  • Rahimpour-Bonab, H., and Z. Kalantarzadeh, 2005, Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran: Journal of Asian Earth Sciences, v. 25, p. 157–166.

    Google Scholar 

  • Raup, O. B., 1970, Brine mixing – an additional mechanism for formation of basin evaporites: Bulletin American Association of Petroleum Geologists, v. 54, p. 2246–2259.

    Google Scholar 

  • Raup, O. B., 1982, Gypsum precipitation by mixing seawater brines: Bulletin American Association of Petroleum Geologists, v. 66, p. 363–367.

    Google Scholar 

  • Raup, O. B., and R. J. Hite, 1978, Bromine distribution in marine halite rocks: Dean, W. E., Schreiber, B. C. Marine evaporites. Soc. Econ. Paleontol. Mineral., Short Course Notes No. 3.

    Google Scholar 

  • Rausch, S., F. B√∂hm, W. Bach, A. Kl√°gel, and A. Eisenhauer, 2013, Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years: Earth and Planetary Science Letters, v. 362, p. 215–224.

    Google Scholar 

  • Rech, J. A., J. Quade, and W. S. Hart, 2003, Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile: Geochimica et Cosmochimica Acta, v. 67, p. 575–586.

    Google Scholar 

  • Reuschel, M., V. A. Melezhik, M. J. Whitehouse, A. Lepland, A. E. Fallick, and H. Strauss, 2012, Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga: Precambrian Research, v. 192–195, p. 78–88.

    Google Scholar 

  • Risacher, F., B. Alonso, and C. Salazar, 2003, The origin of brines and salts in Chilean salars: a hydrochemical review: Earth-Science Reviews, v. 63, p. 249–293.

    Google Scholar 

  • Risacher, F., and H. Alonso, 2001, Geochemistry of ash leachates from the 1993 Lascar eruption, northern Chile. Implication for recycling of ancient evaporites: Journal of Volcanology & Geothermal Research, v. 109, p. 319–337.

    Google Scholar 

  • Risacher, F., H. Alonso, and C. Salazar, 2002, Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile: Chemical Geology, v. 187, p. 39–57.

    Google Scholar 

  • Risacher, F., B. Fritz, and A. Hauser, 2011, Origin of components in Chilean thermal waters: Journal of South American Earth Sciences, v. 31, p. 153–170.

    Google Scholar 

  • Rivers, J. M., T. Kurt Kyser, and N. P. James, 2012, Salinity reflux and dolomitization of southern Australian slope sediments: the importance of low carbonate saturation levels: Sedimentology, v. 59, p. 445–465.

    Google Scholar 

  • Roberts, S. M., and R. J. Spencer, 1995, Paleotemperatures preserved in fluid inclusions in halite: Geochimica et Cosmochimica Acta., v. 59, p. 3929–3942.

    Google Scholar 

  • Roedder, E., 1984a, The fluids in salt: American Mineralogist, v. 69, p. 413–439.

    Google Scholar 

  • Roedder, E., 1984b, Fluid Inclusions: Mineralogical Society of America, Reviews in Mineralogy, v. 12.

    Google Scholar 

  • Roedder, E., and R. L. Bassett, 1981, Problems in determination of the water content of rock-salt samples and its significance in nuclear-waste storage siting: Geology, v. 9, p. 525–530.

    Google Scholar 

  • Roedder, E., and B. J. Skinner, 1968, Experimental evidence that fluid inclusions do not leak: Economic Geology, v. 63, p. 715–730.

    Google Scholar 

  • Rosen, M. R., 1994, The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas, in M. R. Rosen, ed., Paleoclimate and the Basin Evolution of Playa Systems, v. 289: Boulder, Co, Geological Society of America Special Paper, p. 1–18.

    Google Scholar 

  • Rosen, M. R., L. Coshell, J. V. Turner, and R. J. Woodbury, 1996, Hydrochemistry and nutrient cycling in Yalgorup National Park, Western Australia: Journal of Hydrology, v. 185, p. 241–274.

    Google Scholar 

  • Rosen, M. R., J. V. Turner, L. Coshell, and V. Gailitis, 1995, The effects of water temperature, stratification, and biological activity on the stable isotopic composition and timing of carbonate precipitation in a hypersaline lake: Geochimica et Cosmochimica Acta, v. 59, p. 979–990.

    Google Scholar 

  • Rouchy, J. M., and C. Pierre, 1979, Donnees sedimentologiques et isotopiques sur les gypses des series evaporitiques messiniennes d’Espagne meridionale et de Chypre: Rev. Geogr. Phys. Geol. Dyn., v. 21, p. 267–280.

    Google Scholar 

  • Ruch, J., J. K. Warren, F. Risacher, T. R. Walter, and R. Lanari, 2012, Salt lake deformation detected from space: Earth and Planetary Science Letters, v. 331–332, p. 120–127.

    Google Scholar 

  • Runnegar, B., W. Dollase, R. Ketcham, M. Colbert, and W. Carlson, 2001, Early Archean sulfates from Western Australia first formed as hydrothermal barites, not gypsum evaporites: Geological Society of America, Annual Meeting, November 5–8, 2001; Session No. 166.

    Google Scholar 

  • Ruppel, S. C., and H. S. Cander, 1988, Dolomitization of shallow water carbonates by seawater and seawater-derived brines, San Andres Formation (Guadalupian), West Texas, in V. J. Shukla, and P. A. Baker, eds., Sedimentology and Geochemistry of Dolostones, v. 43: Tulsa Okla, SEPM Special Publ., p. 245–262.

    Google Scholar 

  • Salameh, E., and H. El-Naser, 2000, The Interface Configuration of the Fresh-/Dead Sea Water – Theory and Measurements: Acta Hydrochim. Hydrobiol., v. 28, p. 323–328.

    Google Scholar 

  • Salvany, J. M., J. Garcia-Veigas, and F. Orti, 2007, Glauberite-halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain): Sedimentology, v. 54, p. 443–467.

    Google Scholar 

  • Sanchez-Moral, S., S. Ordonez, M. A. G. Delcura, M. Hoyos, and J. C. Canaveras, 1998, Penecontemporaneous diagenesis in continental saline sediments – Bloeditization in Quero playa lake (La Mancha, Central Spain): Chemical Geology, v. 149, p. 189–204.

    Google Scholar 

  • Sandler, A., Y. Harlavan, and G. Steinitz, 2004, Early formation of K-feldspar in shallow-marine sediments at near-surface temperatures (southern Israel): evidence from K-Ar dating: Sedimentology, v. 51, p. 323–338.

    Google Scholar 

  • Sanford, W. E., and W. W. Wood, 1991, Brine evolution and mineral deposition in hydrologically open evaporite basins: American Journal of Science, v. 291, p. 687–710.

    Google Scholar 

  • Sass, E., and A. Bein, 1988, Dolomites and salinity; a comparative geochemical study: Shukla, Vijai, Baker, Paul A. Sedimentology and geochemistry of dolostones, based on a symposium. Special Publication Society of Economic Paleontologists and Mineralogists, v. 43, p. 223–233.

    Google Scholar 

  • Saunders, J. A., and R. C. Thomas, 1996, Origin of exotic minerals in Mississippi salt dome cap rocks – Results of reaction path modeling: Applied Geochemistry, v. 11, p. 667–676.

    Google Scholar 

  • Schenk, C. J., and S. G. Fryberger, 1988, Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico: Sedimentary Geology, v. 55, p. 109–120.

    Google Scholar 

  • Schreiber, B. C., and D. Walker, 1992, Halite pseudomorphs after gypsum; a suggested mechanism: Journal of Sedimentary Petrology, v. 62, p. 61–70.

    Google Scholar 

  • Romanovsky, V. E., S. Gruber, A. Instanes, H. Jin, S. S. Marchenko, S. L. Smith, D. Trombotto, and K. M. Walter, 2007, Global Outlook for Ice and Snow: Frozen Ground (Chpt. 7), Birkenland Trykkeri A/S, Norway.

    Google Scholar 

  • Schoenherr, J., L. Reuning, P. A. Kukla, R. Littke, J. L. Urai, M. G. Siemann, and Z. Rawahi, 2009, Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin): Sedimentology, v. 56, p. 567–589.

    Google Scholar 

  • Shen, Y., J. Farquhar, A. Masterson, A. J. Kaufman, and R. Buick, 2009, Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics: Earth and Planetary Science Letters, v. 279, p. 383–391.

    Google Scholar 

  • Shields, M. J., and P. V. Brady, 1995, Mass balance and fluid flow constraints on regional scale dolomitization, Late Devonian, Western Canada sedimentary basin: Bulletin of Canadian Petroleum Geology, v. 43, p. 371–392.

    Google Scholar 

  • Shinn, E. A., 1973, Carbonate coastal accretion in an area of longshore transport, NE Qatar, Persian Gulf, in P. B. H., ed., The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea: New York, Springer-Verlag, p. 179–191.

    Google Scholar 

  • Shlichta, P. J., 1968, Growth, Deformation, and Defect Structure of Salt Crystals: Geological Society of America Special Papers, v. 88, p. 597–618.

    Google Scholar 

  • Sibley, D. F., 1980, Climatic control of dolomitization, Seroe Doni formation (Pliocene), Bonaire, N. A., v. 28, SEPM Spec. Pub., p. 247–258.

    Google Scholar 

  • Simkiss, K., 1977, Biomineralization and detoxification: Calcified Tissue Research, v. 24, p. 199–200.

    Google Scholar 

  • Simkiss, K., 1989, Biomineralisation in the context of geological time: Royal Society of Edinburgh Transactions, Earth Sciences, v. 80, p. 193–199.

    Google Scholar 

  • Sonnenfeld, P., 1995, The color of rock salt; a review: Sedimentary Geology, v. 94, p. 267–276.

    Google Scholar 

  • Spear, N., H. D. Holland, J. Garcia-Veígas, T. K. Lowenstein, R. Giegengack, and H. Peters, 2014, Analyses of fluid inclusions in Neoproterozoic marine halite provide oldest measurement of seawater chemistry: Geology, v. 42, p. 103–106.

    Google Scholar 

  • Spencer, R. J., and L. A. Hardie, 1990, Contol of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines, in R. J. Spencer, and I. M. Chou, eds., Fluid Mineral Interactions: A Tribute to H. P. Eugster, v. 2: San Antonio, Geochem. Soc. Spec. Publ., p. 409–419.

    Google Scholar 

  • Steen, A. K., J. A. Nunn, and J. S. Hanor, 2011, Indications of formation water flow and compartmentalization on the flank of a salt structure derived from salinity and seismic data: Geofluids, v. 11, p. 199–208.

    Google Scholar 

  • Stokes, W. L., 1968, Multiple parallel truncation bedding planes — a feature of wind-deposited sandstone formations: Journal of Sedimentary Petrology, v. 38, p. 510–515.

    Google Scholar 

  • Strauss, H., 1997, The isotopic composition of sedimentary sulfur through time: Palaeogeography Palaeoclimatology Palaeoecology, v. 132, p. 97–118.

    Google Scholar 

  • Strauss, H., D. M. Banerjee, and V. Kumar, 2001, The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater – evidence from the cyclic Hanseran evaporites, NW India: Chemical Geology, v. 175, p. 17–28.

    Google Scholar 

  • Strecker, M. R., R. N. Alonso, B. Bookhagen, B. Carrapa, G. E. Hilley, E. R. Sobel, and M. H. Trauth, 2007, Tectonics and climate of the southern central Andes, Annual Review of Earth and Planetary Sciences, p. 747–787.

    Google Scholar 

  • Sugitani, K., K. Mimura, K. Suzuki, K. Nagamine, and R. Sugisaki, 2003, Stratigraphy and sedimentary petrology of an Archean volcanic-sedimentary succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: implications of evaporite (nahcolite) and barite deposition: Precambrian Research, v. 120, p. 55–79.

    Google Scholar 

  • Sumner, D. Y., and J. P. Grotzinger, 2000, Late Archean Aragonite Precipitation: Petrography, Facies Associations, and Environmental Significance, in J. P. Grotzinger, and N. P. James, eds., Carbonate Sedimentation And Diagenesis In The Evolving Precambrian World, v. 67: Tulsa, SEPM Special Publication, p. 123–144.

    Google Scholar 

  • Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit, 2009, Siberian gas venting and the end-Permian environmental crisis: Earth and Planetary Science Letters, v. 277, p. 490–500.

    Google Scholar 

  • Swihart, G. H., P. B. Moore, and E. L. Callis, 1986, Boron isotopic composition of marine and nonmarine evaporite borates: Geochimica et Cosmochimica Acta, v. 50, p. 1297–1301.

    Google Scholar 

  • Teller, J. T., J. M. Bowler, and P. G. Macumber, 1982, Modern sedimentation and hydrology in Lake Tyrrell, Victoria: Journal of the Geological Society of Australia, v. 29, p. 159–175.

    Google Scholar 

  • Timofeeff, M. N., T. Lowenstein, S. Brennan, R. Demicco, H. Zimmermann, J. Horita, and L. von Borstel, 2001, Evaluating seawater chemistry from fluid inclusions in halite: Examples from modern marine and nonmarine environments: Geochimica et Cosmochimica Acta, v. 65, p. 2293–2300.

    Google Scholar 

  • Timofeeff, M. N., T. K. Lowenstein, M. A. M. da Silva, and N. B. Harris, 2006, Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites: Geochimica et Cosmochimica Acta, v. 70, p. 1977–1994.

    Google Scholar 

  • Tyler, S. W., S. Kranz, M. B. Parlange, J. Albertson, G. G. Katul, G. F. Cochran, B. A. Lyles, and G. Holder, 1997, Estimation of groundwater evaporation and salt flux from Owens Lake, California, USA: Journal of Hydrology, p. 110–135.

    Google Scholar 

  • Tyler, S. W., and R. A. Wooding, 1991, Experimental verification of convection of groundwater beneath salt lakes: EOS, v. 72, p. 216.

    Google Scholar 

  • Ullman, W. J., 1995, The fate and accumulation of bromide during playa salt deposition: an example from Lake Frome, South Australia: Geochimica et Cosmochimica Acta, v. 59, p. 2175–2186.

    Google Scholar 

  • Ullman, W. J., and K. D. Collerson, 1994, The Sr-isotope record of late Quaternary hydrologic changes around Lake Frome, South Australia: Australian Journal of Earth Sciences, v. 41, p. 37–45.

    Google Scholar 

  • Usiglio, M. J., 1849, Etudes sur la composition de l’eau de la Mediterranee et sur l’exploitation des sel quy’elle conteint: Ann. Chim. Phys., v. 27, p. 172–191.

    Google Scholar 

  • Valyashko, M. G., 1956, Geokhimiya broma v protsessakh galogeneza i ispolzovanie soderzhaniya broma v kachestve geneticheskogo i poiskovogo kriteriya (Geochemistry of bromine in the processes of salt deposition and the use of bromine content as a genetic and propecting criterion): Geokhimiya, v. 6, p. 570–589.

    Google Scholar 

  • Van Breemen, N., 1982, Genesis, morphology, and classification of acid sulfate soils in coastal plains, in J. A. Kittrick, D. S. Fanning, and L. R. Hossner, eds., Acid Sulfate Weathering, v. 10: Madison, WI, Soil Science of America Special Publication, p. 95–108.

    Google Scholar 

  • Vearncombe, S., M. E. Barley, D. I. Groves, N. J. McNaughton, E. J. Mikucki, and J. R. Vearncombe, 1995, 3.26 Ga black -type mineralization in the Strelley Belt, Pilbara Craton, Western Australia: Journal of the Geological Society of London, v. 152, p. 587–590.

    Google Scholar 

  • Veizer, J., Y. Godderis, and L. M. Francois, 2000, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon: Nature, v. 408, p. 698–701.

    Google Scholar 

  • Vengosh, A., A. R. Chivas, M. T. McCulloch, A. Starinsky, and Y. Kolodny, 1991, Boron isotope geochemistry of Australian salt lakes.: Geochimica et Cosmochimica Acta, v. 55, p. 2591–2606.

    Google Scholar 

  • Vengosh, A., A. R. Chivas, A. Starinsky, Y. Kolodny, B. Zhang, and P. Zhang, 1995, Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China: Chemical Geology, v. 120, p. 135–154.

    Google Scholar 

  • Vengosh, A., A. Starinsky, Y. Kolodny, A. R. Chivas, and M. Raab, 1992, Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate: Geology, v. 20, p. 799–802.

    Google Scholar 

  • Vovnyuk, S. V., and G. Czapowski, 2007, Generation of primary sylvite: the fluid inclusion data from the Upper Permian (Zechstein) evaporites, SW Poland: Geological Society, London, Special Publications, v. 285, p. 275–284.

    Google Scholar 

  • Vreeland, R. H., W. D. Rosenzweig, and D. W. Powers, 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal: Nature, v. 407, p. 897–900.

    Google Scholar 

  • Wardlaw, N. C., and W. M. Schwerdtner, 1966, Halite-anhydrite seasonal layers in the Middle Devonian Prairie Formation, Saskatchewan, Canada: Geological Society of America Bulletin, v. 77, p. 331–342.

    Google Scholar 

  • Warren, J. K., 1982b, Hydrologic setting, occurrence, and significance of gypsum in late Quaternary salt lakes, South Australia: Sedimentology, v. 29, p. 609–637.

    Google Scholar 

  • Warren, J. K., 1990, Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia: Journal of Sedimentary Petrology, v. 60, p. 843–858.

    Google Scholar 

  • Warren, J. K., 1991, Sulfate dominated sea-marginal and platform evaporative settings, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Warren, J. K., 1999, Evaporites: their evolution and economics: Oxford, UK, Blackwell Scientific, 438 p.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J. K., 2008, Salt as sediment in the Central European Basin system as seen from a deep time perspective (Chapter 5.1), in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 249–276.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013–1023.

    Google Scholar 

  • Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013–1023.

    Google Scholar 

  • Whittaker, S. G., and E. W. Mountjoy, 1996, Diagenesis of an Upper Devonian carbonate-evaporite sequence: Birdbear Formation, southern Interior Plains, Canada: Journal of Sedimentary Research A: Sedimentary Petrology and Processes, v. 66, p. 965–975.

    Google Scholar 

  • Whittig, L. D., A. E. Deyo, and K. K. Tanji, 1982, Evaporite mineral species in Mancos Shale and salt efflorescence, Upper Colorado River basin: Soil Science Society of America Journal, v. 46, p. 645–651.

    Google Scholar 

  • Wilgus, C. K., and W. T. Holser, 1984, Marine and Nonmarine Salts of Western Interior, United States: American Association Petroleum Geologists – Bulletin, v. 68, p. 765–767.

    Google Scholar 

  • Williams, S. H., and J. R. Zimbelman, 1994, White Rock – An eroded Martian lacustrine deposit: Geology, v. 22, p. 107–110.

    Google Scholar 

  • Wilson, A. H., and J. A. Versfeld, 1994, The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa; Part I, Stratigraphy, sedimentology, mineralization and depositional environment: Precambrian Research, v. 67, p. 243–276.

    Google Scholar 

  • Wilson, T. P., and D. T. Long, 1993, Geochemistry and isotope chemistry of Ca-Na-Cl brines in Silurian Strata, Michigan Basin, USA: Applied Geochemistry, v. 8, p. 507–524.

    Google Scholar 

  • Wood, W. W., W. E. Sanford, and A. R. S. Al Habshi, 2002, Source of solutes to the coastal sabkha of Abu Dhabi: Geological Society of America Bulletin, v. 114, p. 259–268.

    Google Scholar 

  • Wood, W. W., W. E. Sanford, and S. K. Frape, 2005, Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat: Chemical Geology, v. 215, p. 361–372.

    Google Scholar 

  • Wooding, R. A., 1960, Rayleigh instability of a thermal boundary layer in flow through a porous medium: Journal of Fluid Mechanics, v. 9, p. 183–192.

    Google Scholar 

  • Worden, R. H., P. C. Smalley, and A. E. Fallick, 1997, Sulfur cycle in buried evaporites: Geology, v. 25, p. 643–646.

    Google Scholar 

  • Wortmann, U. G., and A. Paytan, 2012, Rapid Variability of Seawater Chemistry Over the Past 130 Million Years: Science, v. 337, p. 334–336.

    Google Scholar 

  • Xiao, J., Y. k. Xiao, Z. d. Jin, M. y. He, and C. q. Liu, 2013, Boron isotope variations and its geochemical application in nature: Australian Journal of Earth Sciences, v. 60, p. 431–447.

    Google Scholar 

  • Yang, W. B., and T. J. Ahrens, 1998, Shock vaporization of anhydrite and global effects of the K/T bolide: Earth & Planetary Science Letters, v. 156, p. 125–140.

    Google Scholar 

  • Zambito, J. J., and K. C. Benison, 2013, Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite: Geology, v. 41, p. 587–590.

    Google Scholar 

  • Zimmermann, H., 2000a, On the origin of fluid inclusions in ancient halite – basic interpretation strategies, in R. M. Geertmann, ed., Salt 2000 – 8th World Salt Symposium Volume 1: Amsterdam, Elsevier, p. 199–203.

    Google Scholar 

  • Zimmermann, H., 2000b, Tertiary seawater chemistry – Implications from primary fluid inclusions in marine halite: American Journal of Science, v. 300, p. 723–767.

    Google Scholar 

  • Zimmermann, H., 2001, On the origin of fluids included in Phanerozoic marine halite – basic interpretation strategies: Geochimica et Cosmochimica Acta, v. 65, p. 35–45.

    Google Scholar 

  • Zolotov, M. Y., B. Fegley, and K. Lodders, 1997, Hydrous silicates and water on Venus: Icarus, v. 130, p. 475–494.

    Google Scholar 

  • Zverev, V. P., 1967, Otsenka nasyshchennosti podzemnykh vod sul’fatom kal’tsiya v diapazone temperature 0–40 degrees C: in Regional’naya geotermiya i rasprostraneniye termal’nykh vod, p. 308–313.

    Google Scholar 

  • Walker, R. N., R. G. Logan, and J. G. Binnekamp, 1977, Recent geological advances concerning the H.Y.C. and associated deposits, McArthur river, N.Y: Journal of the Geological Society of Australia, v. 24, p. 365–380.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

  • Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory,Australia: Nature, v. 265, p. 526–529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Depositional Chemistry and Hydrology. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_2

Download citation

Publish with us

Policies and ethics