Skip to main content
Book cover

Evaporites pp 1375–1468Cite as

Meta-evaporites

  • Chapter

Abstract

Evaporite salts can survive well into the metamorphic realm, but are altered, recrystallised or transformed into new minerals. And so, beyond the early greenschist phase, little or nothing of the original sedimentary mineral phase remains with the possible exception of anhydrite (Table 14.1; Spear 1993). Consider “the before and after” situation as a sequence of evaporite-entraining sediments passes into the metamorphic realm. Under a likely “before” regional metamorphism scenario, a typical buried marine evaporite body occupies a continental margin position, is hundreds of metres thick, tens to hundreds of kilometres wide, perhaps with halokinetic geometries and an extensively tilted and faulted overburden. Halite typically makes up more than 60–80 % of the total rock salt volume in a basinwide unit. This halite is likely to be interlayered with anhydrite, bitterns, magnesian carbonates and siliciclastic clays. “After” metamorphism, typically driven by subduction and continent-continent collision, the end product of this once dominantly NaCl body of rock is a series of sodic and magnesian aluminosilicates, magnesites, calc-silicates and marbles with local zones of potassic enrichment. The immediate question is, where did all that salt and the associated volatiles (Cl, CO2, SO3) go?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Pressure units: 1 bar = 100 kPa = 0.987 atmospheres and 1 kilobar = 1,000 bars = 100 MPa

  2. 2.

    The illite lattice is structurally very similar to muscovite and it tends to transform to muscovite with increasing metamorphic grade. The Illite crystallinity or Kübler index is experimentally determined by measuring the full width at half maximum for the X-ray diffraction reflection peak along the (001) crystallographic axis of the illite sample. This value is an indirect measurement of the thickness of illite/muscovite packets, which denote change in metamorphic grade.

  3. 3.

    Metamorphism and metasomatism both involve the re-equilibration of mineral assemblages due to changes in pressure, temperature and/or chemical environment. Both processes involve material transport but on different length scales, so every metamorphic reaction is metasomatic on a local scale. Fluids provide a transport mechanism which is orders of magnitude faster than solid state diffusion and induce re-equilibration through dissolution of parent phases and reprecipitation of products (Putnis and Austrheim 2010).

  4. 4.

    Phlogopite is a yellow, greenish, or reddish-brown member of the mica family of phyllosilicates that is also known as magnesium mica.

  5. 5.

    Gedrite is a silicate mineral of the amphibole group with formula: (Mg;Fe2+)2[(Mg;Fe2+)3Al2](Si6Al2)O22(OH)2

  6. 6.

    Itabirite, is a banded-quartz hematite and hematite schist, constituting a laminated, metamorphosed oxide-facies iron formation in which the original chert or jasper bands have been recrystallized into layers made up of distinct crystals of quartz and the iron is present as thin layers of hematite, magnetite, or martite.

  7. 7.

    The Ancient Greeks, distinguished between precious and semi-precious stones; similar distinctions were made in other ancient cultures. In modern usage, the precious stones are diamond, ruby, sapphire and emerald, with all other gemstones being semi-precious.

  8. 8.

    Chromophore; is the part of a gem lattice responsible for its colour. A gem’s colour arises when a molecule absorbs certain wavelengths of visible light and transmits or reflects others. It is a structural feature in the lattice indicative of the presence of a gem-specific electron configuration of the ions in its crystal lattice; such as transition metal ions (Cr, V or Fe) occupying several different coordination sites. For example, ferrous iron (Fe2+) or ferric iron (Fe3+), the ferrous ion in peridot causes the green colour and ferric ion causes the yellow colour in chrysoberyl. This colour effect has important uses in heat-treatment gemstones such as blue colour in heat-treated sapphire.

  9. 9.

    Lapis is the Latin word for “stone” and lazuli is the genitive form of the Medieval Latin lazulum meaning blue, which was taken originally from the Persian lāžaward, the name of a place where lapis lazuli was mined. Taken as a whole, lapis lazuli originally meant “stone of Lāzhward.” With time, the name of the place came to be associated with the stone mined there and, eventually, with its bright blue colour. Lapis lazuli’s use as jewellery can be traced back to the 5th millennium B.C.E. with the discovery of beads at a cemetery outside the temple walls of Eridu (Sumer) in southern Babylonia (Von Rosen 1990). To the ancient Egyptians, it was considered a gem representing the skies or heaven, thus was thought to denote light, truth and wisdom. It was thus often shaped into eye-shaped gems and was worn by judges in ancient Egypt. A lapis amulet graced the brow of Ra. Lapis is noted in Revelations in Christian mythology as a stone in the Breastplate of Aaron. In China, lapis was worn during the Manchu dynasty for services in the Temple of Heaven. The Romans and Greeks used it as a cure for fever and melancholy.

    The Sar-e-Sang region has supplied much of the gem quality lapis to the world. One of the first European explorers to the region (Wood 1841) described mining methods in use at that time. Camel-thorn and tamarisk twigs were collected from the valley below and carried up the steep path to the mine. When sufficient fuel had been collected, it was piled against the rock face and a fire was lit. When the rock was hot, cold water, which also had to be carried up the steep 350 m ascent from the valley floor, was thrown onto it. The rock cracked and split, enabling further work to be done with the primitive tools available (pick, hammer and chisel) in order to extract the lapis lazuli from its marble host rock.

  10. 10.

    Emerald is a brilliant, grass-green variety of beryl [Be3(Al,Cr)2Si6O18], highly favoured as a gemstone. Green colour is caused by trace of chromium (Cr3+) and vanadium (V3+) ions.

  11. 11.

    Chromium is the chromophore in both ruby and (most) emerald. In ruby, the details of the atomic environment and local charges around the chromium ion result in a strong interaction, equivalent to a small “cage” around the ion. This induces light absorption at high energy, and hence most of the transmission is at low energy, in the red part of the visible spectrum. The opposite occurs in emerald, in which the local environment is more relaxed, resulting in a looser “cage” around the chromium ion. The absorption is at lower energies, which results in the well-known emerald-green colour (Groat and Laurs 2009).

  12. 12.

    Tsavorite (also spelled tsavolite, and tsavolithe) is a transparent, bright green to emerald green variety of grossular garnet Ca3Al2(SiO4)3 coloured by chromium and vanadium. RI: 1.734–1.744. SG: 3.68. H: 6½–7. Originally discovered in 1967 by British-born gemmologist Campbell Bridges and described from the Tsavo National Game Park in Kenya, from which it took its name, this green vanadium-bearing (goldmanite-component) grossular garnet, with minor chromium, is more prevalent in Tanzania, with current production from Tunduru, Ruangwa, Umba, Merelani Hills and Komolo, which has outstripped production from Kenya. Also found at Gogogogo, Madagascar, and in the Swat region, Pakistan. In 2009, Campbell Bridges was ambushed and killed by a Kenyan mob, who were illegally mining the gem on his property.

  13. 13.

    Tanzanite; a commercial term for cut zoisite; transparent blue to violet gem, pleochroic variety of zoisite, which exhibits strongly trichroic properties in deep blue, deep red, and greenish yellow. Optics; α:1.692, β:1.693, γ:1.700. Birefringence: 0.009. Dispersion: 0.019. SG;3.38. H;6–7. Currently, high quality gem forms are considered to be a thousand times rarer than diamond, but its relative softness keeps the price (hundreds to thousands of dollars per carat) far below that of fine diamond. Tiffany & Co. coined the name tanzanite for blue zoisite as they considered the term “zoisite” sounded too much like “suicide.”

  14. 14.

    Celsian is an uncommon feldspar mineral, a barium aluminosilicate, BaAl2Si2O8 . It is a metamorphic mineral that may indicate an exhalative hydrothermal precursor.

References

  • Aagaard, P., P. K. Egeberg, G. C. Saigal, S. Morad, and K. Bjorlykke, 1990, Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway; II, Formation water chemistry and kinetic considerations: Journal of Sedimentary Research, v. 60, p. 575–581.

    Google Scholar 

  • Abraham, K., H. Mielke, and P. Povondra, 1972, On the enrichment of tourmaline in metamorphic sediments in metamorphic sediments of the Arzberg Series, W. Germany (N.E. Bavaria): Neues Jahrbuch für Mineralogie Monatschefte, p. 209–219.

    Google Scholar 

  • Aharon, P., 1988, A stable isotope study of magnesites from the Rum Jungle Uranium field. Australia: Implications for the origin of massive stratabound massive magnesites: Chemical Geology, v. 69, p. 127–145.

    Google Scholar 

  • Aleksandrov, S., and V. Senin, 2006, Genesis and composition of lazurite in magnesian skarns: Geochemistry International, v. 44, p. 976–988.

    Google Scholar 

  • Appel, P. W. U., 1984, Tourmaline in the Early Archaean Isua Supracrustal Belt, West Greenland: The Journal of Geology, v. 92, p. 599–605.

    Google Scholar 

  • Appel, P. W. U., 1995, Tourmalinites in the 3800 Ma old Isua supracrustal belt, West Greenland: Precambrian Research, v. 72, p. 227–234.

    Google Scholar 

  • Awramik, S. M., and H. P. Buchheim, 2009, A giant, Late Archean lake system: The Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia: Precambrian Research, v. 174, p. 215–240.

    Google Scholar 

  • Ayuso, R. A., and C. E. Brown, 1984, Manganese-rich red tourmaline from the Fowler talc belt, New York: Canadian Mineralogist, v. 22, p. 327–331.

    Google Scholar 

  • Azer, M., R. Stern, and J.-I. Kimura, 2010, Origin of a late Neoproterozoic (605 ± 13 Ma) intrusive carbonate–albitite complex in Southern Sinai, Egypt: International Journal of Earth Sciences, v. 99, p. 245–267.

    Google Scholar 

  • Bacik, P., P. Uher, J. Cempirek, and T. Vaculovic, 2012, Magnesian tourmalines from plagioclase-muscovite-scapolite metaevaporite layers in dolomite marble near Prosetin (Olesnice Unit, Moravicum, Czech Republic): Journal of Geosciences, v. 57, p. 143–153.

    Google Scholar 

  • Bailey, R. K., 1949, Talc in the salines of the potash field near Carlsbad, Eddy County, New Mexico: American Mineralogist., v. 34, p. 9–10.

    Google Scholar 

  • Banks, D. A., G. Giuliani, B. W. D. Yardley, and A. Cheilletz, 2000, Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing: Mineralium Deposita, v. 35, p. 699–713.

    Google Scholar 

  • Banks, D. A., G. Giuliani, B. W. D. Yardley, and A. Cheilletz, 2000, Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing: Mineralium Deposita, v. 35, p. 699–713.

    Google Scholar 

  • Barton Jr, J. M., R. Klem, C. L. Byron, and M. Beattie, 1990, Albitization and the gold-bearing Roodepoort pluton, Pietersburg granite-greenstone terrane, South Africa: South African Journal of Geology, v. 93, p. 776–784.

    Google Scholar 

  • Barton, M. D., and D. A. Johnson, 1996, Evaporitic-source model for igneous-related Fe-oxide—(REE-Cu-Au-Au) mineralisation: Geology, v. 24, p. 259–262.

    Google Scholar 

  • Bassot, J. P., 1997, Albitisation of the Paleoproterozic of eastern Senegal: Relation to iron ore along the left bank of Faleme (French): Journal of African Earth Sciences, v. 25, p. 353–367.

    Google Scholar 

  • Behr, H. J., H. Ahrendt, H. Martin, H. Porada, J. Rohrs, and K. Weber, 1983, Sedimentology and mineralogy of Upper Proterozoic playa-lake deposits in the Damara orogen, in H. Martin, and F. W. Eder, eds., Intracontinental Fold Belts: Berlin, Springer-Verlag, p. 577–610.

    Google Scholar 

  • Behr, H. J., and E. E. Horn, 1982, Fluid inclusion systems in metaplaya deposits and their relationships to mineralization and tectonics: Chemical Geology, v. 37, p. 173–189.

    Google Scholar 

  • Ben Baccar, M., B. Fritz, and B. Made, 1993, Diagenetic albitization of K-feldspar and plagioclase in sandstone reservoirs; thermodynamic and kinetic modeling: Journal of Sedimentary Research, v. 63, p. 1100–1109.

    Google Scholar 

  • Bierlein, F. P., P. M. Ashley, and P. K. Seccombe, 1996, Origin of hydrothermal Cu-Zn-Pb mineralisation in the Olary Block, South Australia: evidence from fluid inclusions and sulphur isotopes: Precambrian Research, v. 79, p. 281–305.

    Google Scholar 

  • Blake, D. H., and A. J. Stewart, 1992, Stratigraphic and Tectonic Framework, Mount Isa Inlier: Australian Geological Survey Organization Bulletin, v. 243, p. 1–11.

    Google Scholar 

  • Blenkinsop, T. G., C. R. Huddlestone-Holmes, D. R. W. Foster, M. A. Edmiston, P. Lepong, G. Mark, J. R. Austin, F. C. Murphy, A. Ford, and M. J. Rubenach, 2008, The crustal scale architecture of the Eastern Succession, Mount Isa: The influence of inversion: Precambrian Research, v. 163, p. 31–49.

    Google Scholar 

  • Bodine Jr, M. W., 1983, Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks: Sixth international symposium on salt, v. 1, p. 267–284.

    Google Scholar 

  • Boles, J. R., 1982, Active albitization of plagioclase, Gulf Coast Tertiary: American Journal of Science, v. 282, p. 165–180.

    Google Scholar 

  • Bone, Y., 1983, Interpretation of magnesites at Rum Jungle, N. T. using fluid inclusions: Journal of the Geological Society of Australia, v. 30, p. 375–381.

    Google Scholar 

  • Bone, Y., 1988, The geological setting of tourmalinite at Rum Jungle, N.T., Australia — genetic and economic implications: Mineralium Deposita, v. 23, p. 34–41.

    Google Scholar 

  • Bottinga, Y., 1969, Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor: Geochimica et Cosmochimica Act, v. 33, p. 49–64.

    Google Scholar 

  • Branquet, Y., B. Laumonier, A. Cheilletz, and G. Giuliani, 1999, Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for on mineralization: Geology, v. 27, p. 597–600.

    Google Scholar 

  • Brockamp, O., M. Zuther, and N. Clauer, 1994, K-Ar dating of episodic Mesozoic fluid migrations along the fault system of Gernsbach between the Moldanubian and Saxothuringian (Northern Black Forest, Germany): Geologische Rundschau, v. 83, p. 180–185.

    Google Scholar 

  • Butchins, C. S., and R. Mason, 1973, Metamorphic anhydrite in a kyanite-bearing schist from Churchill Falls, Labrador: Mineralogical Magazine, v. 39, p. 488–490.

    Google Scholar 

  • Byerly, G. R., and M. R. Palmer, 1991, Tourmaline mineralization in the Barberton greenstone belt, South Africa; early Archean metasomatism by evaporite-derived boron: Contributions to Mineralogy and Petrology, v. 107, p. 387–402.

    Google Scholar 

  • Cabral, A., M. Wiedenbeck, F. Rios, A. Seabra Gomes, Jr., O. Rocha Filho, and R. Jones, 2012, Talc mineralisation associated with soft hematite ore, Gongo Soco deposit, Minas Gerais, Brazil: petrography, mineral chemistry and boron-isotope composition of tourmaline: Mineralium Deposita, v. 47, p. 411–424.

    Google Scholar 

  • Castorina, F., U. Masi, G. Padalino, and M. Palomba, 2006, Constraints from geochemistry and Sr–Nd isotopes for the origin of albitite deposits from Central Sardinia (Italy): Mineralium Deposita, v. 41, p. 323–338.

    Google Scholar 

  • Chabiron, A., M. Cuney, and B. Poty, 2003, Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia): Mineralium Deposita, v. 38, p. 127–140.

    Google Scholar 

  • Chetty, D., and H. E. Frimmel, 2000, The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia: geochemical and fluid inclusion evidence from carbonate wall rock alteration: Mineralium Deposita, v. 35, p. 364–376.

    Google Scholar 

  • Chiaradia, M., D. Banks, R. Cliff, R. Marschik, and A. Haller, 2006, Origin of fluids in iron oxide-copper-gold deposits: Constraints from 37Cl, 87Sr/86Sri and Cl/Br: Mineralium Deposita, v. 41, p. 565–573.

    Google Scholar 

  • Chown, E. H., 1987, Tourmalinites in the Aphebian Mistassini Group, Quebec: Canadian Journal Earth Science, v. 24, p. 826–830.

    Google Scholar 

  • Clark, C., A. S. Mumm, and K. Faure, 2005, Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South Australia: Journal Of Metamorphic Geology, v. 23, p. 147–164.

    Google Scholar 

  • Clarke, G. L., M. Guiraud, R. Powell, and J. P. Burg, 1987, Metamorphism in the Olary Block, South Australia; compression with cooling in a Proterozoic fold belt: Journal of Metamorphic Geology, v. 5, p. 291–306.

    Google Scholar 

  • Coenraads, R., and C. C. de Bon, 2000, Lapis Lazuli from the Coquimbo Region, Chile: Gems & Gemology, v. 36, p. 28–41.

    Google Scholar 

  • Comodi, P., M. Mellini, and P. F. Zanazzi, 1990, Scapolites: variation of structure with pressure and possible role in the storage of fluids: European Journal of Mineralogy, v. 2, p. 195–202.

    Google Scholar 

  • Condie, K. C., 2004, Supercontinents and superplume events: distinguishing signals in the geologic record: Physics of the Earth and Planetary Interiors, v. 146, p. 319–332.

    Google Scholar 

  • Conly, A. G., 1995, Geological setting and genesis of the hanging wall sulphide zones, Sullivan Zn-Pb Deposit, southeastern British Columbia: Masters thesis, Carleton University, Ottawa, ON, Canada.

    Google Scholar 

  • Conor, C. H. H., and W. V. Preiss, 2008, Understanding the 1720–1640 Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis: Precambrian Research, v. 166, p. 297–317.

    Google Scholar 

  • Cook, N., 1992, Geology of metamorphosed Proterozoic playa lake deposits, Olary Block, South Australia: PhD thesis, University of New England.

    Google Scholar 

  • Cook, N., 1993, Composition and source of fluids in metamorphosed non-marine evaporites, Olary Block, South Australia: Conference: Mid- to lower-crustal metamorphism and fluids conference, Mount Isa, Mount Isa, Queensland, Australia, July 26-Aug. 1, 1993, p. 42.

    Google Scholar 

  • Cook, N. D. J., and P. M. Ashley, 1992, Meta-evaporite sequence, exhalative chemical sediments and associated rocks in the Proterozoic Willyama Supergroup, South Australia: implications for metallogenesis: Precambrian Research, v. 56, p. 211–226.

    Google Scholar 

  • Corriveau, L., 2007, Iron Oxide Copper-Gold (±Ag, ±Nb, ±REE, ±U) Deposits: A Canadian Perspective, in W. D. Goodfellow, ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication, Vol. 5, p. 1–23.

    Google Scholar 

  • Corriveau, L., S. Perreault, and A. Davidson, 2007, Prospective metallogenic settings of the Grenville Province, in W. D. Goodfellow, ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 814–847.

    Google Scholar 

  • Corriveau, L., S. Perreault, and A. Davidson, 2007, Prospective metallogenic settings of the Grenville Province, in W. D. Goodfellow, ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 814–847.

    Google Scholar 

  • Crawford, A. J., and D. Hilyard, 1990, Geochemistry of Late Proterozoic tholeiitic flood basalts, Adelaide Geosyncline, South Australia: Geological Society of Australia Special Publication, v. 16, p. 49–67.

    Google Scholar 

  • Crick, I. H., and M. D. Muir, 1980, Evaporites and uranium mineralization in the Pine Creek Geosyncline: Symposium on the Pine Creek Geosyncline, jointly sponsored by the Bureau of Mineral Resources, Geology and Geophysics and the CSIRO Institute of Earth Resources, in cooperation with the International Atomic Energy Agency,, p. 531–542.

    Google Scholar 

  • Crick, I. H., and M. D. Muir, 1980, Evaporites and uranium mineralization in the Pine Creek Geosyncline: Symposium on the Pine Creek Geosyncline, jointly sponsored by the Bureau of Mineral Resources, Geology and Geophysics and the CSIRO Institute of Earth Resources, in cooperation with the International Atomic Energy Agency,, p. 531–542.

    Google Scholar 

  • Davidson, G. J., H. Paterson, S. Meffre, and R. Berry, 2008, Constraints on uranium introduction into a hematitic breccia (Oak Dam IOCG Prospect, Olympic Dam region); can we take a leaf out of the unconformity-U page?: International Geological Congress, Abstracts = Congres Geologique International, Resumes, v. 33.

    Google Scholar 

  • Davis, T. B., 2004, Mine-Scale Structural Controls on the Mount Isa Zn-Pb-Ag and Cu Orebodies: Economic Geology, v. 99, p. 543–559.

    Google Scholar 

  • De Lorraine, W. F., 2001, Metamorphism, polydeformation, and extensive remobilization of the Balmat zinc orebodies, northwest Adirondacks, New York: Society of Economic Geologists, Guidebook Series, v. 5, p. 25–54.

    Google Scholar 

  • Doe, B. R., 1960, The distribution and composition of sulfide minerals at Balmat, New York.: doctoral thesis, California Institute of Technology, Pasedena.

    Google Scholar 

  • Dommanget, A., J. P. Milesi, and D. M., 1993, The Loulo gold and tourmaline-bearing deposit- A polymorph type in the Early Proterozoic of Mali (West Africa): Mineralium Deposita, v. 28, p. 253–263.

    Google Scholar 

  • Dostal, J., J. Keppie, H. Macdonald, and F. Ortega-Guti√©rrez, 2004, Sedimentary Origin of Calcareous Intrusions in the ~1 Ga Oaxacan Complex, Southern Mexico: Tectonic Implications: International Geology Review, v. 46, p. 528–541.

    Google Scholar 

  • Dreher, A., R. Xavier, B. Taylor, and S. Martini, 2008, New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu–Au deposit, Carajás Province, Brazil: Mineralium Deposita, v. 43, p. 161–184.

    Google Scholar 

  • Dufour, M., A. Kol’tsov, A. Zolotarev, and A. Kuznetsov, 2007, Corundum-bearing metasomatic rocks in the Central Pamirs: Petrology, v. 15, p. 151–167.

    Google Scholar 

  • Eilu, P., E. J. Mikucki, and A. L. Dugdale, 2001, Alteration zoning and primary geochemical dispersion at the Bronzewing lode-gold deposit, Western Australia: Mineralium Deposita, v. 36, p. 13–31.

    Google Scholar 

  • Ellis, D. M., 1978, Stability and phase equilibra of chloride-bearing scapolites at 750°C and 4000 bar: Geochimica et Cosmochimica Acta, v. 42, p. 1271–1281.

    Google Scholar 

  • Enami, M., J. G. Liou, and D. K. Bird, 1992, Cl-bearing amphibole in the Salton Sea geothermal system, California: Canadian Mineralogist, v. 30, p. 1077–1092.

    Google Scholar 

  • Engvik, A. K., K. Mezger, S. Wortelkamp, R. Bast, F. Corfu, A. Korneliussen, P. Ihlen, B. Bingen, and H. Austrheim, 2011, Metasomatism of gabbro – mineral replacement and element mobilization during the Sveconorwegian metamorphic event: Journal Of Metamorphic Geology, v. 29, p. 399–423.

    Google Scholar 

  • Eriksson, P. G., W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu, 2004, The Precambrian Earth – Tempos and Events: Developments in Precambrian Geology, Elsevier, 941 p.

    Google Scholar 

  • Eriksson, P. G., S. Banerjee, O. Catuneanu, P. L. Corcoran, K. A. Eriksson, E. E. Hiatt, M. Laflamme, N. Lenhardt, D. G. F. Long, A. D. Miall, M. V. Mints, P. K. Pufahl, S. Sarkar, E. L. Simpson, and G. E. Williams, 2013, Secular changes in sedimentation systems and sequence stratigraphy: Gondwana Research, v. 24, p. 468–489.

    Google Scholar 

  • Ernst, W. G., 2009, Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior: Gondwana Research, v. 15, p. 243–253.

    Google Scholar 

  • Evans, W. B., 1970, The Triassic salt deposits of north-western England: Quarterly Journal of the Geological Society, v. 126, p. 103–123.

    Google Scholar 

  • Fareeduddin, I. R. Kirmani, and S. Gupta, 2010, Low-Al tourmalines of ‘oxy-dravite’–povondraite series from Cu–Au deposit of Ghagri area, Salumber–Ghatol belt, Aravalli Supergroup, Rajasthan: Current Science, v. 99, p. 933–938.

    Google Scholar 

  • Faryad, S. W., 2002, Metamorphic Conditions and Fluid Compositions of Scapolite-Bearing Rocks from the Lapis Lazuli Deposit at Sare Sang, Afghanistan: Journal of Petrology, v. 43, p. 725–747.

    Google Scholar 

  • Feneyrol, J., G. Giuliani, D. Ohnenstetter, A. E. Fallick, J. E. Martelat, P. Monié, J. Dubessy, C. Rollion-Bard, E. Le Goff, E. Malisa, A. F. M. Rakotondrazafy, V. Pardieu, T. Kahn, D. Ichang’i, E. Venance, N. R. Voarintsoa, M. M. Ranatsenho, C. Simonet, E. Omito, C. Nyamai, and M. Saul, 2013, New aspects and perspectives on tsavorite deposits: Ore Geology Reviews, v. 53, p. 1–25.

    Google Scholar 

  • Feneyrol, J., D. Ohnenstetter, G. Giuliani, A. E. Fallick, C. Rollion-Bard, J.-L. Robert, and E. P. Malisa, 2012, Evidence of evaporites in the genesis of the vanadian grossular tsavorite deposit in Namalulu, Tanzania: The Canadian Mineralogist, v. 50, p. 745–769.

    Google Scholar 

  • Ferguson, J., 1980, Metamorphism in the Pine Creek Geosyncline and its bearing on stratigraphic correlations: International Uranium Symposium on the Pine Creek Geosyncline, Australia, 1979, Proceedings of the International Atomic Energy Agency, Vienna, p. 91–100.

    Google Scholar 

  • Fiori, M., and S. M. Grillo, 2002, Albite-chlorite and talc-chlorite deposits in metasedimantary andgranitoid rocks of central Sardinia (Italy): Boletim Paranaense de Geociências, v. 50, p. 51–57.

    Google Scholar 

  • Flament, N., N. Coltice, and P. F. Rey, 2008, A case for late-Archaean continental emergence from thermal evolution models and hypsometry: Earth and Planetary Science Letters, v. 275, p. 326–336.

    Google Scholar 

  • Forbes, B. G., 1991, Olary, South Australia; Sheet S1 54–2; Explanatory Notes: Geological Survey of South Australia.

    Google Scholar 

  • Foster, D. R. W., and J. R. Austin, 2008, The 1800–1610 Ma stratigraphic and magmatic history of the Eastern Succession, Mount Isa Inlier, and correlations with adjacent Paleoproterozoic terranes: Precambrian Research, v. 163, p. 7–30.

    Google Scholar 

  • Franchini, M. B., R. E. De Barrio, M. J. Pons, I. B. Schalamuk, F. J. Rios, and L. Meinert, 2007, Fe skarn, iron oxide Cu-Au, and manto Cu-(Ag) deposits in the Andes Cordillera of southwest Mendoza Province (34 degrees −36 degrees s), Argentina: Exploration and Mining Geology, v. 16, p. 233–265.

    Google Scholar 

  • Frank, T. D., and C. R. Fielding, 2003, Marine origin for Precambrian, carbonate-hosted magnesite?: Geology, v. 31, p. 1101–1104.

    Google Scholar 

  • Franz, L., R. L. Romer, and C. Capitani, 2013, Protoliths and phase petrology of whiteschists: Contributions to Mineralogy and Petrology, v. 166, p. 255–274.

    Google Scholar 

  • Frietsch, R., P. Tuisku, O. Martinsson, and J. Perdahl, 1997, Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional NaCl metasomatism in northern Fennoscandinavia: Ore Geology Reviews, v. 12, p. 1–34.

    Google Scholar 

  • Frimmel, H. E., M. S. Basei, and C. Gaucher, 2011, Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective: International Journal of Earth Sciences, v. 100, p. 323–354.

    Google Scholar 

  • Frimmel, H. E., and S. Y. Jiang, 2001, Marine evaporites from an oceanic island in the Neoproterozoic Adamastor ocean: Precambrian Research, v. 105, p. 57–71.

    Google Scholar 

  • Garnier, V., G. Giuliani, D. Ohnenstetter, A. E. Fallick, J. Dubessy, D. Banks, H. Q. Vinh, T. Lhomme, H. Maluski, A. Pecher, K. A. Bakhsh, P. Van Long, P. T. Trinh, and D. Schwarz, 2008, Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model: Ore Geology Reviews, v. 34, p. 169–191.

    Google Scholar 

  • Garnier, V., G. Giuliani, D. Ohnenstetter, A. E. Fallick, J. Dubessy, D. Banks, H. Q. Vinh, T. Lhomme, H. Maluski, A. Pecher, K. A. Bakhsh, P. Van Long, P. T. Trinh, and D. Schwarz, 2008, Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model: Ore Geology Reviews, v. 34, p. 169–191.

    Google Scholar 

  • Garnier, V., D. Ohnenstetter, and G. Giuliani, 2004, Fluor-rich aspidolite: a witness of evaporite implication in the genesis of ruby Nangimali (Azad-Kashmir, Pakistan) marbles (in French). Comptes Rendus Geosciences, v. 336, p. 1245–1253.

    Google Scholar 

  • Gauthier, M., F. Chartrand, A. Cayer, and J. David, 2004, The Kwyjibo Cu-REE-U-Au-Mo-F Property, Quebec: A Mesoproterozoic Polymetallic Iron Oxide Deposit in the Northeastern Grenville Province: Economic Geology, v. 99, p. 1177–1196.

    Google Scholar 

  • Gebauer, D., H. P. Schertl, M. Brix, and W. Schreyer, 1997, 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps: Lithos, v. 41, p. 5–24.

    Google Scholar 

  • Giblin, A. M., and E. C. Appleyard, 1987, Uranium mobility in non-oxidizing brines: field and experimental evidence: Applied Geochemistry, v. 2, p. 285–295.

    Google Scholar 

  • Giuliani, G., A. Cheilletz, C. Arboleda, V. Carrillo, F. Rueda, and J. H. Baker, 1995, An evaporitic origin of the parent brines of Colombian emeralds; fluid inclusion and sulphur isotope evidence: European Journal of Mineralogy, v. 7, p. 151–165.

    Google Scholar 

  • Giuliani, G., C. France-Lanord, A. Cheilletz, P. Coget, Y. Branquet, and B. Laumomnier, 2000, Sulfate reduction by organic matter in Colombian emerald deposits: Chemical and stable isotope (C, O, H) evidence: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 95, p. 1129–1153.

    Google Scholar 

  • Giuliani, G., G. R. Olivo, O. J. Marini, and D. Michel, 1993, The Santa Rita gold deposit in the Proterozoic Paranoa Group, Goias, Brazil; an example of fluid mixing during ore deposition: Ore Geology Reviews, v. 8, p. 503–523.

    Google Scholar 

  • Glassley, W. E., J. A. Korstgård, and K. Sørensen, 2010, K-rich brine and chemical modification of the crust during continent-continent collision, Nagssugtoqidian Orogen, West Greenland: Precambrian Research, v. 180, p. 47–62.

    Google Scholar 

  • Gleeson, S. A., and M. P. Smith, 2009, The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates: Geochimica et Cosmochimica Acta, v. 73, p. 5658–5672.

    Google Scholar 

  • Gleeson, S. A., J. J. F. M. Wilkinson, F. M. Stuart, and D. A. Banks, 2001, The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK: Geochimica et Cosmochimica Acta, v. 65, p. 2067–2079.

    Google Scholar 

  • Golani, P. R., M. K. Pandit, A. N. Sial, A. E. Fallick, V. P. Ferreira, and A. B. Roy, 2002, B-Na rich Palaeoproterozoic Aravalli metasediments of evaporitic association, NW India: a new repository of gold mineralization: Precambrian Research, v. 116, p. 183–98.

    Google Scholar 

  • Gómez-Pugnaire, M. T., G. Franz, and V. L. Sanchez-Vizcaino, 1994, Retrograde formation of NaCl-scapolite in high pressure metaevaporites from the Cordilleras-Beticas (Spain): Contributions to Mineralogy & Petrology, v. 116, p. 448–461.

    Google Scholar 

  • Gresens, R. L., 1978, Evaporites as precursors of massif anorthosite: Geology, v. 6, p. 46–50.

    Google Scholar 

  • Grew, E. S., 1988, Kornerupine at the Sare Sang, Afghanistan, whiteschist locality: implications for tourmaline-kornerupine distribution in metamorphic rocks: American Mineralogist, v. 73, p. 345–357.

    Google Scholar 

  • Groat, L. A., G. Giuliani, D. D. Marshall, and D. Turner, 2008, Emerald deposits and occurrences: A review: Ore Geology Reviews, v. 34, p. 87–112.

    Google Scholar 

  • Groat, L. A., and B. M. Laurs, 2009, Gem formation, production, and exploration: Why gem deposits are rare, and what is being done to find them: Elements, v. 5, p. 153–158.

    Google Scholar 

  • Groves, D. I., S. D. Golding, N. M. S. Rock, M. E. Barley, and N. J. McNaughton, 1988, Archaean carbon reservoirs and their relevance to the fluid source for gold deposits: Nature, v. 331, p. 254–257.

    Google Scholar 

  • Hamilton, W. B., 1998, Archean magmatism and deformation were not products of plate tectonics: Precambrian Research, v. 91, p. 143–179.

    Google Scholar 

  • Hammerli, J., C. Spandler, N. H. S. Oliver, and B. Rusk, 2014, Cl/Br of scapolite as a fluid tracer in the earth’s crust: insights into fluid sources in the Mary Kathleen Fold Belt, Mt. Isa Inlier, Australia: Journal of Metamorphic Geology, v. 32, p. 93–112.

    Google Scholar 

  • Hand, M. P., A. J. Reid, M. A. Szpunar, N. Direen, B. Wade, J. Payne, and K. M. Barovich, 2008, Crustal architecture during the early Mesoproterozoic Hiltaba-related mineralisation event; are the Gawler Range Volcanics a foreland basin fill?: MESA Journal, v. 51, p. 19–24.

    Google Scholar 

  • Hanson, R. E., T. J. Wilson, and H. Munyanyiwa, 1994, Geologic evolution of the Neoproterozoic Zambesi Orogenic belt in Zambia [Review]: Journal of African Earth Sciences & the Middle East., v. 18, p. 135–150.

    Google Scholar 

  • Harmer, R. E., 2002, Mineralisation of the Phalaborwa Complex and the carbonatite connection In Iron Oxide-Cu-Au-U-REE deposits, in T. M. Porter, ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, v. 1, PGC Publishing, Adelaide, p. 331–340.

    Google Scholar 

  • Harraz, H. Z., and M. F. El-Sharkawy, 2001, Origin of tourmaline in the metamorphosed Sikait pelitic belt, south Eastern Desert, Egypt: Journal of African Earth Sciences, v. 33, p. 391–416.

    Google Scholar 

  • Hay, W. W., A. Migdisov, A. N. Balukhovsky, C. N. Wold, S. Flogel, and E. Soding, 2006, Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, p. 3–46.

    Google Scholar 

  • Heimann, A., P. G. Spry, G. S. Teale, W. R. Leyh, C. H. H. Conor, G. Mora, and J. J. O’Brien, 2013, Geochemistry and genesis of low-grade metasediment-hosted Zn-Pb-Ag mineralization, southern Proterozoic Curnamona Province, Australia: Journal of Geochemical Exploration, v. 128, p. 97–116.

    Google Scholar 

  • Henry, D. J., and B. L. Dutrow, 2012, Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability: Lithos, v. 154, p. 16–32.

    Google Scholar 

  • Henry, D. J., and C. V. Guidotti, 1985, Tourmaline as a petrogenetic indicator mineral: an example from the staurolite grade metapelites of NW Maine: American Mineralogist, v. 70, p. 1–15.

    Google Scholar 

  • Henry, D. J., B. L. Kirkland, and D. W. Kirkland, 1999, Sector-zoned tourmaline from the cap rock of a salt dome: European Journal of Mineralogy, v. 11, p. 263–280.

    Google Scholar 

  • Henry, D. J., H. Sun, J. F. Slack, and B. L. Dutrow, 2008, Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites: European Journal of Mineralogy, v. 20, p. 889–904.

    Google Scholar 

  • Hietanen, A. H., 1967, Scapolite in the Belt Series in the St. Joe-Clearwater Region, Idaho: Geol. Soc. Amer. Special Paper, v. 86, p. 56 pp.

    Google Scholar 

  • Higgs, R., 2009, The vanishing Carib Halite Formation (Neocomian), Colombia-Venezuela-Trinidad prolific petroleum province: Geological Society, London, Special Publications, v. 328, p. 659–686.

    Google Scholar 

  • Hogarth, D. D., 1979, Lapis lazuli from Edwards, New York; a possible metaevaporite: Geol. Assoc. Can. Mineral. Assoc. Can., Jt. Annu. Meet., Program Abstr.

    Google Scholar 

  • Hogarth, D. D., and W. L. Griffin, 1978, Lapis lazuli from Baffin Island; a Precambrian meta-evaporite: Lithos, v. 11, p. 37–60.

    Google Scholar 

  • Holcombe, R. J., P. J. Pearson, and N. H. S. Oliver, 1991, Geometry of a middle Proterozoic extensional decollement in northeastern Australia: Tectonophysics, v. 191, p. 255–274.

    Google Scholar 

  • Hunt, J., T. Baker, and D. Thorkelson, 2005, Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada: Mineralium Deposita, v. 40, p. 492–514.

    Google Scholar 

  • Hutton, L. J., T. J. Denaro, C. Dhnaram, and G. M. Derrick, 2012, Mineral Systems in the Mount Isa Inlier: Episodes, v. 35, p. 120–130.

    Google Scholar 

  • Isik, V., C. Goncuoglu, and S. Demirel, 2004, Tourmalinite formation in the Yozgat Batholith, Central Anatolian core complex, Turkey; a case study for its structural setting: Abstracts with Programs – Geological Society of America, v. 36, p. 430.

    Google Scholar 

  • Jackson, M. P. A., C. Cramez, and J. M. Fonck, 2000, Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks: Marine and Petroleum Geology, v. 17, p. 477–498.

    Google Scholar 

  • Jiang, S.-Y., M. R. Palmer, J. F. Slack, and D. R. Shaw, 1999, Boron isotope systematics of tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia, Canada: Chemical Geology, v. 158, p. 131–144.

    Google Scholar 

  • Jiang, S.-Y., M. R. Palmer, and C. J. Yeats, 2002, Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia: Chemical Geology, v. 188, p. 229–247.

    Google Scholar 

  • Jiang, S. Y., M. R. Palmer, C. J. Xue, and Y. H. Li, 1994, Halogen-rich scapolite-biotite rocks from the Tongmugou Pb-Zn Deposit, Qinling, Northwestern China – Implications for the ore-forming processes: Mineralogical Magazine, v. 58, p. 543–552.

    Google Scholar 

  • Jingwen, M., 1995, Tourmalinite from Northern Guangxi, China: Mineralium Deposita, v. 30, p. 235–245.

    Google Scholar 

  • Kalbskopf, S. P., and J. M. Barton, Jr., 2003, The Zandrivier Deposit, Pietersburg green belt, South Africa; an auriferous tour-malinite: South African Journal of Geology, v. 106, p. 361–374.

    Google Scholar 

  • Kalsbeek, F., 1992, Large-scale albitisation of siltstones on Qeqertakavsak island, northeast Disko Bugt, West Greenland: Chemical Geology, v. 95, p. 213–233.

    Google Scholar 

  • Kampunzu, A. B., J. L. H. Cailteux, A. F. Kamona, M. M. Intiomale, and F. Melcher, 2009, Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt: Ore Geology Reviews, v. 35, p. 263–297.

    Google Scholar 

  • Keith, J., D., T. J. Thompson, and S. Ivers, 1996, The Uinta emerald and the emerald-bearing potential of the Red Pine Shale, Uinta Mountains, Utah: Abstracts with Programs – Geological Society of America, v. 28, p. 85.

    Google Scholar 

  • Kendrick, M. A., T. Baker, B. Fu, D. Phillips, and P. J. Williams, 2008, Noble gas and halogen constraints on regionally extensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia: Precambrian Research, v. 163, p. 131–150.

    Google Scholar 

  • Kendrick, M. A., M. Honda, N. H. S. Oliver, and D. Phillips, 2011, The noble gas systematics of late-orogenic H2O- fluids, Mt Isa, Australia: Geochimica et Cosmochimica Acta, v. 75, p. 1428–1450.

    Google Scholar 

  • Keppie, J. D., J. Dostal, K. L. Cameron, L. A. Solari, F. Ortega-GutiÈrrez, and R. Lopez, 2003, Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications: Precambrian Research, v. 120, p. 365–389.

    Google Scholar 

  • Knight, J., J. Lowe, S. Joy, J. Cameron, J. Merrillees, S. Nag, N. Shah, G. Dua, and K. Jhala, 2002, The Khetri Copper Belt, Rajasthan: Iron Oxide Copper-Gold Terrane in the Proterozoic of NW India, in T. M. Porter, ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, v. 2, PGC Publishing, Adelaide, p. 321–341.

    Google Scholar 

  • Krcmarov, R. L., and J. I. Stewart, 1998, Geology and mineralisation of the Greenmount Cu-Au-Co deposit, southeastern Marimo Basin, Queensland: Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, v. 45, p. 463 – 482.

    Google Scholar 

  • Kribek, B., J. Hladikova, and D. Holeczy, 2002, Anhydrite-bearing rocks from the Rozna District (Moldanubian Zone, Czech Republic): high grade metamorphosed exhalites?: Mineralium Deposita, v. 37, p. 465–479.

    Google Scholar 

  • Kukla, P. A., L. Reuning, S. Becker, J. L. Urai, and J. Schoenherr, 2011b, Distribution and mechanisms of overpressure generation and deflation in the late Neoproterozoic to early Cambrian South Oman Salt Basin: Geofluids, v. 11, p. 349–361.

    Google Scholar 

  • Kulke, H., 1978, Tektonik und Petrographie einer Salinarformation am Beispiel der Trias des Atlassystems (NW-Afrika), in W. Zeil, ed., Geotektonische Forschungen, v. 55, p. 1–158.

    Google Scholar 

  • Kwak, T. A. P., 1977, Scapolite compositional change in a metamorphic gradient and its bearing on the identification of meta-evaporite sequences: Geological Magazine, v. 114, p. 343–354.

    Google Scholar 

  • Lamba, V. J. S., and P. S. Agarkar, 1988, The tin potential of Precambrian rare-metal bearing pegmatites of Bastar district, M.P., India: Mineralium Deposita, v. 23, p. 218–221.

    Google Scholar 

  • Land, L. S., and K. L. Milliken, 1981, Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast: Geology, v. 9, p. 314–318.

    Google Scholar 

  • Leake, B. E., C. M. Farrow, and R. Townend, 1979, A pre-2,000 Myr old granulite facies metamorphosed evaporite from Caraiba, Brazil?: Nature, v. 277, p. 49–50.

    Google Scholar 

  • Lewis, S., and M. Holness, 1996, Equilibrium halite- dihedral angles: High rock salt permeability in the shallow crust: Geology, v. 24, p. 431–434.

    Google Scholar 

  • Lindenmayer, Z. G., 1981, Evolucao geológica do Vale do Rio Curaca e dos corpos máfico-ultramáficos mineralizados a cobre, in H. A. V. lnda, M. M. Marinho, and F. B. Duarte, eds., Geologia e Recursos Minerais do Estado da Bahia, v. 4, Textos Basicos, p. 72–110.

    Google Scholar 

  • Long, R. D., 2010, The Paroo Fault and the Mount Isa copper orebodies; a revised structural and evolutionary model, Mt Isa, Queensland, Australia: Doctoral thesis, James Cook University, 238 p.

    Google Scholar 

  • Lottermoser, B. G., 1988, A carbonatitic diatreme from Umberatana, South Australia: Journal of the Geological Society, London, v. 145, p. 505–513.

    Google Scholar 

  • Love, S., 1992, Possible ages and origins of some rocks of the Willyama Supergroup, New South Wales: BSc Honours thesis, Australian National University, Canberra.

    Google Scholar 

  • Lowe, D. R., 1994, Archean greenstone-related sedimentary rocks, in K. C. Condie, ed., Archean Crustal Evolution: Amsterdam, Elsevier, p. 1210170.

    Google Scholar 

  • Lowe, D. R., and M. M. Tice, 2004, Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CH4, and O2 with an overriding tectonic control: Geology, v. 32, p. 493–496.

    Google Scholar 

  • Lund, K., R. G. Tysdal, K. V. Evans, M. J. Kunk, and R. M. Pillers, 2011, Structural Controls and Evolution of Gold-, Silver-, and REE-Bearing Copper-Cobalt Ore Deposits, Blackbird District, East-Central Idaho: Epigenetic Origins: Economic Geology, v. 106, p. 585–618.

    Google Scholar 

  • Ma, G., G. Beaudoin, S. Qi, and Y. Li, 2004, Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China: Mineralium Deposita, v. 39, p. 380–395.

    Google Scholar 

  • MacGregor, J., E. S. Grew, J. C. M. De Hoog, S. L. Harley, P. M. Kowalski, M. G. Yates, and C. J. Carson, 2013, Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source: Geochimica et Cosmochimica Acta, v. 123, p. 261–283.

    Google Scholar 

  • Manutchehr-Danai, M., 2005, Dictionary of Gems and Gemmology: Berlin, Springer, 879 p.

    Google Scholar 

  • Mao, J., Y. Chen, and J. Yu, 2008, The iron oxide-apatite deposits in the Ningwu Cretaceous Basin in the lower reach of the Yangtze River valley, China: International Geological Congress, Abstracts, v. 33.

    Google Scholar 

  • Markl, G., and S. Piazolo, 1998, Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica – Monitors of fluid compositional changes during late-magmatic fluid-rock interaction processes: Contributions to Mineralogy & Petrology, v. 132, p. 246–248.

    Google Scholar 

  • Marschik, R., R. Spikings, and I. Kuscu, 2008, Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey: Mineralium Deposita, v. 43, p. 111–124.

    Google Scholar 

  • Martinsson, O., A. Allan, T. Niiranen, C. Wanhainen, P. Eilu, J. Ojala, V. Nykanen, and P. Weihed, 2008, Iron oxide-Cu-Au deposits in the northern part of the Fennoscandian Shield: International Geological Congress, Abstracts, v. 33.

    Google Scholar 

  • Mauger, R. L., 2007, Contact metamorphism-metasomatism associated with the latest Eocene northern Italian Mountain granite intrusion, Gunnison County, Colorado: Abstracts with Programs – Geological Society of America, v. 39, p. 394.

    Google Scholar 

  • Mazzini, A., H. Svensen, G. Etiope, N. Onderdonk, and D. Banks, 2011, Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA): Journal of Volcanology and Geothermal Research, v. 205, p. 67–83.

    Google Scholar 

  • McArdle, P., M. Fitzell, M. G. Oosterom, P. J. O’Connor, and P. S. Kennan, 1989, Tourmalinite as a potential host rock for gold in the Caledonides of Southeast Ireland: Mineralium Deposita, v. 24, p. 154–159.

    Google Scholar 

  • McClay, K. R., and D. G. Carlile, 1978, Mid-Proterozoic sulphate evaporites at Mount Isa Mine, Queensland, Australia: Nature, v. 274, p. 240–241.

    Google Scholar 

  • McDougall, K., 2008, Late Neogene marine incursions and the ancestral Gulf of California: Special Paper – Geological Society of America, v. 439, p. 355–373.

    Google Scholar 

  • McGowan, R. R., S. Roberts, and A. J. Boyce, 2006, Origin of the Nchanga copper-cobalt deposits of the Zambian Copperbelt: Mineralium Deposita, v. 40, p. 617–638.

    Google Scholar 

  • McKibben, M. A., J. P. Andes Jr, and A. E. Williams, 1988b, Active ore formation at a brine interface in metamorphosed deltaic lacustrine sediments: the Salton Sea geothermal system, California: Economic Geology, v. 83, p. 511–523.

    Google Scholar 

  • McKibben, M. A., A. E. Williams, and S. Okubo, 1988a, Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California; fluid inclusion evidence: Geochimica et Cosmochimica Acta, v. 52, p. 1047–1056.

    Google Scholar 

  • Milesi, J. P., S. F. Toteu, Y. Deschamps, J. L. Feybesse, C. Lerouge, A. Cocherie, J. Penaye, R. Tchameni, G. Moloto-A-Kenguemba, H. A. B. Kampunzu, N. Nicol, E. Duguey, J. M. Leistel, M. Saint-Martin, F. Ralay, C. Heinry, V. Bouchot, J. C. Doumnang Mbaigane, V. Kanda Kula, F. Chene, J. Monthel, P. Boutin, and J. Cailteux, 2006, An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4,000,000 map “Geology and major ore deposits of Central Africa”: Journal of African Earth Sciences, v. 44, p. 571–595.

    Google Scholar 

  • Miller, C. F., and D. A. Wark, 2008, Supervolcanoes and their explosive supereruptions: Elements, v. 4, p. 11–16.

    Google Scholar 

  • Moecher, D. P., E. J. Essene, and J. W. Valley, 1992, Stable isotopic and petrological constraints on scapolitization of the Whitestone meta-anorthosite, Grenville Province, Ontario*: Journal Of Metamorphic Geology, v. 10, p. 745–762.

    Google Scholar 

  • Mohammad, Y. O., H. Maekawa, and F. Ahmmad Lawa, 2007, Mineralogy and origin of Mlakawa albitite from Kurdistan region, northeastern Iraq: Geosphere, v. 3, p. 624–645.

    Google Scholar 

  • Moine, B., P. Sauvan, and J. Jarousse, 1981, Geochemistry of evaporite-bearing series; a tentative guide for the identification of meta-evaporites: Contributions to Mineralogy and Petrology, v. 76, p. 401–412.

    Google Scholar 

  • Molenaar, N., and A. F. M. de Jong, 1987, Authigenic quartz and albite in Devonian limestones: origin and significance: Sedimentology, v. 34, p. 623–640.

    Google Scholar 

  • Montomoli, C., G. Ruggieri, R. Carosi, A. Dini, and M. Genovesi, 2005, Fluid source and pressure‚Äìtemperature conditions of high-salinity fluids in syn-tectonic veins from the Northeastern Apuan Alps (Northern Apennines, Italy): Physics and Chemistry of the Earth, Parts A/B/C, v. 30, p. 1005–1019.

    Google Scholar 

  • Mora, C. I., and J. W. Valley, 1989, Halogen-rich scapolite and biotite: implications for metamorphic fluid-rock interaction: American Minealogist, v. 74, p. 721–737.

    Google Scholar 

  • Morad, S., M. Bergan, R. Knarud, and J. P. Nystuen, 1990, Albitization of detrital plagioclase in Triassic reservoir sandstones from the Snorre Field, Norwegian North Sea: Journal of Sedimentary Research, v. 60, p. 411–425.

    Google Scholar 

  • Muir, M. D., 1987, Facies models for Australian Precambrian evaporites, in T. M. Peryt, ed., Lecture Notes in Earth Sciences, v. 13: Berlin; New York, Springer-Verlag, p. 5–21.

    Google Scholar 

  • Murphy, F. C., L. J. Hutton, J. L. Walshe, J. S. Cleverley, M. A. Kendrick, J. Mclellan, M. J. Rubenach, N. H. S. Oliver, K. Gessner, F. P. Bierlein, B. Jupp, L. Aillères, C. Laukamp, I. G. Roy, J. M. Miller, D. Keys, and G. S. Nortje, 2011, Mineral system analysis of the Mt Isa–McArthur River region, Northern Australia: Australian Journal of Earth Sciences, v. 58, p. 849–873.

    Google Scholar 

  • Ndiaye, P. M., and J. J. Guillou, 1997, Les tourmalinites stratiformes à dravite d’origine colloïdale du Paléoprotérozoïque sénégalo-malien: Journal of African Earth Sciences & the Middle East, v. 24, p. 215–226.

    Google Scholar 

  • Needham, R. S., 1988, Geology of the Alligator Rivers uranium field, Northern Territory: Bulletin – Bureau of Mineral Resources, Geology & Geophysics, Australia, v. 224, p. 96 pp.

    Google Scholar 

  • Neudert, M., 1986, A depositional model for the upper Mt Isa Group and implications for ore formation: PhD thesis, Research School of Earth Sciences, Australian National University, Canberra.

    Google Scholar 

  • Neudert, M. K., and R. E. Russell, 1981, Shallow water and hypersaline features from the Middle Proterozoic Mt Isa Sequence: Nature, v. 293, p. 284–286.

    Google Scholar 

  • Neumann, N. L., G. M. Gibson, and P. N. Southgate, 2009, New SHRIMP age constraints on the timing and duration of magmatism and sedimentation in the Mary Kathleen Fold Belt, Mt Isa Inlier, Australia.: Australian Journal Earth Scieces, v. 56, p. 965–983.

    Google Scholar 

  • Newton, R. C., L. Y. Aranovich, E. C. Hansen, and B. A. Vandenheuvel, 1998, Hypersaline fluids in Precambrian deep-crustal metamorphism: Precambrian Research, v. 91, p. 41–63.

    Google Scholar 

  • Nutman, A. P., and K. Ehlers, 1998, Archaean crust near Broken Hill: Australian Journal of Earth Sciences, v. 45, p. 687–694.

    Google Scholar 

  • Nwe, Y. Y., and G. Morteani, 1993, Fluid evolution in the -CH4 -NaCl system during emerald mineralization at Gravelotte, Murchison Greenstone Belt, Northeast Transvaal, South Africa: Geochimica et Cosmochimica Acta, v. 57, p. 89–103.

    Google Scholar 

  • Nystuen, J. P., A. Andresen, R. A. Kumpulainen, and A. Siedlecka, 2008, Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard: Episodes, v. 31, p. 35–42.

    Google Scholar 

  • O’Donoghue, M., 2006, Gems; Their Sources, Descriptions and Identification (6th Edition): Amsterdam, Elsevier, 873 p.

    Google Scholar 

  • Oliveira, E. P., and J. Tarney, 1995, Genesis of the Precambrian copper-rich Caraiba hypersthenite-norite complex, Brazil: Mineralium Deposita, v. 30, p. 351–373.

    Google Scholar 

  • Oliver, N. H. S., 1995, Hydrothermal history of the Mary Kathleen Fold belt, Mt Isa Block, Queensland: Australian Journal of Earth Sciences, v. 42, p. 267–279.

    Google Scholar 

  • Oliver, N. H. S., J. S. Cleverley, G. Mark, P. J. Pollard, B. Fu, L. J. Marshall, M. J. Rubenach, P. J. Williams, and T. Baker, 2004, Modeling the Role of Sodic Alteration in the Genesis of Iron Oxide-Copper-Gold Deposits, Eastern Mount Isa Block, Australia: Economic Geology, v. 99, p. 1145–1176.

    Google Scholar 

  • Oliver, N. H. S., T. J. Rawling, I. Cartwright, and P. J. Pearson, 1994, High temperature fluid-rock interaction and scapolitisation in an extension related hydrothermal system, Mary Kathleen, Australia: Journal of Petrology, v. 35, p. 1455–1491.

    Google Scholar 

  • Oliver, N. H. S., and V. J. Wall, 1987, Metamorphic plumbing system in Proterozoic calc-silicates, Queensland, Australia: Geology, v. 15, p. 793–796.

    Google Scholar 

  • Oliver, N. H. S., V. J. Wall, and I. Cartwright, 1992, Internal control of fluid compositions in amphibolite-facies scapolitic calc-silicates, Mary Kathleen, Australia: Contributions to Mineralogy and Petrology, v. 111, p. 94–112.

    Google Scholar 

  • Opletal, V., J. Leichmann, and S. Houzar, 2007, Muscovite-plagioclase layers in dolomitic marble near Prosetin, Olesnice Unit, Moravicum; concordant injections of aplite or metaevaporites?: Acta Musei Moraviae. Scientiae Geologicae. Casopis Moravskeho Muzea, v. 92, p. 131–142.

    Google Scholar 

  • Ortega-Gutierrez, F., 1984, Evidence of Precambrian evaporites in the Oaxacan granulite complex of southern Mexico: Precambrian Research, v. 23, p. 377–393.

    Google Scholar 

  • Orville, P. M., 1975, Stability of scapolite in the system Ab-An-NaCl-CaCO3 at 4 kbar and 750°C: Geochimica et Cosmochimica Acta, v. 39, p. 1091–1105.

    Google Scholar 

  • Osborn, W. L., 1989, Formation, diagenesis, and metamorphism of sulfate minerals in the Salton Sea geothermal system, California, U.S.A: Masters thesis, University of California, Riverside; Riverside, CA.

    Google Scholar 

  • Ottaway, T. L., F. J. Wicks, L. T. Bryndzia, T. K. Kyser, and E. T. C. Spooner, 1994, Formation of the Muzo hydrothermal emerald deposit in Colombia: Nature, v. 369, p. 552–554.

    Google Scholar 

  • Owen, J. V., and J. D. Greenough, 1999, Scapolite pegmatite from the Minas fault, Nova Scotia: tangible manifestation of Carboniferous, evaporite-derived hydrothermal fluids in the western Cobequid highlands?: Mineralogical Magazine, v. 63, p. 387–397.

    Google Scholar 

  • Owen, J. V., F. J. Longstaffe, and J. D. Greenough, 2003, Petrology of sapphirine granulite and associated sodic gneisses from the Indian Head Range, Newfoundland: Lithos, v. 68, p. 91–114.

    Google Scholar 

  • Pal, D. C., R. B. Trumbull, and M. Wiedenbeck, 2010, Chemical and boron isotope compositions of tourmaline from the Jaduguda U (−Cu-Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids: Chemical Geology, v. 277, p. 245–260.

    Google Scholar 

  • Palmer, M. R., and J. F. Slack, 1989, Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites: Contributions to Mineralogy and Petrology, v. 103, p. 434–451.

    Google Scholar 

  • Pan, Y., and P. Dong, 2003, Bromine in scapolite-group minerals and sodalite: XRF microprobe analysis, exchange experiments and application to skarn deposits: Canadian Mineralogist, v. 41, p. 529–540.

    Google Scholar 

  • Pan, Y. M., M. E. Fleet, and G. E. Ray, 1994, Scapolite in two Canadian gold deposits – Nickel Plate, British Columbia and Hemlo, Ontario: Canadian Mineralogist, v. 32, p. 825–837.

    Google Scholar 

  • Parcerisa, D., M. Thiry, and J. Schmitt, 2010, Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France): International Journal of Earth Sciences, v. 99, p. 527–544.

    Google Scholar 

  • Parente, C., L. Ronchi, A. Sial, J. Guillou, M. Arthaud, K. Fuzikawa, and C. Veríssimo, Ceara, 2004, Geology and geochemistry of Paleoproterozoic magnesite deposits (≈1.8Ga), State of Ceará, Northeastern Brazil: Carbonates and Evaporites, v. 19, p. 28–50.

    Google Scholar 

  • Park, H., and W. H. Schlesinger, 2002, Global biogeochemical cycle of boron: Global Biogeochem. Cycles, v. 16, p. 1072.

    Google Scholar 

  • Patrick Muffler, L. J., and D. E. White, 1969, Active Metamorphism of Upper Cenozoic Sediments in the Salton Sea Geothermal Field and the Salton Trough, Southeastern California: Geological Society of America Bulletin, v. 80, p. 157–182.

    Google Scholar 

  • Paulick, H., and C. Breitkreuz, 2005, The Late Paleozoic felsic lava-dominated large igneous province in northeast Germany: volcanic facies analysis based on drill cores: International Journal of Earth Sciences, v. 94, p. 834–850.

    Google Scholar 

  • Peach, C., and C. J. Spiers, 1996, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock: Tectonophysics, v. 256, p. 101–128.

    Google Scholar 

  • Peck, W. H., and J. W. Valley, 2000, Large crustal input to high δ18O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec: Contributions to Mineralogy and Petrology, v. 139, p. 402–417.

    Google Scholar 

  • Peng, Q.-M., and M. R. Palmer, 2002, The Paleoproterozoic Mg and Mg-Fe Borate Deposits of Liaoning and Jilin Provinces, Northeast China: Economic Geology, v. 97, p. 93–108.

    Google Scholar 

  • Peng, Q. M., and M. R. Palmer, 1995, The Palaeoproterozoic boron deposits in eastern Liaoning, China: a metamorphosed evaporite: Precambrian Research, v. 72, p. 185–197.

    Google Scholar 

  • Peng, Q. M., M. R. Palmer, and J. W. Lu, 1998, Geology and geochemistry of the Paleoproterozoic borate deposits in Liaoning-Jilin, northeastern China: evidence of metaevaporites: Hydrobiologia, v. 381, p. 51–57.

    Google Scholar 

  • Phillips, G. N., P. J. Williams, and G. De Jong, 1994, The nature of metamorphic fluids and significance for metal exploration: Geological Society, London, Special Publications, v. 78, p. 55–68.

    Google Scholar 

  • Pirajno, F., and L. Bagas, 2008, A review of Australia’s Proterozoic mineral systems and genetic models: Precambrian Research, v. 166, p. 54–80.

    Google Scholar 

  • Plimer, I. R., 1977, The origin of the albite-rich rocks enclosing the cobaltian pyrite deposit at Thackaringa, NSW, Australia: Mineralium Deposita, v. 12, p. 175–187.

    Google Scholar 

  • Plimer, I. R., 1986, Tourmalinites from the Golden Dyke Dome, Northern Australia: Mineralium Deposita, v. 21, p. 263–270.

    Google Scholar 

  • Plimer, I. R., 1988, The association of tourmalinite with stratiform scheelite deposits; reply: Mineralium Deposita, v. 23, p. 314.

    Google Scholar 

  • Plimer, I. R., 1994, Strata-bound scheelite in meta-evaporites, Broken Hill, Australia: Economic Geology, v. 89, p. 423–437.

    Google Scholar 

  • Plimer, I. R., and T. C. Lees, 1988, Tourmaline-rich rocks associated with the submarine hydrothermal Rosebery Zn-Pb-Cu-Ag-Au deposit and granites in western Tasmania, Australia: Mineralogy & Petrology, v. 38, p. 81–103.

    Google Scholar 

  • Polito, P., T. Kyser, and C. Stanley, 2009, The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole V39: Mineralium Deposita, v. 44, p. 11-40-40.

    Google Scholar 

  • Pons, J. M., M. Franchini, L. Meinert, C. Recio, and R. Etcheverry, 2009, Iron skarns of the Vegas Peladas District, Mendoza, Argentina: Economic Geology, v. 104, p. 157–184.

    Google Scholar 

  • Preiss, W. V., 1987, The Adelaide Geosyncline, in W. V. Preiss, ed., The Adelaide Geosyncline – late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics:, Geological Survey of South Australia, Bulletin No. 53, p. 255–282.

    Google Scholar 

  • Putnis, A., and H. Austrheim, 2010, Fluid-induced processes: metasomatism and metamorphism: Geofluids, v. 10, p. 254–269.

    Google Scholar 

  • Raith, J. G., 1988, Tourmaline rocks associated with Stratabound Scheelite Mineralization in the Austroalpine Crystalline Complex, Austria: Mineralogy and Petrology, v. 39, p. 265–288.

    Google Scholar 

  • Ramsay, C. R., and L. R. Davidson, 1970, The origin of scapolite in the regionally metamorphosed rocks of Mary Kathleen, Queensland: Contributions to Mineralogy & Petrology, v. 25, p. 41–51.

    Google Scholar 

  • Ramseyer, K., J. R. Boles, and P. C. Lichtner, 1992, Mechanism of plagioclase albitization: Journal of Sedimentary Research, v. 62, p. 349–356.

    Google Scholar 

  • Reinhardt, J., 1992, The Corella Formation of the Rosebud Syncline (central Mount Isa Inlier): deposition, deformation, and metamorphism:Australian Geological Survey Organisation (AGSO), Bulletin, v. 243, p. 229–255.

    Google Scholar 

  • Rivers, T., 2009, The Grenville Province as a large hot long-duration collisional orogen – insights from the spatial and thermal evolution of its orogenic fronts: Geological Society, London, Special Publications, v. 327, p. 405–444.

    Google Scholar 

  • Rollinson, H., 2007, When did plate tectonics begin?: Geology Today, v. 23, p. 186–191.

    Google Scholar 

  • Rotherham, J. F., 1997, A metasomatic origin for the iron-oxide Au-Cu Starra orebodies, Eastern Fold Belt, Mt Isa Inlier: Mineralium Deposita, v. 32, p. 205–218.

    Google Scholar 

  • Rozen, O. M., 1979, Scapolite-plagioclase schists and the problem of Precambrian sulfate as illustrated by geochemical comparison of deposits of evaporite basins and metamorphic rocks of calcareous series: Doklady of the Academy of Sciences of the USSR, Earth Science Sections, v. 244, p. 138–141.

    Google Scholar 

  • Rubenach, M., N. Oliver, L. Fisher, and M. Bertolli, 2008, The tectonothermal and metasomatic evolution of the Mount Isa Inlier and the formation of iron oxide Cu-Au deposits: International Geological Congress, Abstracts, v. 33.

    Google Scholar 

  • Rugless, C. S., and F. Pirajno, 1996, Geological and geochemistry of the Copperhead albitite “carbonatite” complex, East Kimberley, Western Australia: Australian Journal of Earth Sciences, v. 43, p. 311–322.

    Google Scholar 

  • Ryan, M. J., and J. C. Escher, 1999, Albitised gneisses in the area between Paakitsoq and Kangerluarsuk, north-east Disko Bugt, West Greenland: Geology of Greenland Survey Bulletin, v. 181, p. 113–117.

    Google Scholar 

  • Saigal, G. C., S. Morad, K. Bjorlykke, P. K. Egeberg, and P. Aagaard, 1988, Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway; I, Textures and origin: Journal of Sedimentary Research, v. 58, p. 1003–1013.

    Google Scholar 

  • Satish-Kumar, M., J. Hermann, T. Tsunogae, and Y. Osanai, 2006, Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust: Journal Of Metamorphic Geology, v. 24, p.

    Google Scholar 

  • Scares, D. R.,A. C. M. Ferreira, R. R. da Silva, and V. P. Ferreira, 2008, Alkali-Deficient elbaite from pegmatites of the Serido region, Borborema Province, NE Brazil: Brazilian Journal of Geology, v. 30, p. 293–296.

    Google Scholar 

  • Schenk, O., and J. L. Urai, 2004, Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of sodium chloride containing saturated brine: Contributions to Mineralogy and Petrology, v. 146, p. 671–682.

    Google Scholar 

  • Schmidt Mumm, A., and C. H. H. Conor, 2008, Albitisation – from mineral grains to giant ore deposits (abs.): 33rd International Geological Congress, Oslo, Norway, August 6–14 2008. Session MPN-03 Mineral replacement and mass transfer in hydrothermal systems: From the nanoscale to the megascale.

    Google Scholar 

  • Schmidt-Mumm, A., H. J. Behr, and E. E. Horn, 1987, Fluid systems in metaplaya sequences in the Damara Orogen (Namibia): evidence for sulfur-rich brines-general evolution and first results: Chemical Geology, v. 61, p. 135–145.

    Google Scholar 

  • Schramm, J. M., 1991, The Permian–Triassic of the Gartnerkofel-1 Core (Carnic Alps, Austria): Illite crystallinity in shaly sediments and its comparison with pre-Variscan sequences: Abh Geol BA, v. 45, p. 69–77.

    Google Scholar 

  • Schreyer, W., and K.Abraham, 1976, Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit: Contributions to Mineralogy & Petrology, v. 59, p. 111–130.

    Google Scholar 

  • Schreyer, W., K. Abraham, and H. Kulke, 1980, Natural sodium phlogopite coexisting with potassium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria: Contributions to Mineralogy & Petrology, v. 74, p. 223–233.

    Google Scholar 

  • Schreyer, W., O. Medenbach, K. Abraham, W. Gebert, and W. F. Muller, 1982, Kulkeite, a new metamorphic phyllosilicate mineral: ordered 1:1 chlorite/talc mixed-layer.: Contributions to Mineralogy & Petrology, v. 80, p. 103–109.

    Google Scholar 

  • Scrivener, R. C., and R. W. Sanderson, 1982, Talc and aragonite from the Triassic halite deposits of the Burton Row borehole, Brent Knoll, Somerset: United Kingdom, Inst. Geological Sciences, Report, v. 82, p. 58–60.

    Google Scholar 

  • Sengupta, N., D. Mukhopadhyay, P. Sengupta, and R. Hoffbauer, 2005, Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India; evidence of boron infiltration during regional metamorphism: American Mineralogist, v. 90, p. 1241–1255.

    Google Scholar 

  • Serdyuchenko, D. P., 1975, Some Precambrian scapolite bearing rocks evolved from evaporites: Lithos, v. 8, p. 1–7.

    Google Scholar 

  • Sharma, R. S., 1981, Mineralogy of a scapolite-bearing rock from Rajasthan, northwest peninsular India.: Lithos, v. 14, p. 165–172.

    Google Scholar 

  • Shieh, Y. N., and H. P. Taylor, 1969, Oxygen and carbon isotope studies of contact metamorphism of carbonate rocks: Journal of Petrology, v. 10, p. 307–331.

    Google Scholar 

  • Sighinolfi, G. P., B. I. Kronberg, C. Gorgoni, and W. S. Fyfe, 1980, Geochemistry and genesis of sulphide-anhydrite-bearing Archean carbonate rocks from Bahia (Brazil): Chemical Geology, v. 29, p. 323–331.

    Google Scholar 

  • Singh, S. P., and B. P. Singh, 2010, Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India: International Journal of Earth Sciences, v. 99, p. 101–108.

    Google Scholar 

  • Skippen, G., and V. Trommsdorff, 1986, The influence of NaCl and KCl on phase relations in metamorphosed carbonate rocks: American Journal of Science, v. 286, p. 81–104.

    Google Scholar 

  • Slack, J. F., M. R. Palmer, and B. P. J. Stevens, 1989, Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits: Nature, v. 342, p. 913–916.

    Google Scholar 

  • Slack, J. F., M. R. Palmer, B. P. J. Stevens, and R. G. Barnes, 1993, Origin and significance of tourmaline-rich rocks in the Broken-Hill District, Australia: Economic Geology, v. 88, p. 505–541.

    Google Scholar 

  • Solari, L. A., J. D. Keppie, F. Ortega-Gutiérrez, K. L. Cameron, R. Lopez, and W. E. Hames, 2003, 990 Ma and 1,100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: Roots of an orogen: Tectonophysics, v. 365, p. 257–282.

    Google Scholar 

  • Southgate, P. N., N. L. Neumann, and G. M. Gibson, 2013, Depositional systems in the Mt Isa Inlier from 1800 Ma to 1640 Ma: Implications for Zn-Pb-Ag mineralisation:Australian Journal of Earth Sciences, v. 60, p. 157–173.

    Google Scholar 

  • Spear, F. S., 1993, Metamorphic phases equilibria and pressure-temperature-time paths, Mineralogical Society of America, 799 p.

    Google Scholar 

  • Spötl, C., 1992, Clay minerals in Upper Permian evaporites from the northern Calcareous Alps (Alpine Haselgebirge Formation, Austria): European Journal of Mineralogy, v. 4, p. 1407–1419.

    Google Scholar 

  • Spötl, C., and C. Hasenhüttl, 1998, Thermal history of the evaporitic Haselgebirge mélange in the Northern Calcareous Alps (Austria): Geologische Rundschau, v. 87, p. 449–460.

    Google Scholar 

  • Stephens, A. E., and J. H. Dilles, 2008, The Lights Creek District copper deposits; porphyry copper or evaporitic-source copper iron-oxide mineralization?: Abstracts with Programs – Geological Society of America, v. 40, p. 96.

    Google Scholar 

  • Stern, R., 2007, When and how did plate tectonics begin? Theoretical and empirical considerations: Chinese Science Bulletin, v. 52, p. 578–591.

    Google Scholar 

  • Stewart, A. J., and D. H. Blake, 1992, Detailed studies of the Mount Isa Inlier: Australian Geological Survey Organisation, Bulletin, v. 243.

    Google Scholar 

  • Stewart, A. J., and D. H. Blake, 1992, Detailed studies of the Mount Isa Inlier: Australian Geological Survey Organisation, Bulletin, v. 243.

    Google Scholar 

  • Stewart, A. J., and D. H. Blake, 1992, Detailed studies of the Mount Isa Inlier: Australian Geological Survey Organisation, Bulletin, v. 243.

    Google Scholar 

  • Stewart, A. J., and D. H. Blake, 1992, Detailed studies of the Mount Isa Inlier: Australian Geological Survey Organisation, Bulletin, v. 243.

    Google Scholar 

  • Sun, H., 2007, Tourmalinites in Neoproterzoic Metaevaporitic Deposit of Duruchaus Formation, Damara Belt, Central Namibia: Doctoral thesis, Louisiana Stae University, New Orleans, 194 p.

    Google Scholar 

  • Sun, S.-s., and N. C. Higgins, 1996, Neodymium and strontium isotope study of the Blue Tier Batholith, NE Tasmania, and its bearing on the origin of tin-bearing alkali feldspar granites: Ore Geology Reviews, v. 10, p. 339–365.

    Google Scholar 

  • Svenningsen, O. M., 1994, Tectonic significance of meta-evaporitic magnesite and scapolite deposits in the Seve-Nappes, Sarek Mountains, Swedish Caledonides: Tectonophysics, v. 231, p. 33–44.

    Google Scholar 

  • Svenningsen, O. M., 1995, Extensional deformation along the Late Precambrian – Cambrian Baltoscandian passive margin: the Saektjåkkå Nappe, Swedish Caledonides: Geologische Rundschau, v. 84, p. 649–664.

    Google Scholar 

  • Svenningsen, O. M., 2001, Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides: Precambrian Research, v. 110, p. 241–254.

    Google Scholar 

  • Svensen, H., D. A. Karlsen, A. Sturz, K. Backer-Owe, D. A. Banks, and S. Planke, 2007, Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA: Geology, v. 35, p. 85–88.

    Google Scholar 

  • Torres-Roldan, R. L., 1978, Scapolite-bearing and related calc-silicate layers from the Alpujarride Series, (Betic Cordilleras of southern Spain); a discussion on their origin and some comments: Geologische Rundschau, v. 67, p. 342–355.

    Google Scholar 

  • Tosca, N. J., F. A. Macdonald, J. V. Strauss, D. T. Johnston, and A. H. Knoll, 2011, Sedimentary talc in Neoproterozoic carbonate successions: Earth and Planetary Science Letters, v. 306, p. 11–22.

    Google Scholar 

  • Touret, J. L. R., 1985, Fluid regime in southern Norway, the record of fluid inclusions, in A. C. Tobi, and J. L. R. Touret, eds., The Deep Proterozoic Crust in the North Atlantic Provinces: Dordrecht, Reidel, p. 517–549.

    Google Scholar 

  • Tourn, S. M., C. J. Herrmann, S. Ametrano, and M. K. de Brodtkorb, 2004, Tourmalinites from the Eastern Sierras Pampeanas, Argentina: Ore Geology Reviews, v. 24, p. 229–240.

    Google Scholar 

  • Trommsdorff, V., G. Skippen, and P. Ulmer, 1985, Halite and sylvite as solid inclusions in high-grade metamorphic rocks: Contributions to Mineralogy and Petrology, v. 89, p. 24–29.

    Google Scholar 

  • Van Kranendonk, M. J., R. Hugh Smithies, A. H. Hickman, and D. C. Champion, 2007, Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia: Terra Nova, v. 19, p. 1–38.

    Google Scholar 

  • Van Staal, C. R., N. Rogers, and B. E. Taylor, 2001, Formation of low-temperature mylonites and phyllonites by alkali-metasomatic weakening of felsic volcanic rocks during progressive, subduction-related deformation: Journal of Structural Geology, v. 23, p. 903–921.

    Google Scholar 

  • Vanko, D. A., and F. C. Bishop, 1982, Occurrence and origin of marialitic scapolite in the Humboldt lopolith, N.W. Nevada.: Contributions to Mineralogy & Petrology, v. 81, p. 277–289.

    Google Scholar 

  • Viola, G., N. S. Mancktelow, and J. A. Miller, 2006, Cyclic frictional-viscous slip oscillations along the base of an advancing nappe complex: Insights into brittle-ductile nappe emplacement mechanisms from the Naukluft Nappe Complex, central Namibia: Tectonics, v. 25, p. TC3016.

    Google Scholar 

  • Vishwakarma, R. K., 1996, 1.66 Ga old metamorphosed Pb-Cu deposit in Sargipali (Eastern India) – Manifestations of tidal flat environment and sedex type genesis: Precambrian Research, v. 77, p. 117–130.

    Google Scholar 

  • Visser, D., T. G. Nijland, D. J. Lieftink, and K. J. Maiden, 1999, The occurrence of preiswerkite in a tourmalime scapolite rock from Blengsvatn, Norway: American Mineralogist, v. 84, p. 977–982.

    Google Scholar 

  • Wacey, D., 2009, Early Life on Earth: A Practical Guide: Topics in Geobiology, 31, Springer.

    Google Scholar 

  • Warren, J., C. Morley, T. Charoentitirat, I. Cartwright, P. Ampaiwan, P. Khositchaisri, M. Mirzaloo, and J. Yingyuen, 2014, Structural and fluid evolution of Saraburi Group sedimentary carbonates, central Thailand: A tectonically driven fluid system: Marine and Petroleum Geology, v. 55, p. 100–121.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Webster, R., 1975, Gems, their sources, descriptions and identification: London, Newnes, Butterworths.

    Google Scholar 

  • Whelan, J. F., R. O. Rye, W. de Lorraine, and H. Ohmoto, 1990, Isotopic geochemistry of the mid-Proterozoic evaporite basin; Balmat, New York: American Journal of Science, v. 290, p. 396–424.

    Google Scholar 

  • White, D. E., 1981, Active geothermal systems and hydrothermal deposits: Economic Geology 75th Anniversary Volume, p. 392–423.

    Google Scholar 

  • Whitney, P. R., and J. F. Olmsted, 1988, Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York: Contributions to Mineralogy and Petrology, v. 99, p. 476–484.

    Google Scholar 

  • Whitney, P. R., and J. F. Olmsted, 1988, Geochemistry and origin of albite gneisses, northeastern Adirondack Mountains, New York: Contributions to Mineralogy and Petrology, v. 99, p. 476–484.

    Google Scholar 

  • Wilde, A. R., 2011, Mount Isa copper orebodies: improving predictive discovery: Australian Journal of Earth Sciences, v. 58, p. 937–952.

    Google Scholar 

  • Wilde, A. R., 2011, Mount Isa copper orebodies: improving predictive discovery: Australian Journal of Earth Sciences, v. 58, p. 937–952.

    Google Scholar 

  • Willner, A. P., 1992, Tourmalinites from the stratiform peraluminous metamorphic suite of the Central Namaqua Mobile Belt (South Africa): Mineralium Deposita, v. 27, p. 304–313.

    Google Scholar 

  • Wilson, W. E., 2002, Cuprian Elbaite from the Batalha Mine, Paraíba, Brazil: Mineralogical Record, v. 33, p. 127–137.

    Google Scholar 

  • Wood, J., 1841, John Wood. A Personal Narrative of a Journey to the Source of the River Oxus by the Route of the Indus, Kabul, and Badakhshan, Performed under the Sanction of the Supreme Government of India, in the Years 1836, 1837, and 1838. Avaialble as Elibron Classics, 2001, 458 pages. Replica of 1841 edition by John Murray, London.

    Google Scholar 

  • Worden, K., C. Carson, I. Scrimgeour, J. Lally, and N. Doyle, 2008, A revised Palaeoproterozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: Evidence from SHRIMP U–Pb zircon geochronology: Precambrian Research, v. 166, p. 122–144.

    Google Scholar 

  • Wunder, B., A. Meixner, R. L. Romer, R. Wirth, and W. Heinrich, 2005, The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid: Lithos, v. 84, p. 206–216.

    Google Scholar 

  • Xavier, R. P., M. Wiedenbeck, R. B. Trumbull, A. M. Dreher, L. V. S. Monteiro, D. Rhede, C. E. G. de Araujo, and I. Torresi, 2008, Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajas Mineral Province (Brazil): Geology, v. 36, p. 743–746.

    Google Scholar 

  • Xu, G., 2000, Fluid inclusions with NaCl-CaCl2- composition from the Cloncurry hydrothermal system, NW Queensland, Australia: Lithos, v. 53, p. 21–35.

    Google Scholar 

  • Yardley, B. D., 1996, The Evolution of Fluids Through the Metamorphic Cycle, in B. r. Jamtveit, and B. D. Yardley, eds., Fluid Flow and Transport in Rocks, Springer Netherlands, p. 99–121.

    Google Scholar 

  • Yardley, B. W. D., 2013, The Chemical Composition of Metasomatic Fluids in the Crust, Metasomatism and the Chemical Transformation of Rock: Lecture Notes in Earth System Sciences, Springer Berlin Heidelberg, p. 17–51.

    Google Scholar 

  • Yardley, B. W. D., and J. T. Graham, 2002, The origins of salinity in metamorphic fluids: Geofluids, v. 2, p. 249–256.

    Google Scholar 

  • Yardley, B. W. D., and G. E. Lloyd, 1995, Why metasomatic fronts are really metasomatic sides: Geology, v. 23, p. 53–56.

    Google Scholar 

  • Younker, L. W., P. W. Kasameyer, and J. D. Tewhey, 1982, Geological, geophysical, and thermal characteristics of the Salton Sea Geothermal Field, California: Journal of Volcanology and Geothermal Research, v. 12, p. 221–258.

    Google Scholar 

  • Zacek, V., A. Petrov, and J. Hyrsl, 1998, Chemistry and origin of povondraite-bearing rocks from Alto Chapare, Cochabamba, Bolivia: Journal of the Czech Geological Society, v. 43, p. 59–68.

    Google Scholar 

  • Zacharias, J., V. Zacek, M. Pudilova, and V. Machovic, 2005, Fluid inclusions and stable isotope study of quartz-tourmaline veins associated with beryl and emerald mineralization, Kafubu area, Zambia: Chemical Geology, v. 223, p. 136–152.

    Google Scholar 

  • Zahid, M., and C. J. Moon, 1999, Genesis of tourmalinite from Chitral, northern Pakistan: Geological Bulletin, University of Peshawar, v. 32, p. 77–87.

    Google Scholar 

  • Zegers, T. E., and P. E. van Keken, 2001, Middle Archean continent formation by crustal delamination: Geology, v. 29, p. 1083–1086.

    Google Scholar 

  • Zhao, X.-F., and M.-F. Zhou, 2011, Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide– copper–gold) metallogenic province: Mineralium Deposita, v. 46, p. 731–747.

    Google Scholar 

  • Zimmer, P. W., 1947, Anhydrite and gypsum in the Lion Mountain magnetite deposit of the north. eastem Adirondacks: American Mineralogist, v. 32, p. 647–653.

    Google Scholar 

  • Zimmermann, J. L., and R. Moretto, 1996, Release of water and gases from halite crystals: European Journal of Mineralogy, v. 8, p. 413–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Meta-evaporites. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_14

Download citation

Publish with us

Policies and ethics