Skip to main content

Potash Resources: Occurrences and Controls

  • Chapter
Book cover Evaporites

Abstract

Natural potash evaporites are a typical part of a brine evaporation series, crystallizing at the higher concentration or bittern end, either at the surface (primary salts) or in the shallow subsurface (secondary salts). Today, bedded accumulations of primary potash evaporites are a relatively rare occurrence. Extremely high solubility of most potash salts means they accumulate in highly restricted, some would say highly continental, modern depositional settings (Cendon et al. 2003). Wherever Quaternary potash does occur naturally, as in the playas of the intermontane Qaidam Basin in China and in the Danakil Depression in the Afar Rift of Africa, carnallite, not sylvite, is the dominant potash salt. This has led some to postulate that carnallite is the archetypal primary marine potash phase, while sylvite is a secondary diagenetic mineral formed by incongruent dissolution of carnallite. Others have argued that ancient sylvite was sometimes a primary precipitate, deposited by the cooling of highly saline surface or near surface brines and from seawater with ionic proportions different to those of today (Hardie 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name carnallite comes from the German geologist Rudolph von Carnall (1804–1874).

  2. 2.

    The name sylvite come from sal digestevus Sylvii (New Latin: digestive salt of Sylvius), named for the Dutch physician and chemist Franciscus de la Boë (1614–1672), a.k.a. Sylvius.

  3. 3.

    Potassium increases plant resistance to drought, frost and to a number of diseases and pests, it is essential for the development of the root system, fosters nitrogen fixation in leguminous crops, and also it improves the size, colour and sugar content of crops, such as fruits. Natural reserves of soil-potassium diminish with each successive crop. This withdrawal or “soil mining” is greatly increased and accelerated by higher yields and more intensive cropping. For example, high-yielding, short-season rice varieties in a double-cropping annual system will remove up to 36 times more potassium from soil compared to a single crop of traditional varieties. Potassium uptake by rice in a triple-cropping system will be about 50 % more than extracted by two crops annually. Although some soils are rich in potassium, many are poorly endowed and crop production thereon is unsustainable if the potassium removed by cropping is not replenished in appropriate amounts.

  4. 4.

    In July 2013, Vladislav Baumgertner, chief executive of the world’s largest potash and cheapest producer, OAO Uralkali, suddenly announced, without prior warning, that he was removing his firm from one of the potash world’s major price support cartels which his company had maintained with another firm, Belarusian Potash Company. As a result of his actions, Baumgertner has been ridiculed, reviled and even imprisoned for a month when he visited Belarus. Mining Weekly estimated that this decision had the effect of wiping out $18 billion in market capitalization of the major potash players, worldwide. The world of potash production and distribution has been thrown into major turmoil and a trade war between his home nation of Russia and neighbouring Belarus may very well have broken out. Baumgertner has explained his action was based on market forces (responding to cartel actions and changes in market share), which had led to a steady rise in his company’s above-ground potash stocks. He believed the only way to work off those stocks was to stimulate demand by forcing prices lower. Naturally, agricultural consumers rejoiced somewhat, but for many potash producers, the decline in prices to US$325 per tonne by late October 2013 was a real profit-buster (see Table 11.3c).

     Share prices of PotashCorp (POT) of Saskatchewan had been on a rollercoaster ride ever since the original price/tonne oscillations began in 2008, but, by 2013 stock prices appeared to be holding firmly between $40 and $45. This was so until the July announcement, upon which its share price immediately plunged by over 25 per cent to barely $30 per share. Part of POT’s problem stemmed from their decision to dramatically increase brownfield production from 9,000,000 tonnes per year to a prodigious 17.1 million tonnes per year, by 2015. China moved swiftly to take advantage of the situation and purchased a huge block of Uralkali stock, thereby acquiring a 12.5 % ownership position and thereby gained market leverage in order to assure China of adequate potash supplies going forward.

  5. 5.

    “Qaidam”means salt marsh in Mongolian.

  6. 6.

    “Horse” is possibly a miner’s corruption of the term horst. In mining the term typically refers to a block of country rock entirely encased within a mineral lode. Horse is also a broader geological technical term to describe any block of rock completely separated from the surrounding rock either by mineral veins or fault planes.

References

  • Abu-Hamatteh, Z. S. H., and A. M. Al-Amr, 2008, Carnallite froth flotation optimization and cell efficiency in the Arab Potash Company, Dead Sea, Jordan: Mineral Processing and Extractive Metallurgy Review: An International Journal, v. 29, p. 232–257.

    Google Scholar 

  • Adams, S. S., 1970, Ore controls, Carlsbad potash district, southeast New Mexico, in J. L. Rau, and L. F. Dellwig, eds., Third Symposium on Salt, v. 1: Cleveland, Ohio, Northern Ohio Geological Society, p. 246–257.

    Google Scholar 

  • Adams, S. S., and R. J. Hite, 1983, Potash, in S. J. LeFond, ed., Industrial minerals and rocks (nonmetallics other than fuels): New York, AIME, p. 1049–1077.

    Google Scholar 

  • Al-Rawashdeh, R., and P. Maxwell, 2014, Analysing the world potash industry: Resources Policy, v. 41, p. 143–151.

    Google Scholar 

  • Anderle, J. P., K. S. Crosby, and D. C. E. Waugh, 1979, Potash at Salt Springs, New Brunswick: Econ. Geol., v. 74, p. 389–396.

    Google Scholar 

  • Andreev, R. Y., V. N. Apollonov, G. A. Galkin, G. M. Drugov, M. A. Zharkov, Y. G. Mashovich, A. L. Protopopov, V. F. Sadovyi, and K. S. Khechoyan, 1986, The Potassium-Containing Horizons of the Nepa Basin: Soviet Geology and Geophysics, v. 27, p. 38–45.

    Google Scholar 

  • Arakel, A. V., and T. Hong Jun, 1994, Seasonal evaporite sedimentation in desert playa lakes of the Karinga Creek drainage system, central Australia, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes: Tulsa, OK, Society for Sedimentary Geology; Special Publication, v. 50, p. 91–100.

    Google Scholar 

  • Augustithis, S. S., 1980, On the textures and treatment of the sylvinite ore from the Danakili Depression, Salt Plain (Piano del Sale), Tigre, Ethiopia: Chem. Erde., v. 39, p. 91–95.

    Google Scholar 

  • Baadsgaard, H., 1987, Rb-Sr and K-Ca isotope systematics in minerals from potassium horizons in the Prairie Evaporite Formation, Saskatchewan, Canada: Chemical Geology, v. 66, p. 1–15.

    Google Scholar 

  • Baar, C. A., 1974, Geological problems in Saskatchewan potash mining due to peculiar conditions during deposition of Potash Beds, in A. H. Coogan, ed., Fourth Symposium on Salt, v. 1: Cleveland, Ohio, North Ohio Geological Society, p. 101–118.

    Google Scholar 

  • Barbieri, R., N. Stivaletta, L. Marinangeli, and G. G. Ori, 2006, Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications: Planetary and Space Science, v. 54, p. 726–736.

    Google Scholar 

  • Bates, R. L., 1969, Potash Minerals: Geology of the industrial rocks and minerals: New York, Dover Publ., 370–385 and 439–440 p.

    Google Scholar 

  • Bechtel, A., S. M. Savin, and S. Hoernes, 1999, Oxygen and hydrogen isotopic composition of clay minerals of the Bahloul Formation in the region of the Bou Grine zinc-lead ore deposit (Tunisia): evidence for fluid-rock interaction in the vicinity of salt dome cap rock: Chemical Geology, v. 156, p. 191–207.

    Google Scholar 

  • Bingham, C. P., 1980, Solar production of potash from brines of the Bonneville Salt Flats, in J. W. Gwynn, ed., Great Salt Lake; a scientific, history and economic overview. , v. 116, Bulletin Utah Geological and Mineral Survey, p. 229–242.

    Google Scholar 

  • Blanc-Valleron, M.-M., and M. Schuler, 1997, The Salt Basins of Alsace (Southern Rhine Graben), in G. Busson, and B. C. Schreiber, eds., Sedimentary Deposition in Rift and Foreland Basins in France and Spain (Paleogene and Lower Neogene): New York, Columbia University Press, p. 95–135.

    Google Scholar 

  • Blanc-Valleron, M. M., 1991, Les formations paléogènes évaporitiques du bassin potassique de Mulhouse et des bassins plus septentrion aux d’Alsace (Document BRGM, 204), Université Louis Pasteur, Paris, 350 p.

    Google Scholar 

  • Blum, M., G. Kocurek, M. Deynoux, C. Swezey, N. Lancaster, D. M. Price, and J. C. Pion, 1998, Quaternary wadi lacustrine aeolian depositional cycles and sequences, Chott Rharsa basin, Southern Tunisia, in A. S. Alsharan, K. W. Glennie, G. L. Whittle, and G. C. S. C. Kendall, eds., Quaternary Deserts and Climate Change: Rotterdam, A. A. Balkema, p. 539–552.

    Google Scholar 

  • Booth, J., and N. Sattayarak, 2011, Carboniferous-Cretaceous Geology of NE Thailand, in M. F. Ridd, A. J. Barber, and M. J. Crow, eds., The Geology of Thailand, The Geological Society, London, p. 185–222.

    Google Scholar 

  • Borchert, H., 1977, On the formation of Lower Cretaceous potassium salts and tachyhydrite in the Sergipe Basin (Brazil) with some remarks on similar occurrences in West Africa (Gabon, Angola etc.), in D. D. Klemm, and H. J. Schneider, eds., Time and strata-bound ore deposits.: Berlin, Germany, Springer-Verlag, p. 94–111.

    Google Scholar 

  • Borchert, H., and R. O. Muir, 1964, Salt deposits--The origin, metamorphism and deformation of evaporites: London, D. Van Nostrand Co., Ltd., 338 p.

    Google Scholar 

  • Boys, C., 1990, The geology of potash deposits at PCS Cory Mine, Saskatchewan: Master’s thesis, University of Saskatchewan; Saskatoon, SK; Canada.

    Google Scholar 

  • Boys, C., 1993, A geological approach to potash mining problems in Saskatchewan, Canada: Exploration & Mining Geology, v. 2, p. 129–138.

    Google Scholar 

  • Braitsch, O., 1971, Salt Deposits: Their Origin and Compositions: New York, Springer-Verlag, 297 p.

    Google Scholar 

  • Brodylo, L. A., and R. J. Spencer, 1987, Depositional environment of the Middle Devonian Telegraph Salts, Alberta, Canada: Bulletin Canadian Petroleum Geology, v. 35, p. 186–196.

    Google Scholar 

  • Bryant, R. G., N. A. Drake, A. C. Millington, and B. W. Sellwood, 1994a, The chemical evolution of the brines on Chott el Djerid, southern Tunisia after an exceptional rainfall event in January 1990, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, v. 50: Tulsa, Okl, SEPM/Society for Sedimentary Geology; Special Publication, p. 3–12.

    Google Scholar 

  • Bryant, R. G., B. W. Sellwood, A. C. Millington, and N. A. Drake, 1994b, Marine-like potash evaporite formation on a continental playa; case study from Chott el Djerid, southern Tunisia: Sedimentary Geology, v. 90, p. 269–291.

    Google Scholar 

  • Butts, D., 2007, Chemicals from Brines, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., p. 784–803.

    Google Scholar 

  • Carniel, R., E. M. o. Jolis, and J. Jones, 2010, A geophysical multi-parametric analysis of hydrothermal activity at Dallol, Ethiopia: Journal of African Earth Sciences, v. 58, p. 812–819.

    Google Scholar 

  • Casas, E., 1992, Modern carnallite mineralisation and Late Pleistocene to Holocene brine evolution in the nonmarine Qaidam Basin, China: Doctoral thesis, State University of New York at Binghampton.

    Google Scholar 

  • Casas, E., T. K. Lowenstein, R. J. Spencer, and P. Zhang, 1992, Carnallite mineralization in the nonmarine, Qaidam Basin, China; evidence for the early diagenetic origin of potash evaporites: Journal of Sedimentary Petrology, v. 62, p. 881–898.

    Google Scholar 

  • Cathro, D. L., J. K. Warren, and G. E. Williams, 1992, Halite saltern in the Canning Basin, Western Australia; a sedimentological analysis of drill core from the Ordovician-Silurian Mallowa Salt: Sedimentology, v. 39, p. 983–1002.

    Google Scholar 

  • Cendon, D. I., C. Ayora, J. J. Pueyo, and C. Taberner, 2003, The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain): Chemical Geology, v. 200, p. 339–357.

    Google Scholar 

  • Cendon, D. I., C. Ayora, J. J. Pueyo, C. Taberner, and M. M. Blanc-Valleron, 2008, The chemical and hydrological evolution of the Mulhouse potash basin (France): Are “marine” ancient evaporites always representative of synchronous seawater chemistry?: Chemical Geology, v. 252, p. 109–124.

    Google Scholar 

  • Cendon, D. I., C. Ayora, and J. P. Pueyo, 1998, The origin of barren bodies in the Subiza potash deposit, Navarra, Spain – Implications for sylvite formation: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 43–52.

    Google Scholar 

  • Chao, L., P. Zicheng, Y. Dong, L. Weiguo, Z. Zhaofeng, H. Jianfeng, and C. Chenlin, 2009, A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene: Journal of Asian Earth Sciences, v. 34, p. 38–45.

    Google Scholar 

  • Chipley, D. B. L., 1995, Fluid history of the Saskatchewan sub-basin of the western Canada sedimentary basin: Evidence from the geochemistry of evaporites: Doctoral thesis, University of Saskatchewan.

    Google Scholar 

  • Chipley, D. B. L., and T. K. Kyser, 1989, Fluid inclusion evidence for the deposition and diagenesis of the Patience Lake Member of the Devonian Prairie Evaporite Formation, Saskatchewan, Canada: Sedimentary Geology, v. 64, p. 287–295.

    Google Scholar 

  • Clement, G. P., and W. T. Holser, 1988, Geochemistry of Moroccan evaporites in the setting of the North Atlantic Rift.: Journal of African Earth Sciences, v. 7, p. 375–382.

    Google Scholar 

  • Courel, L., B. Fekirine, M. Oujidi, M. Soussi, A. Tourani, H. Aît Salem, N. Benaouiss, and M. Et-Touhami, 2003, Mid-Triassic to Early Liassic clastic/evaporitic deposits over the Maghreb Platform: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 196, p. 157–176.

    Google Scholar 

  • Davison, I., 2009, Faulting and fluid flow through salt: Journal of the Geological Society, v. 166, p. 205–216.

    Google Scholar 

  • De Ruiter, P. A. C., 1979, The Gabon and Congo basins salt deposits: Econ. Geol., v. 74, p. 419–431.

    Google Scholar 

  • Doelling, H. H., and T. C. Chidsey Jr., 2000, Dead Horse State Park and Vicinity, Geologic Road Logs, Gran and San Juan Counties, Utah, in P. B. Anderson, and D. A. Sprinkel, eds., Geologic Road, Trail, and Lake Guides to Utah’s Parks and Monuments, 2000 Utah Geological Association Publication 29, p. 1–38.

    Google Scholar 

  • Dong, Z., P. Lv, G. Qian, X. Xia, Y. Zhao, and G. Mu, 2012, Research progress in China’s Lop Nur: Earth-Science Reviews, v. 111, p. 142–153.

    Google Scholar 

  • Drake, N. A., F. D. Eckardt, and K. H. White, 2004, Sources of sulphur in gypsiferous sediments and crusts and pathways of gypsum redistribution in southern Tunisia: Earth Surface Processes And Landforms, v. 29, p. 1459–1471.

    Google Scholar 

  • Duan, Z. H., and W. X. Hu, 2001, The accumulation of potash in a continental basin: the example of the Qarhan Saline Lake, Qaidam Basin, West China: European Journal of Mineralogy, v. 13, p. 1223–1233.

    Google Scholar 

  • Eatock, W. H., 1987, The Big Quill Lake sulphate of potash project, in C. F. Gilboy, and L. W. Vigrass, eds., Economic Minerals of Saskatchewan, Proceedings of a Symposium Held in Regina, Saskatchewan 17 & 18 November 1986, Saskatchewan Geological Society Special Publication Number 8, p. 206–210.

    Google Scholar 

  • El Tabakh, M., C. Utha-aroon, L. Coshell, and J. K. Warren, 1995, Cretaceous saline deposits of the Maha Sarakham Formation in the Khorat BAsin, Northeastern Thailand: International Conference on Geology, Geochronoilogy and Mineral Resources of Indochina 22–25 November 1995, Khon Kaen, Thailand, v. Core Workshop Notes, p. 20 pp.

    Google Scholar 

  • ERCOSPLAN, 2007, Resource Estimate for the Makola Exploration Permit Area, Kouilou Region, Republic of Congo, Technical report for MagMinerals Inc; Project Reference: EGB 04–037, p. 102.

    Google Scholar 

  • ERCOSPLAN, 2010, Techical report and current resource estimate: Danakhil Potash Deposit, Afar State, Ethiopia: Project Reference: EGB 08–024.

    Google Scholar 

  • Et-Touhami, M., 1996, L’origine des accumulations saliferes du Trias marocain: apport de la geochimie du brome du sel du bassin de Khemisset (Maroc central) The origin of Moroccan Triassic salt deposits: contribution of Br geochemistry in the halite-rock from the Khemisset Basin (central Morocco) [French]: Comptes Rendus de l Academie des Sciences Serie II Fascicule A-Sciences de la Terre et des Planetes, v. 323, p. 591–598.

    Google Scholar 

  • Evans, R., 1967, The structure of the Mississippian evaporite deposit at Pugwash, Cumberland County, Nova Scotia: Economic Geology, v. 62, p. 262–273.

    Google Scholar 

  • Evans, R., and K. O. Linn, 1970, Fold relationships within evaporites of the Cane Creek Anticline: Third Symp. on Salt: North Ohio Geol. Soc., v. 1, p. 286–297.

    Google Scholar 

  • Evans, W. B., 1970, The Triassic salt deposits of north-western England: Quarterly Journal of the Geological Society, v. 126, p. 103–123.

    Google Scholar 

  • Fuzesy, A., 1982, Potash in Saskatchewan: Report Saskatchewan, Department of Mineral Resources.

    Google Scholar 

  • Garrett, D., 2004, Handbook of lithium and natural calcium chloride, Elsevier Academic Press, 460 p.

    Google Scholar 

  • Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.

    Google Scholar 

  • Geluk, M., 1999, Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology: Petroleum Geoscience, v. 5, p. 189–199.

    Google Scholar 

  • Gendzwill, D., and N. Martin, 1996, Flooding and loss of the Patience Lake potash mine: CIM Bulletin, v. 89, p. 62–73.

    Google Scholar 

  • Gendzwill, D. J., 1978, Winnipegosis mounds and Prairie Evaporite Formation of Saskatchewan – seismic study: American Association Petroleum Geologists – Bulletin, v. 62, p. 73–86.

    Google Scholar 

  • Gill, B. A., and S. Akhtar, 1982, The rock mechanics and ground control methods associated with Saskatchewan potash mining; an overview: The Geological Bulletin of the Punjab University, v. 17, p. 33–36.

    Google Scholar 

  • Gonzaga, F. G., F. T. T. Gonçalves, and L. F. C. Coutinho, 2000, Petroleum geology of the Amazonas Basin, Brazil: modeling of hydrocarbon generation and migration (Chapter 13), in M. R. Mello, and B. J. Katz, eds., Petroleum systems of South Atlantic margins, American Association of Petroleum Geologists Memoir 73, p. 159–178.

    Google Scholar 

  • Garrett, D. E., 1970a, The chemistry and origin of potash deposits, Third International Symposium on Salt, v. 1: Cleveland, Northern Ohio Geological Society, p. 211–222.

    Google Scholar 

  • Gowariker, V., V. N. Krishnamurthy, S. Gowariker, M. Dhanorkar, and K. Paranjape, 2009, The Fertilizer Encyclopedia, Wiley, 880 p.

    Google Scholar 

  • Griswold, G. B., 1982, Geologic overview of the Carlsbad potash-mining district: Circular New Mexico Bureau of Mines and Mineral Resources, v. 182, p. 17–22.

    Google Scholar 

  • Gueddari, M., 1984, Geochimie et thermodynamique des evaporites continentales: etude de lac Natron en Tanzanie et du Chott el Jerid en Tunisie. (Geochemistry and thermodynamics of continental evaporites: a study of Lake Natron in Tanzania and the Chott el Djerid in Tunisia). Sciences Geologiques Memoire, v. 76, p. 143 pp.

    Google Scholar 

  • Gwynn, J. W., 2008, The Occurrence and Development of the Saline Resources of Western Utah: Geology and Geologic Resources and Issues of Western Utah, 2009, p. 221–234.

    Google Scholar 

  • Hardie, L. A., 1984, Evaporites: Marine or non-marine?: American Journal of Science, v. 284, p. 193–240.

    Google Scholar 

  • Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Hardie, L. A., 1996, Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.: Geology, v. 24, p. 279–283.

    Google Scholar 

  • Harville, D. G., and S. J. Fritz, 1986, Modes of diagenesis responsible for observed successions of potash evaporites in the Salado Formation, Delaware Basin, New Mexico: Journal Sedimentary Petrology, v. 56, p. 648–656.

    Google Scholar 

  • Hasegawa, H., S. Imsamut, P. Charusiri, R. Tada, Y. Horiuchi, and K.-I. Hisada, 2010, ‘Thailand was a desert’ during the mid-Cretaceous: Equatorward shift of the subtropical high-pressure belt indicated by eolian deposits (Phu Thok Formation) in the Khorat Basin, northeastern Thailand: Island Arc, v. 19, p. 605–621.

    Google Scholar 

  • Hite, R. J., 1961, Potash-bearing evaporite cycles in the salt anticlines of the Paradox Basin, Colorado and Utah; Article 337: U. S. Geological Survey Professional Paper. p. D323-D327.

    Google Scholar 

  • Hite, R. J., and T. Japakasetr, 1979, Potash deposits of the Khorat Plateau, Thailand and Laos: Economic Geology, v. 74, p. 448–458.

    Google Scholar 

  • Hofmann, P., A. Y. Huc, B. Carpentier, P. Schaeffer, P. Albrecht, B. Keely, J. R. Maxwell, D. J. S. Sinninghe, L. J. W. de, and D. Leythaeuser, 1993a, Organic matter of the Mulhouse Basin, France; a synthesis: Organic Geochemistry, v. 20, p. 1105–1123.

    Google Scholar 

  • Hofmann, P., D. Leythaeuser, and B. Carpentier, 1993b, Palaeoclimate controlled accumulation of organic matter in Oligocene evaporite sediments of the Mulhouse Basin: Organic Geochemistry, v. 20, p. 1125–1138.

    Google Scholar 

  • Holmes, R., 1991, Some aspects of the geology of the potash seam at Boulby mine: Journal of the Open University Geological Society, v. 12, p. 77–88.

    Google Scholar 

  • Holter, M., 1972, Geology of the Prairie Evaporite Formation of Saskatchewan, Canada, Geology of saline deposits (Geologie des depots salins), v. 7, UNESCO Earth Sci. Ser., p. 183–189.

    Google Scholar 

  • Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124–150.

    Google Scholar 

  • Hovorka, S. D., R. M. Holt, and D. W. Powers, 2007, Depth indicators in Permian Basin evaporites: Geological Society, London, Special Publications, v. 285, p. 335–364.

    Google Scholar 

  • Hryniv, S. P., B. V. Dolishniy, O. V. Khmelevska, A. V. Poberezhskyy, and S. V. Vovnyuk, 2007, Evaporites of Ukraine: a review: Geological Society, London, Special Publications, v. 285, p. 309–334.

    Google Scholar 

  • Hu, G., and N.-a. Wang, 2001, The sand wedge and mirabilite of the last ice age and their paleoclimatic significance in Hexi Corridor: Chinese Geographical Science, v. 11, p. 80–86.

    Google Scholar 

  • Huntington, E., 1907, Lop-Nor. A Chinese Lake. Part 1. The Unexplored Salt Desert of Lop: Bulletin of the American Geographical Society, v. 39, p. 65–77.

    Google Scholar 

  • Hutchinson, R. W., and G. G. Engels, 1970, Tectonic significance of regional geology and evaporite lithofacies in northeastern Ethiopia: Philosophical Transactions of the Royal Society, v. A 267, p. 313–329.

    Google Scholar 

  • Jankowski, J., and G. Jacobson, 1990, Hydrochemical processes in groundwater-discharge playas, central Australia: Hydrological Processes, v. 4, p. 59–70.

    Google Scholar 

  • Jenkunawat, P., 2012, Drilling to study Salt Subsidence in Ban Nonsaaeng, Sakhon Nakhon, Thailand (abs.): Proceedings of the 12th Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia, GEOSEA 2012, p. 47.

    Google Scholar 

  • Jenyon, M. K., 1986, Salt tectonics: New York, NY, USA, Elsevier Applied Science Publishers, 191 p.

    Google Scholar 

  • Katz, A., and A. Starinsky, 2009, Geochemical History of the Dead Sea: Aquatic Geochemistry, v. 15, p. 159–194.

    Google Scholar 

  • Kbir-Ariguib, N., D. B. H. Chehimi, and L. Zayani, 2001, Treatment of Tunisian salt lakes using solubility phase diagrams: Pure Appl. Chem., v. 73, p. 761–770.

    Google Scholar 

  • Kebede, S., 2012, Groundwater in Ethiopia: Features, numbers and opportunities, Springer.

    Google Scholar 

  • Kendall, H. W., and D. Pimental, 1994, Constraints on the Expansion of the Global Food Supply: Ambio, v. 23, p. 198–205.

    Google Scholar 

  • Kezao, C., and J. M. Bowler, 1985, Preliminary study on sedimentary characteristics and evolution of paleoclimate of Qarhan Salt Lake, Qaidam Basin: Scientia Sinica (series B), v. 28, p. 1218–1232.

    Google Scholar 

  • Khutorskoi, M., E. Teveleva, L. Tsybulya, and G. Urban, 2010, Heat flow in salt-dome basins of Eurasia: A comparative study: Geotectonics, v. 44, p. 289–304.

    Google Scholar 

  • Koehler, G., T. K. Kyser, R. Enkin, and E. Irving, 1997, Paleomagnetic and isotopic evidence for the diagenesis and alteration of evaporites in the Paleozoic Elk Point Basin, Saskatchewan, Canada: Canadian Journal of Earth Sciences, v. 34, p. 1619–1629.

    Google Scholar 

  • Koehler, G. D., T. K. Kyser, and T. Danyluk, 1990, Stable Isotope evidence for the petrogenesis of carnallite In the Middle Devonian Prairie Evaporile Formation, Saskatchewan: Summary of Investigations 1990, Saskatchewan Geological Survey; Saskatchewan Energy and Mines, Miscellaneous Report 90-04.

    Google Scholar 

  • Kogel, J. E., N. C. Trivedi, J. M. Barker, and S. T. Krukowski, 2006, Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), 1548 p.

    Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259–263.

    Google Scholar 

  • Kovin, O., 2011, Mapping of evaporite deformation in a potash mine using ground penetrating radar: Upper Kama deposit, Russia: Journal of Applied Geophysics, v. 74, p. 131–141.

    Google Scholar 

  • Kudryashov, A. I., 2001, Upper Kama Salt Deposit [in Russian]: Mining Institute, UrO RAN, Perm

    Google Scholar 

  • Kudryashov, A. I., V. E. Vasyukov, G. S. Von-der-Flaass, E. A. Ikonnikov, V. A. Gershanok, L. A. Gershanok, and S. V. Glebov, 2004, Rupture Tectonics of the Upper Kama (Verkhnekamskoye) Salt Deposit (in Russian): Mining Institute of Ural Branch of the Russian Academy of Sciences & Perm State University, Perm.

    Google Scholar 

  • Lakhdar, R., M. Soussi, M. H. Ben Ismail, and A. M’Rabet, 2006, A Mediterranean Holocene restricted coastal lagoon under arid climate: Case of the sedimentary record of Sabkha Boujmel (SE Tunisia): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241, p. 177–191.

    Google Scholar 

  • Linn, K. O., and S. S. Adams, 1966, Barren halite zones in potash deposits, Carlsbad, New Mexico: Second Symposium on Salt, p. 59–68.

    Google Scholar 

  • Littke, R., H. J. Bayer, D. Gajewski, and S. Nelskamp, 2008, Dynamics of Complex Intracontinental Basins – The Central European Basin System: Berlin Heidelberg, Springer, 519 p.

    Google Scholar 

  • Lorenz, J. C., 1988, Synthesis of late Paleozoic and Triassic redbed sedimentation in Morocco, in V. H. Jacobshagen, ed., The Atlas system of Morocco; studies on its geodynamic evolution, v. 15: Berlin, Springer-Verlag, Berlin-Heidelberg-New York, Lecture Notes in Earth Sciences, p. 139–168.

    Google Scholar 

  • Lovatt Smith, P. F., R. B. Stokes, C. S. Bristow, and A. M. Carter, 1996, Mid-Cretaceous inversion in the Northern Khorat Plateau of Lao PDR and Thailand, in R. Hall, and D. Blundell, eds., Tectonic Evolution of Southeast asia, v. 106: London, Geological Society Special Publication, p. 233–247.

    Google Scholar 

  • Lowenstein, T., and F. Risacher, 2009, Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile: Aquatic Geochemistry, v. 15, p. 71–94.

    Google Scholar 

  • Lowenstein, T. K., 1987b, Origin of depositional cycles in a Permian ‘’saline giant”; the Salado (McNutt Zone) evaporites of New Mexico and Texas: Geological Society of America Bulletin, v. 100, p. 592–608.

    Google Scholar 

  • Lowenstein, T. K., 1988, Origin of depositional cycles in a Permian ‘’saline giant”; the Salado (McNutt Zone) evaporites of New Mexico and Texas: Geological Society of America Bulletin, v. 100, p. 592–608.

    Google Scholar 

  • Lowenstein, T. K., and R. J. Spencer, 1990, Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Lowenstein, T. K., M. N. Timofeeff, S. T. Brennan, H. L. A., and R. V. Demicco, 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294.

    Google Scholar 

  • Lynch, G., J. V. A. Keller, and P. S. Giles, 1998, Influence of the Ainslie Detachment on the stratigraphy of the Maritimes Basin and mineralisation in the Windsor Group of Northern Nova Scotia, Canada: Economic Geology, v. 93, p. 703–718.

    Google Scholar 

  • Ma, L., T. K. Lowenstein, B. Li, P. Jiang, C. Liu, J. Zhong, J. Sheng, H. Qiu, and H. Wu, 2010, Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China: Applied Geochemistry, v. 25, p. 1770–1782.

    Google Scholar 

  • Mackintosh, A. D., and G. A. McVittie, 1983, Geological anomalies observed at the Cominco Ltd. Saskatchewan potash mine: Potash ‘83; Potash technology; mining, processing, maintenance, transportation, occupational health and safety, environment., p. 59–64.

    Google Scholar 

  • Mansour, A. R., and K. J. Takrouri, 2007, A new technology for the crystallization of Dead Sea potssium chloride: Chemical Engineering Communications, v. 194, p. 803–810.

    Google Scholar 

  • Matthews, R. D., and G. C. Egleson, 1974, Origin and Implications of a Mid-Basin Potash Facies in the Salina Salt of Michigan, Fourth International Symposium on Salt, v. 1, Northern Ohio Geological Society, p. 15–34.

    Google Scholar 

  • Mayrhofer, H., 1985, World reserves of mineable potash salts based on structural analysis: Sixth international symposium on salt, v. 2, p. 141–160.

    Google Scholar 

  • McIntosh, R. A., and W. N. C., 1968, Barren halite bodies in the sylvinite mining zone at Esterhazy, Saskatchewan: Canadian Journal Earth Sciences, v. 5, p. 1221–1238.

    Google Scholar 

  • Lowenstein, T. K., and R. J. Spencer, 1990, Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence: American Journal of Science, v. 290, p. 43–106.

    Google Scholar 

  • Meister, F. M., and N. Aurich, 1972, Geologic outline and oil fields of Sergipe Basin, Brazil: American Assoc. Petrol. Geol. Bull., v. 56, p. 1034–1047.

    Google Scholar 

  • Mohnot, J. K., V. V. R. Prasad, and H. K. Verma, 2005, Investment Opportunities for Potash Mining in India as an Import Substitute Mineral, 1st Indian Mineral Congress ISM, Dhanbad, Feb.28 – March 1, 2005.

    Google Scholar 

  • Mossop, G., and I. Shetsen, 1994, Geological Atlas of the Western Canada Sedimentary Basin: Canadian Society of Petroleum Geologists and Alberta Research Council, 504 p.

    Google Scholar 

  • Mouret, C., 1994, Geological history of NE Thailand since the Carboniferous: Relations with Indochina and the Carboniferous to early Cenozoic evolution model: Proc. Internat. Sympos. on Stratigraphic Correlation of Southeast Asia, Bangkok, p. 132–158.

    Google Scholar 

  • Morley, C. K., 2012, Late Cretaceous-Early Palaeogene tectonic development of SE Asia: Earth-Science Reviews, v. 115, p. 37–75.

    Google Scholar 

  • Perthuisot, J.-P., 1975, La sebkha el Melah de Zarzis. Génese et évolution d’un bassin paralique: Travaux Laboratoire de Géologie, École Normale Supérieure, Paris.

    Google Scholar 

  • Perucca, C. F., 2003, Potash processing in Saskatchewan – A review of process technologies: CIM Bulletin, v. 96, p. 61–65.

    Google Scholar 

  • Peryt, T. M., A. A. Makhnach, S. Halas, O. Y. Petrychenko, L. F. Gulis, and S. M. Abravets, 2007, Sulfur isotopes in anhydrites from the Upper Devonian Prypiac and Dnipro-Donets basins (Belarus and Ukraine): Carbonates and Evaporites, v. 22, p. 43–54.

    Google Scholar 

  • Pierre, C., 1985, Polyhalite replacement after gypsum at Ojo de Liebre Lagoon (Baja California, Mexico); an early diagenesis by mixing of marine brines and continental waters: Schreiber, B. Charlotte, Harner, H. Lincoln. Sixth international symposium on salt, v. 6, p. 257–265.

    Google Scholar 

  • Prud’homme, M., and S. T. Krukowski, 2006, Potash, in J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, eds., Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), p. 723–742.

    Google Scholar 

  • Prugger, F. F., and A. F. Prugger, 1991, Water problems in Saskatchewan potash mining--what can be learned from them?: CIM Bulletin, v. 84, p. 58–66.

    Google Scholar 

  • Racey, A., 2009, Mesozoic red bed sequences from SE Asia and the significance of the Khorat Group of NE Thailand: Geological Society, London, Special Publications, v. 315, p. 41–67.

    Google Scholar 

  • Rahimpour-Bonab, H., and Z. Kalantarzadeh, 2005, Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran: Journal of Asian Earth Sciences, v. 25, p. 157–166.

    Google Scholar 

  • Rattan, L., 2007, Anthropogenic Influences on World Soils and Implications to Global Food Security, in L. S. Donald, ed., Advances in Agronomy, v. Volume 93, Academic Press, p. 69–93.

    Google Scholar 

  • Raup, O. B., 1966, Bromine distribution in some halite rocks of the Paradox Member, Hermosa Formation, in Utah: Second Symposium on Salt; North Ohio Geol. Soc, p. 236–247.

    Google Scholar 

  • Renne, P. R., W. D. Sharp, I. P. Montanez, T. A. Becker, and R. A. Zierenberg, 2001, Ar-40/Ar-39 dating of Late Permian evaporites, southeastern New Mexico, USA: Earth & Planetary Science Letters, v. 193, p. 539–547.

    Google Scholar 

  • Richter-Bernburg, G., 1986, Zechstein 1 and 2 anhydrites; facts and problems of sedimentation, in G. M. Harwood, and D. B. Smith, eds., The English Zechstein and related topics: London, UK, Geological Society Special Publication No. 22, p. 157–163.

    Google Scholar 

  • Roberts, W., and P. F. Williams, 1993, Evidence for early Mesozoic extensional faulting in Carboniferous rocks, southern New Brunswick, Canada: Canadian Journal of Earth Science, v. 30, p. 1324–1331.

    Google Scholar 

  • Root, K. G., 2001, Devonian Antler Fold and Thrust Belt and Foreland Basin Development in the Southern Canadian Cordillera: Implications for the Western Canada Sedimentary Basin: Bulletin of Canadian Petroleum Geology, v. 49, p. 7–36.

    Google Scholar 

  • Rosell, L., and F. Ortí, 1981, The saline (potash) formation of the Navarra basin (Upper Eocene, Spain). Petrology: Revista Instituto Investigaciones Geologicas, v. 35, p. 71–121.

    Google Scholar 

  • Rosen, M. R., 1994, The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas, in M. R. Rosen, ed., Paleoclimate and the Basin Evolution of Playa Systems, v. 289: Boulder, Co, Geological Society of America Special Paper, p. 1–18.

    Google Scholar 

  • Roulston, B. V., and D. C. E. Waugh, 1981, A borate mineral assemblage from the Penobsquis and Salt Springs evaporite deposits of southern New Brunswick: The Canadian Mineralogist, v. 19, p. 291–301.

    Google Scholar 

  • Salvan, H. M., 1972, Les niveaux salifers marocains, leurs caracteristques problemes, in G. Richter-bernburg, ed., Geology of Saline deposits: Paris, UNESCO, p. 147–168.

    Google Scholar 

  • Satarugsa, P., 2011, The Lessons Learnt from Geophysical Investigation of Sinkholes in Rock Salt in Thailand.: Paper presented at International Conference on Geology, Geotechnology and Mineral Resources of Indochina (GEOINDO 2011) 1–3 December 2011, Khon Kaen, Thailand.

    Google Scholar 

  • Scheck, M., U. Bayer, and B. Leweren, 2003, Salt movements in the Northeast German Basin and its relation to major post-Permian tectonic phases––results from 3D structural modelling, backstripping and reflection seismic data: Tectonophysics, v. 361, p. 277–299.

    Google Scholar 

  • Schubel, K. A., and T. K. Lowenstein, 1997, Criteria for the recognition of shallow-perennial-saline-lake halites based on Recent sediments from the Qaidam Basin, western China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 74–87.

    Google Scholar 

  • Schultz, H., G. Bauer, E. Schachl, F. Hagedorn, and P. Schmittinger, 2005, Potassium Compounds, John Wiley and Sons Inc., Ullmann’s Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim., p. 1–68.

    Google Scholar 

  • Schulz, E., A. Abichou, T. Hachicha, S. Pomel, U. Salzmann, and K. Zouari, 2002, Sebkhas as ecological archives and the vegetation and landscape history of southeastern Tunisia during the last two millennia: Journal of African Earth Sciences, v. 34, p. 223–229.

    Google Scholar 

  • Schwerdtner, W. M., 1964, Genesis of potash rocks in Middle Devonian Prairie Evaporite Formation of Saskatchewan: Am. Assoc. Petroleum Geologists Bull, p. 1108–1115.

    Google Scholar 

  • Sessler, W., 1990, Influence of subrosion on three different types of salt deposits, in D. Heling, P. Rothe, U. Förstner, and P. Stoffers, eds., Sediments and Environmental Geochemistry: Berlin, Springer-Verlag, p. 179–196.

    Google Scholar 

  • Smith, D. B., 1996, Deformation in the Late Permian Boulby Halite (EZ3Na) in Teesside, NE England, in G. I. Alsop, D. J. Blundell, and I. Davison, eds., Salt tectonics: London, United Kingdom, Geological Society of London special Publication, v. 100, p. 77–88.

    Google Scholar 

  • Smith, D. B., and A. Crosby, 1979, The regional and stratigraphical context of Zechstein 3 and 4 potash deposits in the British sector of the southern North Sea and adjoining land areas: Economic Geology, v. 74, p. 397–408.

    Google Scholar 

  • Sonnenfeld, P., 1995, The color of rock salt; a review: Sedimentary Geology, v. 94, p. 267–276.

    Google Scholar 

  • Stengele, F., and W. Smykatz-Kloss, 1995, Mineralogical and geochemical study of Holocene sebkha sediments in southeastern Tunisia: Chemie der Erde-Geochemistry, v. 55, p. 241–256.

    Google Scholar 

  • Stewart, F. H., 1965, The mineralogy of the British Permian evaporites: Mineralogical Magazine, v. 34, p. 460–470.

    Google Scholar 

  • Stivaletta, N., and R. Barbieri, 2009, Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia): Journal of Arid Environments, v. 73, p. 33–39.

    Google Scholar 

  • Stivaletta, N., R. Barbieri, C. Picard, and M. Bosco, 2009, Astrobiological significance of the sabkha life and environments of southern Tunisia: Planetary and Space Science, v. 57, p. 597–605.

    Google Scholar 

  • Suwanich, P., 1986, Potash and Rock Salt in Thailand: Nonmetallic Minerals Bulletin No.2, Economic Geology Division, Department of Mineral Resources, Bangkok, Thailand.

    Google Scholar 

  • Swezey, C., G. Kocurek, N. Lancaster, M. Deynoux, M. Blum, D. Price, and J.-C. Pion, 1999, Response of aeolian systems to Holocene climatic and hydrologic changes on the northern margin of the Sahara: a high-resolution record from the Chott Rharsa basin, Tunisia: Holocene, v. 9, p. 141–148.

    Google Scholar 

  • Swezey, C. S., 2009, Cenozoic stratigraphy of the Sahara, Northern Africa: Journal of African Earth Sciences, v. 53, p. 89–121.

    Google Scholar 

  • Szatmari, P., R. S. Carvalho, and I. A. Simoes, 1979, A comparison of evaporite facies in the late Paleozoic Amazon and the Middle Cretaceous South Atlantic salt basins: Economic Geology, v. 74, p. 432–447.

    Google Scholar 

  • Talbot, C., P. Aftabi, and Z. Chemia, 2009b, Potash in a salt mushroom at Hormoz Island, Hormoz Strait, Iran: Ore Geology Reviews, v. 35, p. 317–332.

    Google Scholar 

  • Talbot, C. J., R. Farhadi, and P. Aftabi, 2009a, Potash in salt extruded at Sar Pohl diapir, Southern Iran: Ore Geology Reviews, v. 35, p. 352–366.

    Google Scholar 

  • Talbot, C. J., W. Stanley, R. Soub, and N. Alsadoun, 1996, Epitaxial salt reefs and mushrooms in the southern Dead Sea: Sedimentology, v. 43, p. 1025–1047.

    Google Scholar 

  • Talbot, C. J., C. P. Tully, and P. J. E. Woods, 1982, The structural geology of Boulby (potash) mine, Cleveland, United Kingdom: Tectonophysics, v. 85, p. 167–204.

    Google Scholar 

  • Timms, B. V., 2005, Salt lakes in Australia: present problems and prognosis for the future: Hydrobiologia, v. 552, p. 1–15.

    Google Scholar 

  • Tortochaux, F., 1968, Occurrence and structure of evaporites in north Africa: Geol. Soc. Amer., Spec. Paper, v. 88, p. 107–138.

    Google Scholar 

  • Tret’yakov, Y. A., 1974, Zones of impoverishment in the upper Kama potassium deposit (in Russian): Lithol. Miner. Resour., v. 9, p. 59–67.

    Google Scholar 

  • Turk, L. J., 1973, Hydrogeology of the Bonneville Salt Flats, Utah: Utah Geological and Mineral Survey Water-Resources Bulletin 19, 81 p.

    Google Scholar 

  • Ulmishek, G. F., V. A. Bogino, M. B. Keller, and Z. L. Poznyakevich, 1994, Structure, stratigraphy and petroleum geology of the Dnieper-Donets Basins, Byelarus anf Ukraine, in S. M. Landon, ed., Interior Rift Basins, v. 59: Tulsa, OK, American Association Petroleum Geologists Memoir, p. 125–156.

    Google Scholar 

  • Utha-aroon, C., L. Coshell, and J. K. Warren, 1995, Early and late dissolution in the Maha Sarakham Formation: Implications for basin stratigraphy: International Conference on Geology, Geochronoilogy and Mineral Resources of Indochina 22–25 November 1995, Khon Kaen, Thailand, p. 275–286.

    Google Scholar 

  • Valyashko, M. G., 1972, Playa lakes, a necessary stage in the development of a salt-bearing basin [with discussion]: Geology of saline deposits, Unesco Earth Sci. Ser., p. 41–51.

    Google Scholar 

  • Van Gent, H., J. L. Urai, and M. de Keijzer, 2011, The internal geometry of salt structures – A first look using 3D seismic data from the Zechstein of the Netherlands: Journal of Structural Geology, v. 33, p. 292–311.

    Google Scholar 

  • Van Houten, F. R., 1977, Triassic-Liassic deposits of Morocco and eastern North America; Comparison: American Association Petroleum Geologists Bulletin, v. 61, p. 79–99.

    Google Scholar 

  • Van Wees, J. D., R. A. Stephenson, P. A. Ziegler, U. Bayer, T. McCann, R. Dadlez, R. Gaupp, M. Narkiewicz, F. Bitzer, and M. Scheck, 2000, On the origin of the Southern Permian Basin, Central Europe: Marine and Petroleum Geology, v. 17, p. 43–59.

    Google Scholar 

  • Vengosh, A., A. R. Chivas, A. Starinsky, Y. Kolodny, B. Zhang, and P. Zhang, 1995, Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China: Chemical Geology, v. 120, p. 135–154.

    Google Scholar 

  • Volozh, Y., C. J. Talbot, and A. Ismail-Zadeh, 2003, Salt structures and hydrocarbons in the Pricaspian basin: Bulletin American Association Petroleum Geologists, v. 87, p. 313–334.

    Google Scholar 

  • Vovnyuk, S. V., and G. Czapowski, 2007, Generation of primary sylvite: the fluid inclusion data from the Upper Permian (Zechstein) evaporites, SW Poland: Geological Society, London, Special Publications, v. 285, p. 275–284.

    Google Scholar 

  • Wang, Q., and M. P. Coward, 1990, The Chaidam Basin (NW China): formation and hydrocarbon potential: Journal of Petroleum Geology, v. 13, p. 93–112.

    Google Scholar 

  • Wardlaw, N. C., 1968, Carnallite-sylvite relationships in the middle Devonian Prairie evaporite formation, Saskatchewan: Geol. Soc. Amer. Bull., v. 79, p. 1273–1294.

    Google Scholar 

  • Wardlaw, N. C., 1972, Unusual marine evaporites with salts of calcium and magnesium chloride in Cretaceous basins of Sergipe, Brazil: Economic Geology, v. 67, p. 156–168.

    Google Scholar 

  • Wardlaw, N. C., and G. D. Nicholls, 1972, Cretaceous evaporites of Brazil and West Africa and their bearing on the theory of continental separation: Internat. Geol. Congress, 24th, Section 6, p. 43–55.

    Google Scholar 

  • Wardlaw, N. C., and D. W. Watson, 1966, Middle Devonian salt formations and their bromide content, Elk Point area, Alberta: Canadian Jour. Earth Sci, v. 3, p. 263–275.

    Google Scholar 

  • Warren, J. K., 2000b, Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis: Australian Journal of Earth Sciences, v. 47, p. 179–208.

    Google Scholar 

  • Warren, J. K., 2000c, Geological controls on the quality of potash, in R. M. Geertmann, ed., 8th World Salt Symposium, v. 1: Amsterdam, Elsevier, p. 173–180.

    Google Scholar 

  • Warren, J. K., 2006, Evaporites: Sediments, Resources and Hydrocarbons: Berlin, Springer, 1036 p.

    Google Scholar 

  • Warren, J. K., 2008, Salt as sediment in the Central European Basin system as seen from a deep time perspective (Chapter 5.1), in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 249–276.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Whyatt, J., and F. Varley, 2008, Catastrophic Failures of Underground Evaporite Mines: Proceedings of the 27th International Conference on Ground Control in Mining (ICGCM), July 29–31, 2008; Peng, S. S., Mark, C., Finfinger, G. L., Tadolini, S. C., Khair. A. W., Heasley, K.A., Luo-Y, eds., Morgantown, West Virginia University, p. 113–122.

    Google Scholar 

  • Williams-Stroud, S. C., 1994, The evolution of an inland sea of marine origin to a non-marine saline lake: the Pennsylvanian Paradox salt, in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes: Tulsa, OK, Society for Sedimentary Geology; Special Publication Volume 50, p. 293–306.

    Google Scholar 

  • Wilson, P., J. C. White, and B. V. Roulston, 2006, Structural geology of the Penobsquis salt structure: late Bashkirian inversion tectonics in the Moncton Basin, New Brunswick, eastern Canada: Canadian Journal of Earth Sciences, v. 43, p. 405.

    Google Scholar 

  • Woods, P. J. E., 1979, The geology of Boulby Mine: Economic Geology, v. 74, p. 409–418.

    Google Scholar 

  • Worsley, N., and A. Fuzesy, 1979, The potash-bearing members of the Devonian Prairie Evaporite of southeastern Saskatchewan, south of the mining area: Economic Geology, v. 74, p. 377–388.

    Google Scholar 

  • Yang, W. B., R. J. Spencer, H. R. Krouse, T. K. Lowenstein, and E. Cases, 1995, Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, Western China – Hydrology and paleoclimatology in arid environments: Palaeogeography Palaeoclimatology Palaeoecology., v. 117, p. 279–290.

    Google Scholar 

  • Yin, A., Y.-Q. Dang, L.-C. Wang, W.-M. Jiang, S.-P. Zhou, X.-H. Chen, G. E. Gehrels, and M. W. McRivette, 2008, Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin: Geological Society of America Bulletin, v. 120, p. 813–846.

    Google Scholar 

  • Zak, I., 1997, Evolution of the Dead Sea brines, in T. M. Niemi, Z. Ben-Avraham, and J. R. Gat, eds., The Dead Sea, The Lake and Its Setting, v. 36: Oxford, Oxford University Press; Monographs on Geology and Geophysics, p. 133–144.

    Google Scholar 

  • Zhang, X., H. Ma, Y. Ma, Q. Tang, and X. Yuan, 2013, Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: d11B evidence from borates: Journal of Asian Earth Sciences, v. 62, p. 812–818.

    Google Scholar 

  • Zhuang, G., J. K. Hourigan, P. L. Koch, B. D. Ritts, and M. L. Kent-Corson, 2011, Isotopic constraints on intensified aridity in Central Asia around 12Ma: Earth and Planetary Science Letters, v. 312, p. 152–163.

    Google Scholar 

  • Zimmermann, H., 2000b, Tertiary seawater chemistry – Implications from primary fluid inclusions in marine halite: American Journal of Science, v. 300, p. 723–767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Potash Resources: Occurrences and Controls. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_11

Download citation

Publish with us

Policies and ethics