Skip to main content

Interpreting Evaporite Textures

  • Chapter
Evaporites

Abstract

I define an evaporite as a salt rock that was originally precipitated from a saturated surface or nearsurface brine in hydrologies driven by solar evaporation (Fig. 1.1a). This simple definition encompasses a wide range of chemically precipitated salts and includes alkali earth carbonates (Table 1.1). Some workers restrict the term evaporite to salts formed at the earth’s surface via solar evaporation of hypersaline waters. To underscore the highly reactive nature of evaporites in the sedimentary realm I think of such evaporites as primary, that is, precipitated from a standing body of surface brine and retaining crystallographic evidence of the depositional/hydrological process set where they formed (e.g. bottom-nucleated or current-derived textures). Outside of a few Neogene examples, there are few ancient evaporite beds with textures that are wholly and completely “primary.” Most in the subsurface exhibit “secondary” (burial-related) textures, while remnants that have be uplifted back to the surface show “tertiary” (exhumation-related) overprints (Figs. 1.2 and 1.9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In their original definitions Choquette and Pray (1970) focused their studies on carbonate sediments. Throughout this book I have expanded and slightly modified their original definitions (as noted in italics). So the modified definitions of eogenetic, mesogenetic and telogenetic are as follows: Eogenetic zone extends from surface of newly deposited sediment (not just carbonates) to depths where processes genetically related to surface become ineffective. Telogenetic zone extends from erosion surface to depths at which major surface-related erosional processes become ineffective. Below a subaerial erosion surface, the practical lower limit of telogenesis is at or near watertable (and the related surface driven zone of phreatic meteoric water movement and includes both unconfined and confined aquifers). Mesogenetic zone lies below major influences of processes operating at surface. The three terms also apply to time, processes, or features developed in respective zones.

  2. 2.

    I define brine bodies that are connected to the world’s oceans via an at-surface water body as having a hydrographic connection. I do this to contrast the connection hydrology in drawndown water bodies, which require a subsurface or seepage connection. This marine-seepage conduit may be either an open phreatic (no overlying aquitard or aquiclude) or artesian connection.

References

  • Adams, J. E., and H. N. Frenzel, 1950, Capitan barrier reef, Texas and New Mexico: Journal of Geology, v. 58, p. 289–312.

    Google Scholar 

  • Aleali, M., H. Rahimpour-Bonab, R. Moussavi-Harami, and D. Jahani, 2013, Environmental and sequence stratigraphic implications of anhydrite textures: A case from the Lower Triassic of the Central Persian Gulf: Journal of Asian Earth Sciences, v. 75, p. 110–125.

    Google Scholar 

  • Allen, B. D., and R. Y. Anderson, 2000, A continuous, high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico: Geological Society of America Bulletin, v. 112, p. 1444–1458.

    Google Scholar 

  • Allen, M. A., F. Goh, B. P. Burns, and B. A. Neilan, 2009, Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay: Geobiology, v. 7, p. 82–96.

    Google Scholar 

  • Allwood, A. C., M. R. Walter, I. W. Burch, and B. S. Kamber, 2007, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth: Precambrian Research, v. 158, p. 198–227.

    Google Scholar 

  • Amadi, F. O., R. P. Major, and L. R. Baria, 2012, Origins of gypsum in deep carbonate reservoirs: Implications for hydrocarbon exploration and production: American Association Petroleum Geologists – Bulletin, v. 96, p. 375–390.

    Google Scholar 

  • Andersen, D. T., D. Y. Sumner, I. Hawes, J. Webster-Brown, and C. P. McKay, 2011, Discovery of large conical stromatolites in Lake Untersee, Antarctica: Geobiology, v. 9, p. 280–293.

    Google Scholar 

  • Anderson, R. Y., W. E. J. Dean, D. W. Kirkland, and H. I. Snider, 1972, Permian Castile Varved Evaporite Sequence, West Texas and New Mexico: Geological Society of America Bulletin, v. 83, p. 59–85.

    Google Scholar 

  • Andreason, M. W., 1992, Coastal siliciclastic sabkhas and related evaporative environments of the Permian Yates Formation, North Ward-Estes field, Ward County, Texas: American Association of Petroleum Geologists Bulletin, v. 76, p. 1735–1759.

    Google Scholar 

  • Arakel, A. V., 1980, Genesis and diagenesis of Holocene evaporitic sediments in Hutt and Leeman lagoons, Western Australia: Journal of Sedimentary Petrology, v. 50, p. 1305–1326.

    Google Scholar 

  • Arakel, A. V., G. Jacobson, and W. B. Lyons, 1990, Sediment-water interaction as a control on geochemical evolution of playa lake systems in the Australian arid interior: Hydrobiologia, v. 197, p. 1–12.

    Google Scholar 

  • Aref, M. A. M., 1998a, Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environment, Ras el Shetan area, Gulf of Aqaba, Egypt: Sedimentology, v. 45, p. 245–262.

    Google Scholar 

  • Aref, M. A. M., 2003, Classification and depositional environments of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt: Sedimentary Geology, v. 155, p. 87–108.

    Google Scholar 

  • Armstrong, A. K., 1995, Facies, diagenesis, and mineralogy of the Jurassic Todilto Limestone Member, Grants uranium district, New Mexico, v. 153, New Mexico Bureau of Mines Bulletin, 41 p.

    Google Scholar 

  • Arp, G., 1995, Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, southern Germany): Facies, v. 33, p. 35–89.

    Google Scholar 

  • Arp, G., A. Reimer, and J. Reitner, 2001, Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans: Science, v. 292, p. 1701–1704.

    Google Scholar 

  • Arthurton, R. S., 1973, Experimentally produced halite compared with Triassic layered halite-rock from Cheshire, England: Sedimentology, v. 20, p. 145–160.

    Google Scholar 

  • Artieda, O., 2013, Morphology and micro-fabrics of weathering features on gyprock exposures in a semiarid environment (Ebro Tertiary Basin, NE Spain): Geomorphology, v. 196, p. 198–210.

    Google Scholar 

  • Arzaghi, S., K. Khosrow-Tehrani, and M. Afghah, 2012, Sedimentology and petrography of Paleocene-Eocene evaporites: the Sachun Formation, Zagros Basin, Iran: Carbonates and Evaporites, v. 27, p. 43–53.

    Google Scholar 

  • Assereto, R. C., and R. L. Folk, 1976, Brick-like texture and radial rays in Triassic pisolites of Lombardy, Italy: A clue to distinguish ancient aragonitic pisolites: Sedimentary Geology, v. 16, p. 205–222.

    Google Scholar 

  • Assereto, R. I. A. M., and C. G. S. C. Kendall, 1977, Nature, origin, and classification of peritidal teepee structures and related breccias,: Sedimentology, v. 24, p. 153–210.

    Google Scholar 

  • Astin, T. R., and D. A. Rogers, 1991, ‘’Subaqueous shrinkage cracks” in the Devonian of Scotland reinterpreted: Journal of Sedimentary Petrology, v. 61, p. 850–859.

    Google Scholar 

  • Awramik, S. M., and J. Sprinkle, 1999, Proterozoic stromatolites: the first marine evolutionary biota: Historical Biology, v. 13, p. 241–253.

    Google Scholar 

  • Babel, M., 1990, Crystallography and genesis of the giant intergrowths of gypsum from the middle Miocene evaporites of southern Poland: Archiwum Mineralogizne, v. 44, p. 103–35.

    Google Scholar 

  • Babel, M., 2007, Depositional environments of a salina-type evaporite basin recorded in the Badenian gypsum facies in the northern Carpathian Foredeep: Geological Society, London, Special Publications, v. 285, p. 107–142.

    Google Scholar 

  • Badaut, D., and F. Risacher, 1983, Authigenic smectite on diatom frustules in Bolivian saline lakes: Geochemica et Cosmochimica Acta, v. 47, p. 363–375.

    Google Scholar 

  • Bathurst, R. G. C., 1980, Deep crustal diagenesis in limestones: Revista Instituto Investaciones Geologicas, University of Barcelona, v. 34, p. 89–100.

    Google Scholar 

  • Bäuerle, G., O. Bornemann, F. Mauthe, and D. Michalzik, 2000, Origin of stylolites in Upper Permian Zechstein Anhydrite (Gorleben Salt Dome, Germany): Journal of Sedimentary Research, v. 70, p. 726–737.

    Google Scholar 

  • Bäurle, G., O. Bornemann, F. Mauthe, and D. Michalzik, 2000, Origin of stylolites in Upper Permian Zechstein Anhydrite (Gorleben Salt Dome, Germany): Journal of Sedimentary Research, v. 70, p. 726–737.

    Google Scholar 

  • Bein, A., and L. S. Land, 1983, Carbonate sedimentation and diagenesis associated with Mg-Ca-Chloride brines: The Permian San Andres Formation in the Texas Panhandle: Journal of Sedimentary Petrology, v. 53, p. 243–260.

    Google Scholar 

  • Bell, C. M., 1997, Saline lake turbidites in the La Coipa area, Northern Chile: Revista Geologica de Chile, v. 24, p. 259–267.

    Google Scholar 

  • Bellanca, A., J. P. Calvo, P. Censi, R. Neri, and M. Pozo, 1992, Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy: Sedimentary Geology, v. 76, p. 135–153.

    Google Scholar 

  • Belperio, A. P., and D. G. Fotheringham, 1990, Geological setting of two Quaternary footprint sites, western South Australia: Australian Journal of Earth Sciences, v. 37, p. 37–42.

    Google Scholar 

  • Billo, S. M., 1986, Petrology and kinetics of gypsum-anhydrite transitions: Journal of Petroleum Geology, v. 10, p. 73–86.

    Google Scholar 

  • Black, M., 1933, The Algal Sediments of Andros Island, Bahamas: Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, v. 222, p. 165–192.

    Google Scholar 

  • Bobst, A. L., T. K. Lowenstein, T. E. Jordan, L. V. Godfrey, T. L. Ku, and S. D. Luo, 2001, A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile: Palaeogeography Palaeoclimatology Palaeoecology, v. 173, p. 21–42.

    Google Scholar 

  • Bodine Jr, M. W., 1983, Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks: Sixth international symposium on salt, v. 1, p. 267–284.

    Google Scholar 

  • Bogoch, R., B. Buchbinder, and M. Magaritz, 1994, Sedimentology and geochemistry of lowstand peritidal lithofacies at the Cenomanian-Turonian boundary in the Cretaceous carbonate platform of Israel: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 64, p. 733–740.

    Google Scholar 

  • Bonython, C. W., 1966, Factors determining the rate of solar evaporation in the production of salt, Second Symposium on Salt, North Ohio Geol. Soc,, p. 152–167.

    Google Scholar 

  • Bose, P. K., P. G. Eriksson, S. Sarkar, D. T. Wright, P. Samanta, S. Mukhopadhyay, S. Mandal, S. Banerjee, and W. Altermann, 2012, Sedimentation patterns during the Precambrian: A unique record?: Marine and Petroleum Geology, v. 33, p. 34–68.

    Google Scholar 

  • Bouougri, E., G. Gerdes, and H. Porada, 2007, Inherent problems of terminology: definition of terms frequently used in connection with microbial mats, in J. Schieber, P. K. Bose, P. G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, and C. O, eds., Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record: Amsterdam, Elsevier, p. 145–151.

    Google Scholar 

  • Bowler, J. M., 1973, Clay dunes: their occurrence, formation and environmental significance: Earth-Science Reviews, v. 9, p. 315–338.

    Google Scholar 

  • Bowler, J. M., 1983, Lunettes as indices of hydrologic change; a review of Australian evidence: Proceedings of the Royal Society of Victoria, v. 95, p. 147–168.

    Google Scholar 

  • Bowler, J. M., 1986, Spatial variability and hydrologic evolution of Australian lake basins; analogue for Pleistocene hydrologic change and evaporite formation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 21–41.

    Google Scholar 

  • Bowlin, E. M., J. S. Klaus, J. S. Foster, M. S. Andres, L. Custals, and R. P. Reid, 2012, Environmental controls on microbial community cycling in modern marine stromatolites: Sedimentary Geology, v. 263-264, p. 45–55.

    Google Scholar 

  • Brady, H. T., and B. Batts, 1981, Large salt beds on the surface of the Ross ice shelf near Black Island, Antarctica: Journal of Glaciology, v. 27, p. 11–18.

    Google Scholar 

  • Braga, J. C., J. M. Martîn, and R. Riding, 1995, Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain: Palaios, v. 10, p. 347–361.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1994, Living hydromagnesite stromatolites from Turkey: Sedimentary Geology, v. 92, p. 1–5.

    Google Scholar 

  • Braithwaite, C. J. R., and V. Zedef, 1996, Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey: Journal of Sedimentary Research A: Sedimentary Petrology and Processes, v. 66, p. 991–1002.

    Google Scholar 

  • Brasier, A. T., 2011, Searching for travertines, calcretes and speleothems in deep time: Processes, appearances, predictions and the impact of plants: Earth-Science Reviews, v. 104, p. 213–239.

    Google Scholar 

  • Breitbart, M., A. Hoare, A. Nitti, J. Siefert, M. Haynes, E. Dinsdale, R. Edwards, V. Souza, F. Rohwer, and D. Hollander, 2009, Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico: Environmental Microbiology, v. 11, p. 16–34.

    Google Scholar 

  • Burne, R., and L. Moore, 1993, Microatoll microbialites of Lake Clifton, Western Australia: Morphological analogues ofCryptozoön proliferumHall, the first formally-named stromatolite: Facies, v. 29, p. 149–168.

    Google Scholar 

  • Burne, R. V., and L. S. Moore, 1987, Microbialites; organosedimentary deposits of benthic microbial communities: Palaios, v. 2, p. 241–254.

    Google Scholar 

  • Burne, R. V., L. S. Moore, A. G. Christy, U. Troitzsch, P. L. King, A. M. Carnerup, and P. J. Hamilton, 2014, Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization?: Geology, v. 42, p. 575–578.

    Google Scholar 

  • Burri, P., R. du Dresnay, and C. W. Wagner, 1973, Tepee structures and associated diagenetic features in intertidal carbonate sands (lower Jurassic, Morocco): Sedimentary Geology, v. 9, p. 221–228.

    Google Scholar 

  • Calvo, J. P., M. M. Blanc-Valleron, J. P. Rodriguez Arandia, J. M. Rouchy, and M. E. Sanz, 1999, Authigenic clay minerals in continental evaporitic environments: International Association Sedimentologists Special Publication, No. 27, p. 129–151.

    Google Scholar 

  • Casanova, J., 1986, East African Rift stromatolites, in L. E. Frostick, R. W. Renaut, I. Reid, and J. J. Tiercelin, eds., Sedimentation in the African Rifts, Journal of the Geological Society of London, Special Publication No. 25, p. 201–210.

    Google Scholar 

  • Casanova, J., and D. Nury, 1989, Biosédimentologie des stromatolites fluvio-lacustres du fossé oligocene de Marseille: Bull. Soc. Geol. Fr., v. 8, p. 1111–1128.

    Google Scholar 

  • Casas, E., and T. K. Lowenstein, 1989, Diagenesis of saline pan halite; comparison of petrographic features of modern, Quaternary and Permian halites: Journal of Sedimentary Petrology, v. 59, p. 724–739.

    Google Scholar 

  • Casas, E., T. K. Lowenstein, R. J. Spencer, and P. Zhang, 1992, Carnallite mineralization in the nonmarine, Qaidam Basin, China; evidence for the early diagenetic origin of potash evaporites: Journal of Sedimentary Petrology, v. 62, p. 881–898.

    Google Scholar 

  • Castanier, S., J.-P. Perthuisot, J.-M. Rouchy, A. Maurin, and O. Guelorget, 1992, Halite ooids in Lake Asal, Djibouti: Biocrystalline build-UPS: Geobios, v. 25, p. 811–821.

    Google Scholar 

  • Castanier, S., J. P. Perthuisot, M. Matrat, and J. Y. Morvan, 1999, The salt ooids of Berre salt works (Bouches du Rhone, France): the role of bacteria in salt crystallisation: Sedimentary Geology, v. 125, p. 9–21.

    Google Scholar 

  • Cathro, D. L., J. K. Warren, and G. E. Williams, 1992, Halite saltern in the Canning Basin, Western Australia; a sedimentological analysis of drill core from the Ordovician-Silurian Mallowa Salt: Sedimentology, v. 39, p. 983–1002.

    Google Scholar 

  • Caumette, P., 1993, Ecology and physiology of phototropic bacteria and sulphate-reducing bacteria in marine salterns: Experientia, v. 49, p. 473–481.

    Google Scholar 

  • Chafetz, H. S., and R. L. Folk, 1984, Travertines: depositional morphology and the bacterially constructed constituents: Journal of Sedimentary Petrology, v. 54, p. 289–316.

    Google Scholar 

  • Charrach, J., 1986, Genesis of halite islands in the southern basin of the Dead Sea: Israel Geological Society, Annual Meeting, v. 1986, p. 26–27.

    Google Scholar 

  • Chavdarian, G. V., and D. Y. Sumner, 2011, Origin and evolution of polygonal cracks in hydrous sulphate sands, White Sands National Monument, New Mexico: Sedimentology, v. 58, p. 407–423.

    Google Scholar 

  • Chen, X. Y., J. R. Prescott, and J. T. Hutton, 1990, Thermoluminescence dating on gypseous dunes of Lake Amadeus, central Australia: Australian Journal of Earth Sciences, v. 37, p. 93–101.

    Google Scholar 

  • Choquette, P. W., and L. C. Pray, 1970, Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates: Bulletin American Association Petroleum Geologists, v. 54, p. 207–250.

    Google Scholar 

  • Chow, N., and A. D. George, 2004, Tepee-shaped agglutinated microbialites: an example from a Famennian carbonate platform on the Lennard Shelf, northern Canning Basin, Western Australia: Sedimentology, v. 51, p. 253–265.

    Google Scholar 

  • Christ, N., A. Immenhauser, F. Amour, M. Mutti, R. Preston, F. F. Whitaker, A. Peterhänsel, S. O. Egenhoff, P. A. Dunn, and S. M. Agar, 2012, Triassic Latemar cycle tops- Subaerial exposure of platform carbonates under tropical arid climate: Sedimentary Geology, v. 265-266, p. 1–29.

    Google Scholar 

  • Cody, R. D., 1976, Growth and early diagenetic changes in artificial gypsum crystals grown within bentonite muds and gels: Geological Society America Bulletin, v. 87, p. 1163–1168.

    Google Scholar 

  • Cody, R. D., and A. M. Cody, 1988, Gypsum nucleation and crystal morphology in analog saline terrestrial environments: Journal of Sedimentary Petrology, v. 58, p. 247–255.

    Google Scholar 

  • Cohen, A. S., 1989, Facies relationships and sedimentation in large rift lakes and implications for hydrocarbon exploration: Examples from Lake Turkana and Tanganyika: Palaeogeography Palaeoclimatology Palaeoecology, v. 70, p. 65–80.

    Google Scholar 

  • Cohen, A. S., and C. Thouin, 1987, Nearshore carbonate deposits in Lake Tanganyika: Geology, v. 15, p. 414–418.

    Google Scholar 

  • Corsetti, F. A., and N. J. Lorentz, 2006, On Neoproterozoic cap carbonates as chronostratigraphic markers, in S. Xiao, and A. J. Kaufman, eds., Neoproterozoic Geobiology and Paleobiology: Berlin, Springer Scientific Publishing, p. 273–294.

    Google Scholar 

  • Cosgrove, J. W., 2001, Hydraulic fracturing during the formation and deformation of a basin: A factor in the dewatering of low-permeability sediments: Bulletin American Association of Petroleum Geologists, v. 85, p. 737–748.

    Google Scholar 

  • Council, T. C., and P. C. Bennett, 1993, Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds: Geology, v. 21, p. 971–974.

    Google Scholar 

  • Craig, J. R., R. D. Fortner, and B. L. Weand, 1974, Halite and Hydrohalite from Lake Bonney, Taylor Valley, Antarctica: Geology, v. 2, p. 389–390.

    Google Scholar 

  • Darragi, F., and Y. Tardy, 1987, Authigenic trioctohedral smectites controlling pH, alkalinity silica and magnesium concentrations in alkaline lakes: Chemical Geology, v. 63, p. 59–72.

    Google Scholar 

  • Dean, W. E., and R. Y. Anderson, 1982, Continuous subaqueous deposition of the Permian Castile evaporites, Delaware Basin, Texas and New Mexico: Handford, C. R., Loucks, R. G., Davies, G. R. Depositional and diagenetic spectra of evaporites; a core workshop. S. E. P. M. Core Workshop, v. 3, p. 324–353.

    Google Scholar 

  • Dean, W. E., and T. D. Fouch, 1983, Lacustrine Environment, in P. A. Scholle, D. G. Bebout, and C. H. Moore, eds., Carbonate Depositional Environments, v. 33: Tulsa, OK, American Assoc. Petroleum Geologists Memoir, p. 96–130.

    Google Scholar 

  • Druckman, Y., 1981, Sub-recent manganese-bearing stromatolites along shorelines of the Dead Sea, in C. Monty, ed., Phanerozoic stromatolites; case histories: Berlin, Federal Republic of Germany, Springer-Verlag, p. 197–208.

    Google Scholar 

  • Duane, M. J., and A. Z. Al-Zamel, 1999, Syngenetic textural evolution of modern sabkha stromatolites (Kuwait): Sedimentary Geology, v. 127, p. 237–245.

    Google Scholar 

  • Dunham, R. J., 1972, Capitan Reef, New Mexico and Texas: Facts and questions to aid interpretation and group discussion, v. 72–14: Midland, Texas, Permian Basin Section SEPM Publication.

    Google Scholar 

  • Dupraz, C., R. P. Reid, O. Braissant, A. W. Decho, R. S. Norman, and P. T. Visscher, 2009, Processes of carbonate precipitation in modern microbial mats: Earth-Science Reviews, v. 96, p. 141–162.

    Google Scholar 

  • Dupraz, C., and A. Strasser, 1999, Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains): Facies, v. 40, p. 101–130.

    Google Scholar 

  • Dutkiewicz, A., C. C. Von der Borch, and J. R. Prescott, 2002, Geomorphology of the Lake Malata-Lake Greenly complex, South Australia, and its implications for Late Quaternary Palaeoclimate: Transactions of the Royal Society of South Australia, v. 126, p. 103–115.

    Google Scholar 

  • Eardley, A. J., 1938, Sediments of Great Salt Lake, Utah: Bulletin American Association of Petroleum Geologists, v. 22, p. 1305–1411.

    Google Scholar 

  • Eardley, A. J., 1962, Gypsum dunes and evaporite history of the Great Salt Lake Desert: Utah Geol. and Mineralog. Survey Spec. Studies vol. 2, 27 p.

    Google Scholar 

  • Ece, O. I., 1998, Diagenetic transformation of magnesite pebbles and cobbles to sepiolite (Meerschaum) in the Miocene Eskisehir lacustrine basin, Turkey: Clays & Clay Minerals, v. 46, p. 436–445.

    Google Scholar 

  • Egenhoff, S. O., A. Peterhansel, T. Bechstadt, R. Zuhlke, and J. Grotsch, 1999, Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar (Middle Triassic, northern Italy): Sedimentology, v. 46, p. 893–912.

    Google Scholar 

  • El Tabakh, M., B. C. Schreiber, C. Uthaaroon, L. Coshell, and J. K. Warren, 1998a, Diagenetic origin of Basal Anhydrite in the Cretaceous Maha Sarakham Salt – Khorat Plateau, NE Thailand: Sedimentology, v. 45, p. 579–594.

    Google Scholar 

  • El Tabakh, M., B. C. Schreiber, and J. K. Warren, 1998b, Origin of fibrous gypsum in the Newark rift basin, eastern North America: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 88–99.

    Google Scholar 

  • El Tabakh, M., C. Utha-Aroon, J. K. Warren, and B. C. Schreiber, 2003, Origin of dolomites in the Cretaceous Maha Sarakham evaporites of the Khorat Plateau, northeast Thailand: Sedimentary Geology, v. 157, p. 235–252.

    Google Scholar 

  • El Taki, H., and B. R. Pratt, 2010, Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites : RedRiver strata (Upper Ordovician) of Southern Saskatchewan, Canada: Bulletin Canadian Petroleum Geology, v. 60, p. 37–58.

    Google Scholar 

  • El-Sayed, M. I., 1993, Gypcrete of Kuwait: field investigation, petrography and genesis: Journal of Arid Environment, v. 25, p. 199–203.

    Google Scholar 

  • Elliott, L. A., and J. K. Warren, 1989, Stratigraphy and depositional environment of lower San Andres Formation in subsurface and equivalent outcrops; Chaves, Lincoln, and Roosevelt counties, New Mexico: Bulletin American Association of Petroleum Geologists, v. 73, p. 1307–1325.

    Google Scholar 

  • Esteban, M., 1980, Significance of upper Miocene coral reefs of the Western Mediterranean: Palaeogeography Palaeoclimatology Palaeoecology, v. 29, p. 169–188.

    Google Scholar 

  • Esteban, M., and L. C. Pray, 1983, Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and West Texas, in T. M. Peryt, ed., Coated Grains: Berlin, Springer-Verlag, p. 503–537.

    Google Scholar 

  • Farias, M. E., 2011, Modern Stromatolite Ecosystems at Alkaline and Hypersaline High Altitude Lakes at the Argentinian Puna, in V. Tewari, and J. Seckbach, eds., Stromatolites: Interaction of Microbes with Sediments: New York, Springer, p. 431–440.

    Google Scholar 

  • Feldmann, M., and J. A. McKenzie, 1997, Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic?: Sedimentology, v. 44, p. 893–914.

    Google Scholar 

  • Feldmann, M., and J. A. McKenzie, 1998, Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas: Palaios, v. 13, p. 201–212.

    Google Scholar 

  • Fisher, R. S., 1988, Clay minerals in evaporite host rocks, Palo Duro Basin, Texas Panhandle: Journal of Sedimentary Petrology, v. 58, p. 836–844.

    Google Scholar 

  • Folk, R. L., 1993, SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks: Journal Sedimentary Petrology, v. 63, p. 990–999.

    Google Scholar 

  • Folk, R. L., 1999, Nannobacteria and the precipitation of carbonate in unusual environments: Sedimentary Geology, v. 126, p. 47–55.

    Google Scholar 

  • Forti, P., E. Galli, and A. Rossi, 2004 Los mecanismos minerogenéticos activos en las Pozas, in G. Badino, T. Bernabei, A. de Vivo, I. Giulivo, and G. Savino, eds., Bajo el desierto, el misterio de las aguas de Cuatro Cíenegas, La Venta Esplorazioni Geografiche, Instituto Coahuilense de Ecología, Gobierno del Estado de Coahuila & Tintoretto Edizioni, p. 122–125.

    Google Scholar 

  • Frank, T. D., Z. Gui, and t. A. S. M. S. S. Team, 2010, Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica: Geology, v. 38, p. 587–590.

    Google Scholar 

  • Fryberger, S. G., A. M. Al Sari, T. J. Clisham, A. R. R. Syed, and G. A. H. Khattab, 1984, Wind sedimentation in the Jafurah sand sea, Saudi Arabia: Sedimentology, v. 31, p. 413–431.

    Google Scholar 

  • Gac, J. Y., 1980, Géochimie du bassin du Lac Tchad: Travaux et Documents ORSTOM, v. 123, p. 54 pp.

    Google Scholar 

  • Gammon, P. R., D. M. McKirdy, and H. D. Smith, 2005, The timing and environment of tepee formation in a Marinoan cap carbonate: Sedimentary Geology, v. 177, p. 195–208.

    Google Scholar 

  • Gammon, P. R., D. M. McKirdy, and H. D. Smith, 2012, The paragenetic history of a Marinoan cap carbonate: Sedimentary Geology, v. 243–244, p. 1–16.

    Google Scholar 

  • Gao, G., S. D. Hovorka, and H. H. Posey, 1990, Limpid dolomite in Permian San Andres halite rocks, Palo Duro Basin, Texas Panhandle; characteristics, possible origin, and implications for brine evolution: Journal of Sedimentary Petrology, v. 60, p. 118–124.

    Google Scholar 

  • Garber, R. A., and G. M. Friedman, 1983, Coated grains along the Dead Sea shore, in T. Peryt, ed., Coated Grains: New York, Springer Verlag, p. 163–168.

    Google Scholar 

  • Garber, R. A., Y. Levy, and G. M. Friedman, 1987, The sedimentology of the Dead Sea: Carbonates and Evaporites, v. 2, p. 43–57.

    Google Scholar 

  • García-Ruiz, J. M., R. Villasuso, C. Ayora, A. Canals, and F. Otálora, 2007, Formation of natural gypsum megacrystals in Naica, Mexico: Geology, v. 35, p. 327–330.

    Google Scholar 

  • Garofalo, P. S., M. B. Fricker, D. Günther, P. Forti, A.-M. Mercuri, M. Loreti, and B. Capaccioni, 2010, Climatic control on the growth of gigantic gypsum crystals within hypogenic caves (Naica mine, Mexico)?: Earth and Planetary Science Letters, v. 289, p. 560–569.

    Google Scholar 

  • Gavish, E., W. E. Krumbein, and J. Halevy, 1985, Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha, in G. M. Friedman, and W. E. Krumbein, eds., Hypersaline ecosystems; the Gavish Sabkha, v. Ecological Studies Vol. 53: New York, Springer, p. 186–217.

    Google Scholar 

  • Gerdes, G., K. Dunajtschik-Piewak, H. Riege, A. G. Taher, W. E. Krumbein, and H.-E. Reineck, 1994, Structural diversity of biogenic carbonate particles in microbial mats: Sedimentology, v. 41, p. 1273–1294.

    Google Scholar 

  • Gerdes, G., T. Klenke, and N. Noffke, 2000a, Microbial signatures in peritidal siliciclastic sediments: a catalogue: Sedimentology, v. 47, p. 279–308.

    Google Scholar 

  • Gerdes, G., W. E. Krumbein, and N. Noffke, 2000b, Evaporite Microbial Sediment, in R. E. Riding, and S. M. Awramik, eds., Microbial Sediements: Berlin Heidelberg, Springer-Verlag, p. 196–208.

    Google Scholar 

  • Gibert, J. M. D., and A. A. Ekdale, 1999, Trace Fossil Assemblages Reflecting Stressed Environments in the Middle Jurassic Carmel Seaway of Central Utah: Journal of Paleontology, v. 73, p. 711–720.

    Google Scholar 

  • Gindre-Chanu, L., J. K. Warren, C. Puigdefabregas, I. R. Sharp, D. C. P. Peacock, R. Swart, R. Poulsen, H. Ferreira, and L. Henrique, 2014, Diagenetic evolution of Aptian evaporites in the Namibe Basin (south-west Angola): Sedimentology, doi;10.1111/sed.12146

  • Gischler, E., M. A. Gibson, and W. Oschmann, 2008, Giant Holocene Freshwater Microbialites, Laguna Bacalar, Quintana Roo, Mexico: Sedimentology, v. 55, p. 1293–1309.

    Google Scholar 

  • Goodall, T. M., C. P. North, and K. W. Glennie, 2000, Surface and subsurface sedimentary structures produced by salt crusts: Sedimentology, v. 47, p. 99–118.

    Google Scholar 

  • Gornitz, V. M., and B. C. Schreiber, 1981, Displacive halite hoppers from the Dead Sea; some implications for ancient evaporite deposits: Journal of Sedimentary Petrology, v. 51, p. 787–794.

    Google Scholar 

  • Grey, K., L. S. Moore, R. V. Burne, B. K. Pierson, and J. Bauld, 1990, Lake Thetis, Western Australia: and example of Saline Lake Sedimentation dominated by Benthic Microbial Processes: Marine and Freshwater Research, v. 41, p. 275–300.

    Google Scholar 

  • Grotzinger, J. P., 1990, Geochemical model for Proterozoic stromatolite decline: American Journal of Science, v. 290-A, p. 80–103.

    Google Scholar 

  • Grotzinger, J. P., and J. F. Kasting, 1993, New constraints on Precambrian ocean composition: Journal of Geology, v. 101, p. 235–243.

    Google Scholar 

  • Grotzinger, J. P., and A. H. Knoll, 1995, Anomolous carbonate precipitates – Is the Precambrian the key to the Permian: Palaios, v. 10, p. 578–596.

    Google Scholar 

  • Grotzinger, J. P., and A. H. Knoll, 1999, Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?: Annual Review of Earth & Planetary Sciences, v. 27, p. 313–358.

    Google Scholar 

  • Grotzinger, J. P., and J. F. Read, 1983, Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada: Geology, v. 11, p. 710–713.

    Google Scholar 

  • Grotzinger, J. P., and D. H. Rothman, 1996, An abiotic model for stromatolitic morphogenesis: Nature, v. 383, p. 423–425.

    Google Scholar 

  • Gunatilaka, A., A. Saleh, and A. Al-Temeemi, 1980, Plant-controlled supratidal anhydrite from Al-Khiran, Kuwait: Nature, v. 288, p. 257–260.

    Google Scholar 

  • Guo, X., and H. S. Chafetz, 2012, Large tufa mounds, Searles Lake, California: Sedimentology, v. 59, p. 1509–1535.

    Google Scholar 

  • Gustavson, T. C., S. D. Hovorka, and A. R. Dutton, 1994, Origin of satin spar veins in evaporite basins: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 64, p. 88–94.

    Google Scholar 

  • Habermehl, M. A., 1988, Springs of the Great Artesian Baisn: Aspects of Hydrogeologic, Hydrochemical, and Isotopic Characteristics: SLEADS Conference 88, Salt Lakes in Arid Lands, p. 30 pp.

    Google Scholar 

  • Halley, R. B., 1976, Textural variation within Great Salt Lake algal mounds, in M. R. Walter, ed., Stromatolites: Developments in Sedimentology, v. 20: Amsterdam, Elsevier, p. 435–445.

    Google Scholar 

  • Halley, R. B., 1977, Ooid fabric and structure in the Great Salt Lake and the Geologic record: Journal of Sedimentary Petrology, v. 47, p. 1099–1120.

    Google Scholar 

  • Handford, C. R., 1990, Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?: Geology, v. 18, p. 691–694.

    Google Scholar 

  • Handford, C. R., 1991, Marginal marine halite; sabkhas and salinas, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50, Elsevier Developments in Sedimentology, p. 1–66.

    Google Scholar 

  • Handford, C. R., A. C. Kendall, D. R. Prezbindowski, J. B. Dunham, and B. W. Logan, 1984, Salina-margin tepees, pisoliths and aragonite cements, Lake MacLeod, Western Australia; Their significance in interpreting ancient analogs: Geology, v. 12, p. 523–527.

    Google Scholar 

  • Hardie, L. A., 1968, The origin of the Recent non-marine evaporite deposit of Saline Valley, Inyo County, California: Geochimica et Cosmochimica Acta, v. 32, p. 1279–1301.

    Google Scholar 

  • Hardie, L. A., A. Bosellini, and R. K. Goldhammer, 1986, Repeated subaerial exposure of subtidal carbonate platforms, Triassic, Northern Italy: evidence for high frequency sea level oscillations on a 10,000 year scale.: Paleoceanography, v. 1, p. 447–457.

    Google Scholar 

  • Hartley, A. J., and G. May, 1998, Miocene gypcretes from the Calama Basin, northern Chile: Sedimentology, v. 45, p. 351–364.

    Google Scholar 

  • Hay, R. L., R. E. Hughes, K. T. K., H. D. Glass, and J. Liu, 1995, Magnesium-rich clays of the Meerschaum Mines in the Amboseli, Tanzania and Kenya: Clays & Clay Minerals, v. 43, p. 455–466.

    Google Scholar 

  • Hinnov, L. A., and R. K. Goldhammer, 1991, Spectral analysis of the Middle Triassic Latemar Limestone: Journal of Sedimentary Petrology, v. 61, p. 1173–1193.

    Google Scholar 

  • Holliday, D. W., 1970, The petrology of secondary gypsum rocks; a review: Journal of Sedimentary Petrology, v. 40, p. 734–744.

    Google Scholar 

  • Holser, W. T., B. J. Javor, and C. Pierre, 1981, Geochemistry and Geology of Salt Pans at Guerrero Negro, Baja California: Field trip Guide No 1. Prepared for the Geological Society of America, Cordilleran Section, Annual Meeting, March 22–24, 1981.

    Google Scholar 

  • Hovland, M., T. Kuznetsova, H. Rueslatten, B. Kvamme, H. K. Johnsen, G. E. Fladmark, and A. Hebach, 2006a, Sub-surface precipitation of salts in supercritical seawater: Basin Research, v. 18, p. 221–230.

    Google Scholar 

  • Hovland, M., and H. Rueslatten, 2009, Origin and permeability of deep ocean salts: Geophysical Research Abstracts, v. 11.

    Google Scholar 

  • Hovland, M., H. G. Rueslatten, H. K. Johnsen, B. Kvamme, and T. Kuznetsova, 2006b, Salt formation associated with sub-surface boiling and supercritical water: Marine and Petroleum Geology, v. 23, p. 855–869.

    Google Scholar 

  • Hovorka, S., 1987, Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas: Sedimentology, v. 34, p. 1029–1054.

    Google Scholar 

  • Hovorka, S. D., 1989, Depth evolution of the Delaware Basin–Castile/Salado transition, in P. M. Harris, and G. A. Grover, eds., Subsurface and Outcrop Examination of the Capitan Shelf Margin, Northern Delaware Basin, v. 13: Tulsa, Oklahoma, SEPM, Core Workshop, p. 441–450.

    Google Scholar 

  • Hovorka, S. D., 1992, Halite pseudomorphs after gypsum in bedded anhydrite; clue to gypsum-anhydrite relationships: Journal of Sedimentary Petrology, v. 62, p. 1098–1111.

    Google Scholar 

  • Hovorka, S. D., R. M. Holt, and D. W. Powers, 2007, Depth indicators in Permian Basin evaporites: Geological Society, London, Special Publications, v. 285, p. 335–364.

    Google Scholar 

  • Husinec, A., and J. F. Read, 2006, Transgressive oversized radial ooid facies in the Late Jurassic Adriatic Platform interior: Low-energy precipitates from highly supersaturated hypersaline waters: Geological Society of America Bulletin, v. 118, p. 550–556.

    Google Scholar 

  • Hussain, M., and J. K. Warren, 1989, Nodular and enterolithic gypsum; the ‘’sabkha-tization” of Salt Flat Playa, West Texas: Sedimentary Geology, v. 64, p. 13–24.

    Google Scholar 

  • Jahnert, R., O. de Paula, L. Collins, E. Strobach, and R. Pevzner, 2012, Evolution of a coquina barrier in Shark Bay, Australia by GPR imaging: Architecture of a Holocene reservoir analog: Sedimentary Geology, v. 281, p. 59–74.

    Google Scholar 

  • James, N. P., G. M. Narbonne, R. W. Dalrymple, and T. K. Kyser, 2005, Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates Geology, v. 33, p. 9–12.

    Google Scholar 

  • Janks, J. S., M. R. Yusas, and C. M. Hall, 1992, Clay mineralogy of an interbedded sandstone, dolomite, and anhydrite; The Permian Yates Formation, Winkler County, Texas, Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, v. 47, SEPM (Society for Sedimentary Geology), p. 145–157.

    Google Scholar 

  • Jones, B., and R. W. Renaut, 1994, Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Boliva: Sedimentology, v. 41, p. 1171–1202.

    Google Scholar 

  • Jones, B. F., 1986, Clay mineral diagenesis in lacustrine sediments, in F. A. Mumpton, ed., Studies in diagenesis, v. 1578, US Geological Survey Bulletin, p. 291–300.

    Google Scholar 

  • Horita, J., 2009, Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions: Aquatic Geochemistry, v. 15, p. 43–69.

    Google Scholar 

  • Jones, B. F., and E. Galán, 1988, Sepiolite and palygorskite, in S. W. Bailey, ed., Hydrous Phyllosilicates (Exclusive of Micas), v. 19: Washington, Mineralogical Society of America, Reviews in Mineralogy, p. 631–674.

    Google Scholar 

  • Jones, D. J., 1953, Gypsum-Oolite Dunes, Great Salt Lake Desert, Utah: Bulletin American Association Petroleum Geologists, v. 37, p. 2530–2538.

    Google Scholar 

  • Josephson, J., 1982, Supercritical fluids: Environmental Science and Technology, v. 16, p. 548A–551A.

    Google Scholar 

  • Jowett, E. C., L. M. Cathles III, and B. W. Davis, 1993, Predicting depths of gypsum dehydration in evaporitic sedimentary basins: Bulletin American Association Petroleum Geologists, v. 77, p. 402–413.

    Google Scholar 

  • Kasprzyk, A., 2003, Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland: Sedimentary Geology, v. 158, p. 167–194.

    Google Scholar 

  • Kautz, K., and H. Porada, 1976, Sepiolite formation in a pan of the Kalahari: Nues Jahrb. Mineral Monatsh., v. 12, p. 545–559.

    Google Scholar 

  • Kempe, S., J. Kazmierczak, G. Landmann, T. Konuk, A. Riemer, and A. Lipp, 1991, Largest known microbialites discovered in Lake Van, Turkey: Nature, v. 349, p. 605–608.

    Google Scholar 

  • Kendall, A. C., 1989, Brine mixing in the Middle Devonian of Western Canada and its possible significance to regional dolomitization: Sedimentary Geology, v. 64, p. 271–285.

    Google Scholar 

  • Kendall, A. C., 1992, Evaporites, in R. G. Walker, and N. P. James, eds., Facies Models: Responses to sea level change, Geological Association of Canada, p. 375–409.

    Google Scholar 

  • Kendall, A. C., 2000, Compaction in halite-cemented carbonates – the Dawson Bay Formation (Middle Devonian) of Saskatchewan, Canada: Sedimentology, v. 47, p. 151–171.

    Google Scholar 

  • Kendall, A. C., and G. M. Harwood, 1989, Shallow water gypsum in the Castile Formation – significance and implications, in P. M. Harris, and G. A. Grover, eds., Subsurface and outcrop examination of the Capitan Shelf margin, northern Delaware Basin, v. 13, SEPM Core Workshop, p. 451–457.

    Google Scholar 

  • Kendall, C. G. S. C., and P. Skipwith, 1968a, Recent algal mats of a Persian Gulf lagoon: Journal of Sedimentary Petrology, v. 38, p. 1040–1058.

    Google Scholar 

  • Kendall, C. G. S. C., and S. P. A. D. E. Skipwith, 1969, Holocene shallow-water carbonate and evaporite sediments of Khor al Bazam, Abu Dhabi, southwest Persian Gulf: Bulletin American Association of Petroleum Geologists, v. 53, p. 841–869.

    Google Scholar 

  • Kendall, C. G. S. C., and J. K. Warren, 1987, A review of the origin and setting of tepees and their associated fabrics: Sedimentology, v. 34, p. 1007–1027.

    Google Scholar 

  • Kerr, S. D. J., and A. Thomson, 1963, Origin of nodular and bedded anhydrite in Permian shelf sediments, Texas and New Mexico: Bulletin American Association Petroleum Geologists, v. 47, p. 1726–1732.

    Google Scholar 

  • Kiessling, W., E. Flügel, and J. Golonka, 2003, Patterns of Phanerozoic carbonate platform sedimentation: Lethaia, v. 36, p. 195–226.

    Google Scholar 

  • Kinsman, D. J. J., 1969, Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites: Bulletin American Association of Petroleum Geologists, v. 53, p. 830–840.

    Google Scholar 

  • Kirkland, D. W., R. E. Denison, and W. E. Dean, 2000, Parent brine of the Castile evaporites (Upper Permian), Texas and New Mexico: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 749–761.

    Google Scholar 

  • Kobluk, D. R., and D. R. Crawford, 1990, A modern hypersaline organic mud- and gypsum-dominated basin and associated microbialites: Palaios, v. 5, p. 134–148.

    Google Scholar 

  • Kocurek, G., M. Carr, R. Ewing, K. G. Havholm, Y. C. Nagar, and A. K. Singhvi, 2007, White Sands Dune Field, New Mexico: Age, dune dynamics and recent accumulations: Sedimentary Geology, v. 197, p. 313–331.

    Google Scholar 

  • Konrad, G., K. Sebe, A. Halasz, and E. Babinszki, 2010, Sedimentology of a Permian playa lake: the Boda Claystone Formation, Hungary: Geologos, v. 16, p. 27–41.

    Google Scholar 

  • Kosun, E., 2012, Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey: Carbonates and Evaporites, v. 27, p. 269–289.

    Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259–263.

    Google Scholar 

  • Krumbein, W. E., D. M. Paterson, and L. J. Stal, 1994, Biostabilization of Sediments, Oldenburg: BIS Verlag, 526 p.

    Google Scholar 

  • Langford, R. P., 2003, The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes: Quaternary International, v. 104, p. 31–39.

    Google Scholar 

  • Larsen, D., 1994, Origin and paleoenvironmental significance of calcite pseudomorphs after ikaite in the Oligocene Creede Formation, Colorado: Journal of Sedimentary Research A: Sedimentary Petrology & Processes, v. A64, p. 593–603.

    Google Scholar 

  • Last, F. M., W. M. Last, and N. M. Halden, 2010, Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada: Sed-imentary Geology, v. 225, p. 34–49.

    Google Scholar 

  • Last, W. M., 1989a, Continental brines and evaporites of the northern Great Plains of Canada: Sedimentary Geology, v. 64, p. 207–221.

    Google Scholar 

  • Last, W. M., 1992, Petrology of carbonate hardgrounds from East Basin Lake, a saline maar lake, southern Australia: Sedimentary Geology, v. 81, p. 215–229.

    Google Scholar 

  • Laval, B., S. L. Cady, J. C. Pollack, C. P. McKay, J. S. Bird, J. P. Grotzinger, D. C. Ford, and H. R. Bohm, 2000, Modern freshwater microbialite analogues for ancient dendritic reef structures: Nature, v. 407, p. 626–629.

    Google Scholar 

  • Leslie, A. B., G. M. Harwood, and A. C. Kendall, 1997, Geochemical variations within a laminated evaporite deposit: Evidence for brine composition during formation of the Permian Castile Formation, Texas and New Mexico, USA: Sedimentary Geology, v. 110, p. 223–235.

    Google Scholar 

  • Leslie, A. B., A. C. Kendall, G. M. Harwood, and D. W. Powers, 1996, Conflicting indicators of palaeoceanographic depth during deposition of the upper Permian Castile Formation, Texas and New Mexico, in A. E. S. Kemp, ed., Palaeoclimatology and Palaeoceanography from Laminated Sediments: London, Geological Society London Special Publication, No. 116, p. 111–124.

    Google Scholar 

  • Lewis, S., and M. Holness, 1996, Equilibrium halite- dihedral angles: High rock salt permeability in the shallow crust: Geology, v. 24, p. 431–434.

    Google Scholar 

  • Logan, B. W., 1987, The MacLeod evaporite basin, western Australia; Holocene environments, sediments and geological evolution: Tulsa, OK, American Association of Petroleum Geologists Memoir 44, 140 p.

    Google Scholar 

  • Lokier, S., and T. Steuber, 2009, Large-scale intertidal polygonal features of the Abu Dhabi coastline: Sedimentology, v. 56, p. 609–621.

    Google Scholar 

  • Lokier, S. W., 2012, Development and evolution of subaerial halite crust morphologies in a coastal sabkha setting: Journal of Arid Environments, v. 79, p. 32–47.

    Google Scholar 

  • Lopez-Cortes, A., J.-L. Ochoa, and R. Vazquez-Duhalt, 1994, Participation of halobacteria in crystal formation and the crystallization rate of NaCl Geomicrobiology Journal, v. 12, p. 69–80.

    Google Scholar 

  • Lowenstein, T. K., and L. A. Hardie, 1985, Criteria for the recognition of salt-pan evaporites: Sedimentology, v. 32, p. 627–644.

    Google Scholar 

  • Lugli, S., V. Manzi, M. Roveri, and C. B. Schreiber, 2010, The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 297, p. 83–99.

    Google Scholar 

  • Machel, H. G., 1993, Anhydrite nodules formed during deep burial: Journal of Sedimentary Petrology, v. 63, p. 659–662.

    Google Scholar 

  • Machel, H. G., 2013, Secondary anhydrites in deeply buried Devonian carbonates of the Alberta Basin, Canada: Carbonates and Evaporites, p. 1–14.

    Google Scholar 

  • Machel, H. G., and E. A. Burton, 1991, Burial-diagenetic sabkha-like gypsum and anhydrite nodules: Chemical Geology, v. 90, p. 211–231.

    Google Scholar 

  • Magee, J. W., 1991, Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 84, p. 229–257.

    Google Scholar 

  • Mainguet, M., and C. Jacqueminet, 1984, Le Grand Erg Occidental et le Grand Erg Oriental. Classification des dunes, balance sédimentaire et dynamique d’ensemble. (Grand Erg Occidental and Grand Erg Oriental. Classification of the dunes, sediment balances and overall dynamics): Travaux de l’Institut de Géographie de Reims, 59–60:29–48. (in French).

    Google Scholar 

  • Mann, C. J., and W. M. Nelson, 1989, Microbialitic structures in Storr’s Lake, San Salvador Island, Bahamas Islands: Palaios, v. 4, p. 287–293.

    Google Scholar 

  • Manzo, E., E. Perri, and M. E. Tucker, 2012, Carbonate deposition in a fluvial tufa system: processes and products (Corvino Valley – southern Italy): Sedimentology, v. 59, p. 553–577.

    Google Scholar 

  • Martini, A. M., L. M. Walter, T. W. Lyons, V. C. Hover, and J. Hansen, 2002, Significance of early-diagenetic water-rock interactions in a modern marine siliciclastic/evaporite environment: Salina Ometepec, Baja California: Geological Society America Bulletin, v. 114, p. 1055–1069.

    Google Scholar 

  • Masse, M., O. Bourgeois, S. Le Mouelic, C. Verpoorter, A. Spiga, and L. Le Deit, 2012, Wide distribution and glacial origin of polar gypsum on Mars: Earth and Planetary Science Letters, v. 317–318, p. 44–55.

    Google Scholar 

  • Mazzullo, S. J., and B. A. Birdwell, 1989, Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings: Journal of Sedimentary Petrology, v. 59, p. 605–611.

    Google Scholar 

  • McCord, T. B., G. B. Hansen, F. P. Fanale, R. Carlson, W. , D. L. Matson, T. V. Johnson, W. D. Smythe, J. K. Crowley, P. D. Martin, A. Ocampo, C. A. Hibbitts, and J. C. Granahan, 1998, Salts on Europa’s surface detected by Galileo’s near infrared mapping Spectrometer: Science, v. 280, p. 1242–1245.

    Google Scholar 

  • McNeil, B., H. F. Shaw, and A. H. Rankin, 1998, The timing of cementation in the Rotliegend sandstones of the southern North Sea – A petrological and fluid inclusion study of cements: Journal of Petroleum Geology, v. 21, p. 311–327.

    Google Scholar 

  • Melchor, R. N., M. C. Cardonatto, and G. Visconti, 2012, Palaeonvironmental and palaeoecological significance of flamingo-like footprints in shallow-lacustrine rocks: An example from the Oligocene-Miocene Vinchina Formation, Argentina: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 315–316, p. 181–198.

    Google Scholar 

  • Messina, P., P. Stoffer, and W. C. Smith, 2005, Macropolygon morphology, development, and classification on North Panamint and Eureka playas, Death Valley National Park CA: Earth-Science Reviews, v. 73, p. 309–322.

    Google Scholar 

  • Milroy, P. G., and V. P. Wright, 2000, A highstand oolitic sequence and associated facies from a Late Triassic lake basin, southwest England: Sedimentology, v. 47, p. 187–209.

    Google Scholar 

  • Minckley, W. L., 1969, Environments of the Bolsón of Cuatro Ciénegas, Coahuila, México: Texas Western Press, The University of Texas at El Paso, Science Series, Number 2, 65 pages.

    Google Scholar 

  • Minckley, W. L., and G. A. Cole, 1968, Preliminary Limnologic Information on Waters of the Cuatro Cienegas Basin, Coahuila, Mexico: The Southwestern Naturalist, v. 13, p. 421–431.

    Google Scholar 

  • Minter, N. J., K. Krainer, S. G. Lucas, S. J. Braddy, and A. P. Hunt, 2007, Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 246, p. 390–423.

    Google Scholar 

  • Monty, C. L. V., 1976, The origin and development of cryptalgal fabrics, in M. R. Walter, ed., Stromatolites, v. 20: Amsterdam, Elsevier, p. 193–249.

    Google Scholar 

  • Moragas, M., C. Martínez, V. Baqués, E. Playà, A. Travé, G. Alías, and I. Cantarero, 2013, Diagenetic evolution of a fractured evaporite deposit (Vilobí Gypsum Unit, Miocene, NE Spain): Geofluids, v. 13, p. 180–193.

    Google Scholar 

  • Mutti, M., 1994, Association of tepees and palaeokarst in the Ladinian Calcare Rosso (Southern Alps, Italy): Sedimentology, v. 41, p. 621–641.

    Google Scholar 

  • Naiman, E. R., A. Bein, and R. L. Folk, 1983, Complex polyhedral crystals of limpid dolomite associated with halite, Permian upper Clear Fork and Glorieta formations, Texas: Journal of Sedimentary Petrology, v. 53, p. 549–555.

    Google Scholar 

  • Nettleton, W. D., 1991, Occurrence, characteristics, and genesis of carbonate, gypsum, and silica accumulations in soils: Nettleton, W. D. Occurrence, characteristics, and genesis of carbonate, gypsum, and silica accumulations in soils. U. S. Dep. Agric., Natl. Soil Surv. Lab., Lincoln, NE, United States. SSSA Special Publication, v. 26, p. 1–16.

    Google Scholar 

  • Neumann, C. A., B. M. Bedout, L. R. McNeese, C. K. Paull, and H. A. Paerl, 1988, Modern stromatolites and associated mats: San Salvador, Bahamas, in J. Mylroie, ed., Proceedings of the 4th Symposium on the geology of the Bahamas, Bahamas Field Station, 235–250, San Salvador.

    Google Scholar 

  • Nikolaevsky, A. P., 1938, The winter minerals of the Baskunchak salt lake: Priroda, v. 1, p. 86–93.

    Google Scholar 

  • Noffke, N., G. Gerdes, and T. Klenke, 2003, Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic): Earth-Science Reviews, v. 62, p. 163–176.

    Google Scholar 

  • Norton, C. F., and W. D. Grant, 1988, Survival of Halobacteria Within Fluid Inclusions in Salt Crystals: Journal of General Microbiology, v. 134, p. 1365–1373.

    Google Scholar 

  • Orti Cabo, F., and D. J. Shearman, 1977, Estructuras y fabricas deposicionales en las evaporitas del mioceno superior (Messiniense) de San Miguel de Salinas (Alicante, Espana): Instituto Investigaciones Geologicas Diputacion Provincial Universidad de Barcelone, v. 32, p. 5–54.

    Google Scholar 

  • Orti, F., L. Rosell, and P. Anadon, 2003, Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites: Sedimentology, v. 50, p. 361–386.

    Google Scholar 

  • Orti, F., L. Rosell, M. Inglés, and E. Playá, 2007, Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin )Paleogene, SE Spain): Geologica Acta, v. 5, p. 19–34.

    Google Scholar 

  • OrtÍ, F., L. Rosell, E. Playa, and J. M. Salvany, 2012, Meganodular anhydritization: a new mechanism of gypsum to anhydrite conversion (Palaeogene–Neogene, Ebro Basin, North-east Spain): Sedimentology, v. 59, p. 1257–1277.

    Google Scholar 

  • Osborn, W. L., 1989, Formation, diagenesis, and metamorphism of sulfate minerals in the Salton Sea geothermal system, California, U.S.A: Masters thesis, University of California, Riverside; Riverside, CA.

    Google Scholar 

  • Osborne, R. H., G. R. Licari, and M. H. Link, 1982, Modern lacustrine stromatolites, Walker Lake, Nevada: Sedimentary Geology, v. 32, p. 39–61.

    Google Scholar 

  • Owen, R. A., R. B. Owen, R. W. Renaut, J. J. Scott, B. Jones, and G. M. Ashley, 2008, Mineralogy and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift Valley: Sedimentary Geology, v. 203, p. 143–163.

    Google Scholar 

  • Paquet, H., and G. Millot, 1972, Geochemical evolution of clay minerals in the weathered products of Mediterranean climate: Proceedings, International Clay Conference, Madrid, 21–24 June, 1972, p. 199–206.

    Google Scholar 

  • Park, R. K., 1977, The preservation potential of some recent stromatolites: Sedimentology, v. 24, p. 485–506.

    Google Scholar 

  • Paul, J., 1980, Upper Permian algal stromatolite reefs, Harz Mountains (F. R. Germany), in H. Fuchtbauer, and T. Peryt, eds., The Zechstein Basin with emphasis on carbonate sequences, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, West Germany, p. 253–268.

    Google Scholar 

  • Paytan, A., and M. Kastner, 2002, Origin of marine barite deposits: Sr and S isotope characterization: Geology, v. 30, p. 747–750.

    Google Scholar 

  • Pedley, M., J. A. G. Martín, S. O. Delgado, and D. Del Cura, 2003, Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain.: Sedimentology, v. 50, p. 23–44.

    Google Scholar 

  • Pedone, V. A., and J. A. D. Dickson, 2000, Replacement of Aragonite by Quasi-Rhombohedral Dolomite in a Late Pleistocene Tufa Mound, Great Salt Lake, Utah, U.S.A.: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, v. 70, p. 1152–1159.

    Google Scholar 

  • Pedone, V. A., and R. L. Folk, 1996, Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah: Geology, v. 24, p. 763–765.

    Google Scholar 

  • Perri, E., and A. Spadafora, 2011, Evidence of Microbial Biomineralization in Modern and Ancient Stromatolites, in V. Tewari, and J. Seckbach, eds., Stromatolites: Interaction of Microbes with Sediments: Cellular Origin, Life in Extreme Habitats and Astrobiology, v. 18, Springer Netherlands, p. 631–649.

    Google Scholar 

  • Perri, E., M. E. Tucker, and A. Spadafora, 2012, Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia: Geobiology, v. 10, p. 105–117.

    Google Scholar 

  • Perthuisot, J. P., and S. Castanier, 2000, The role of extreme halophilic bacteria in the precipitation of salt, in R. M. Geertmann, ed., 8th World Salt Symposium, v. 1: Amsterdam, Elsevier, p. 173–180.

    Google Scholar 

  • Peryt, T. M., and V. M. Kovalevich, 1997, Association of redeposited salt breccias and potash evaporites in the Lower Miocene of Stebnyk (Carpathian foredeep, West Ukraine): Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67 A, p. 913–922.

    Google Scholar 

  • Petrash, D. A., M. K. Gingras, S. V. Lalonde, F. Orange, E. Pecoits, and K. O. Konhauser, 2012, Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela: Sedimentary Geology, v. 245–246, p. 29–47.

    Google Scholar 

  • Petryshyn, V. A., F. A. Corsetti, W. M. Berelson, W. Beaumont, and S. P. Lund, 2012, Stromatolite lamination frequency, Walker Lake, Nevada: Implications for stromatolites as biosignatures: Geology, v. 40, p. 499–502.

    Google Scholar 

  • Philipp, S. L., 2008, Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England: Geological Magazine, v. 145, p. 831–844.

    Google Scholar 

  • Pope, M. C., J. P. Grotzinger, and B. C. Schreiber, 2000, Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 1138–1151.

    Google Scholar 

  • Powers, D. W., and R. M. Holt, 2000, The salt that wasn’t there: Mudflat facies equivalents to halite of the Permian Rustler Formation, southeastern New Mexico: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 70, p. 29–36.

    Google Scholar 

  • Pratt, B. R., 2002, Tepees in peritidal carbonates: origin via earthquake-induced deformation, with example from the Middle Cambrian of western Canada: Sedimentary Geology, v. 153, p. 57–64.

    Google Scholar 

  • Rahimpour-Bonab, H., and Z. Kalantarzadeh, 2005, Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran: Journal of Asian Earth Sciences, v. 25, p. 157–166.

    Google Scholar 

  • Ram, E., A. Z. Ben, and Y. Kost, 1988, Halite bodies development in the evaporation pan No. 5 of Dead Sea Works: Israel Geological Society, annual meeting, v. 1988, p. 92–93.

    Google Scholar 

  • Raup, O. B., 1970, Brine mixing – an additional mechanism for formation of basin evaporites: Bulletin American Association of Petroleum Geologists, v. 54, p. 2246–2259.

    Google Scholar 

  • Raup, O. B., 1982, Gypsum precipitation by mixing seawater brines: Bulletin American Association of Petroleum Geologists, v. 66, p. 363–367.

    Google Scholar 

  • Reid, P. R., N. P. James, I. G. Macintyre, C. P. Dupraz, and R. V. Burne, 2003, Shark Bay stromatolites: Microfabrics and reinterpretation of origins: Facies, v. 49, p. 299–324.

    Google Scholar 

  • Reid, R. P., P. T. Visscher, A. W. Decho, J. F. Stolz, B. M. Beboutk, C. Dupraz, I. G. Macintyre, H. W. Paerl, J. L. Pinckney, L. Prufert-Beboutk, T. F. Steppe, and D. J. DesMaraisk, 2001, The role of microbes in accretion, lamination and early lithification of modern marine stromatolites: Nature, v. 406, p. 989–992.

    Google Scholar 

  • Reimer, A., G. Landmann, and S. Kempe, 2009, Lake Van, Eastern Anatolia, Hydrochemistry and History: Aquatic Geochemistry, v. 15, p. 195–222.

    Google Scholar 

  • Reitner, J., and V. Thiel, 2011, Encyclopedia of Geobiology: Dordrecht, Netherlands, Springer, 927 p.

    Google Scholar 

  • Renaut, R. W., 1993a, Morphology, distribution and preservation potential of microbial mats in the hydromagnesite-magnesite playas of the Cariboo Plateau, British Columbia, Canada: Hydrobiologia, v. 267, p. 75–98.

    Google Scholar 

  • Riccioni, R. M., P. W. G. Brock, and B. C. Schreiber, 1996, Evidence for early aragonite in paleo-lacustrine sediments: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 66, p. 1003–1010.

    Google Scholar 

  • Riding, R., 1979, Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries Crater, Upper Miocene, southern Germany: Sedimentology, v. 26, p. 645–680.

    Google Scholar 

  • Riding, R., 1991, Classification of Microbial Carbonates, in R. Riding, ed., Calcareous Algae and Stromatolites: Berlin, Springer Verlag, p. 21–51.

    Google Scholar 

  • Riding, R., 2000, Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms: Sedimentology, v. 47, p. 179–214.

    Google Scholar 

  • Riding, R., 2002, Structure and composition of organic reefs and carbonate mud mounds: concepts and categories: Earth Science Reviews, v. 58, p. 163–231.

    Google Scholar 

  • Riding, R., 2011, Microbialites, stromatolites and thrombolites, in J. Reitner, and V. Thiel, eds., Encyclopedia of Geobiology: Dordrecht, Netherlands, Springer, p. 635–654.

    Google Scholar 

  • Riding, R., and L. Liang, 2005, Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, p. 101–115.

    Google Scholar 

  • Riding, R., J. M. Martin, and J. C. Braga, 1991, Coral-stromatolite reef framework, Upper Miocene, Almeria, Spain: Sedimentology, v. 38, p. 799–819.

    Google Scholar 

  • Risacher, F., and H. P. Eugster, 1979, Holocene pisoliths and encrustations associated with spring-fed surface pools, Pastos Grandes, Bolivia: Sedimentology, v. 26, p. 253–270.

    Google Scholar 

  • Roberts, S. M., R. J. Spencer, W. B. Yang, and H. R. Krouse, 1997, Deciphering some unique paleotemperature indicators in halite-bearing saline lake deposits from Death Valley, California, USA: Journal of Paleolimnology, v. 17, p. 101–130.

    Google Scholar 

  • Rodríguez-Aranda, J. P., and J. P. Calvo, 1998, Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite succesions: Palaeogeography Palaeoclimatology Palaeoecology, v. 140, p. 383–399.

    Google Scholar 

  • Rosen, M. R., G. B.Arehart, and M. S. Lico, 2004, Exceptionally fast growth rate of <100-yr-old tufa, Big Soda Lake, Nevada: Implications for using tufa as a paleoclimate proxy: Geology, v. 32, p. 409–412.

    Google Scholar 

  • Rosen, M. R., and J. K. Warren, 1990, The origin and significance of groundwater-seepage gypsum from Bristol Dry Lake, California, USA: Sedimentology, v. 37, p. 983–996.

    Google Scholar 

  • Rouchy, J. M., M. C. Bernet-Rollande, and A. F. Maurin, 1994, Descriptive petrography of evaporites:Applications in the field, subsurface and the laboratory, in T. c. French oil and gas industry association, ed., Evaporite sequences in petroleum exploration: 1. Geological Methods, Editions Technip, p. 70–123.

    Google Scholar 

  • Rouchy, J. M., D. Noel, A. M. A. Wali, and M. A. M. Aref, 1995a, Evaporitic and biosiliceous cyclic sedimentation in the Miocene of the Gulf of Suez; depositional and diagenetic aspects: Sedimentary Geology, v. 94, p. 277–297.

    Google Scholar 

  • Rouchy, J. M., C. Pierre, and F. Sommer, 1995b, Deep-water resedimentation of anhydrite and gypsum deposits in the Middle Miocene (Belayim Formation) of the Red Sea: Sedimentology, v. 42, p. 267–282.

    Google Scholar 

  • Rouchy, J. M., and J. P. Saint-Martin, 1992, Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations: Geology, v. 20, p. 629–632.

    Google Scholar 

  • Rouchy, J. M., C. Taberner, M. M. Blanc-Valleron, R. Sprovieri, M. Russell, C. Pierre, E. Di Stefano, J. J. Pueyo, A. Caruso, J. Dinares-Turell, E. Gomis-Coll, G. A. Wolff, G. Cespuglio, P. Ditchfield, S. Pestrea, N. Combourieu-Nebout, C. Santisteban, and J. O. Grimalt, 1998, Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian: Sedimentary Geology, v. 121, p. 23–55.

    Google Scholar 

  • Ruch, J., J. K. Warren, F. Risacher, T. R. Walter, and R. Lanari, 2012, Salt lake deformation detected from space: Earth and Planetary Science Letters, v. 331–332, p. 120–127.

    Google Scholar 

  • Rush, J., and C. Kerans, 2010, Stratigraphic Response Across a Structurally Dynamic Shelf: The Latest Guadalupian Composite Sequence at Walnut Canyon, New Mexico, U.S.A: Journal of Sedimentary Research, v. 80, p. 808–828.

    Google Scholar 

  • Russell, M. J., J. K. Ingham, V. Zedef, D. Maktav, F. Sunar, A. J. Hall, and A. E. Fallick, 1999, Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey: Journal of the Geological Society, v. 156, p. 869–888.

    Google Scholar 

  • Sanz-Rubio, E., M. Hoyos, J. Calvo, and J. Rouchy, 1999, Nodular anhydrite growth controlled by pedogenic structures in evaporite lake formations: Sedimentary Geology, v. 125, p. 195–203.

    Google Scholar 

  • Schieber, J., 2004, Microbial mats in the siliciclastic rock record: a summary of diagnostic features, in P. G. Eriksson, W. Altermann, D. Nelson, W. U. Mueller, O. Catuneanu, and K. Strand, eds., The Precambrian Earth: Tempos and Events: Developments in Precambrian Geology: Amsterdam, Elsevier, p. 663–672.

    Google Scholar 

  • Schlager, W., and H. Bolz, 1977, Clastic accumulation of sulfate evaporites in deep water: Journal of Sedimentary Petrology, v. 47, p. 600–609.

    Google Scholar 

  • Schoenherr, J., L. Reuning, P. A. Kukla, R. Littke, J. L. Urai, M. G. Siemann, and Z. Rawahi, 2009, Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin): Sedimentology, v. 56, p. 567–589.

    Google Scholar 

  • Schouten, S., W. A. Hartgers, J. F. López, J. O. Grimalt, and J. S. Sinninghe Damsté, 2001, A molecular isotopic study of 13C-enriched organic matter in evaporitic deposits: recognition of limited ecosystems: Organic Geochemistry, v. 32, p. 277–286.

    Google Scholar 

  • Schreiber, B. C., 1988a, Subaqueous evaporite deposition, in B. C. Schreiber, ed., Evaporites and hydrocarbons: New York, Columbia University Press.

    Google Scholar 

  • Schreiber, B. C., and M. El Tabakh, 2000, Deposition and early alteration of evaporites [Review]: Sedimentology, v. 47, p. 215–238.

    Google Scholar 

  • Schubel, K. A., and T. K. Lowenstein, 1997, Criteria for the recognition of shallow-perennial-saline-lake halites based on Recent sediments from the Qaidam Basin, western China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 74–87.

    Google Scholar 

  • Schubert, J. K., and D. J. Bottjer, 1992, Early Triassic stromatolites as post-mass extinction disaster forms: Geology, v. 20, p. 883–886.

    Google Scholar 

  • Seard, C., G. Camoin, J.-M. Rouchy, and A. Virgone, 2013, Composition, structure and evolution of a lacustrine carbonate margin dominated by microbialites: Case study from the Green River formation (Eocene; Wyoming, USA): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 381–382, p. 128–144.

    Google Scholar 

  • Sears, S. O., and F. J. Lucia, 1979, Reef growth model for Silurian pinnacle reefs, northern Michigan reef trend: Geology, v. 3, p. 299–302.

    Google Scholar 

  • Shearman, D. J., 1970, Recent halite rock, Baja California, Mexico: Inst. Min. Metall., Trans., Sect. B., v. 79, p. B155–B162.

    Google Scholar 

  • Shearman, D. J., 1978, Evaporites of coastal sabkhas, in W. E. Dean, and B. C. Schreiber, eds., Marine evaporites.: Tulsa Ok., Soc. Econ. Paleontol. Mineral., Short Course Notes.

    Google Scholar 

  • Shearman, D. J., and J. G. Fuller, 1969, Anhydrite diagenesis, calcitization, and organic laminites, Winnipegosis Formation, Middle Devonian, Saskatchewan: Bull. Can. Pet. Geol., v. 17, p. 496–525.

    Google Scholar 

  • Shearman, D. J., G. Mossop, H. Dunsmore, and M. Martin, 1972, Origin of gypsum veins by hydraulic fracture: Inst. Min. Metall., Trans., Sect. B., v. 81, p. B149–B155.

    Google Scholar 

  • Shearman, D. J., and A. J. Smith, 1985, Ikaite, the parent mineral of jarrowite-type pseudomorphs: Proceedings of the Geologists’ Association, v. 96, p. 305–314.

    Google Scholar 

  • Shields, G. A., 2002, ‘Molar-tooth microspar’: a chemical explanation for its disappearance ≈750 Ma: Terra Nova, v. 14, p. 108–113.

    Google Scholar 

  • Shinn, E. A., 1983, Birdseyes, fenestrae, shrinkage pores, and loferites; a reevaluation: Journal of Sedimentary Petrology, v. 53, p. 619–628.

    Google Scholar 

  • Simoneit, B. R. T., 1994, Organic matter alteration and fluid migration in hydrothermal systems, in J. Parnell, ed., Geofluids: Origin, Migration and Evolution of fluids in Sedimentary Basins, Geological Society London, Special Publication No. 78, p. 261–274.

    Google Scholar 

  • Singer, A., 1979, Palygorskite in sediments: detrital, diagenetic or neoformed – A critical review: Geologische Rundschau, v. 68, p. 996–1008.

    Google Scholar 

  • Smith, D. B., 1971, Possible displacive halite in the Permian Upper Evaporite Group of Northeast Yorkshire: Sedimentology, v. 17, p. 221–232.

    Google Scholar 

  • Smoot, J. P., and T. K. Lowenstein, 1991, Depositional environments of non-marine evaporites, in J. D. Melvin, ed., Evaporites, petroleum and mineral resources, v. 50, Elsevier Science, Developments in Sedimentology, p. 189–347.

    Google Scholar 

  • Southgate, P. N., 1982, Cambrian skeletal halite crystals and experimental analogues: Sedimentology, v. 29, p. 391–407.

    Google Scholar 

  • Spencer, R. J., 1983, The geochemical evolution of Great Salt Lake, Utah: Doctoral thesis, Johns Hopkins University.

    Google Scholar 

  • Spencer, R. J., and T. K. Lowenstein, 1990, Evaporites: Geoscience Canada. Reprint Series, v. 4, p. 141–164.

    Google Scholar 

  • Starinsky, A., and A. Katz, 2003, The formation of natural cryogenic brines: Geochimica et Cosmochimica Acta, v. 67, p. 1475–1484.

    Google Scholar 

  • Sullivan, M. D., R. S. Haszeldine,A. J. Boyce, G. Rogers, and A. E. Fallick, 1994, Late anhydrite cements mark basin inversion; isotopic and formation water evidence, Rotliegend Sandstone, North Sea: Marine and Petroleum Geology, v. 11, p. 46–54.

    Google Scholar 

  • Sumner, D. Y., and J. P. Grotzinger, 1996, Were kinetics of Archaean calcium carbonate precipitation related to oxygen concentration: Geology, v. 24, p. 119–122.

    Google Scholar 

  • Sumner, D. Y., and J. P. Grotzinger, 2004, Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand Malmani Platform, South Africa: Sedimentology, v. 51, p. 1273–1299.

    Google Scholar 

  • Sun, S. Q., 1992, Skeletal aragonite dissolution from hypersaline seawater: a hypothesis: Sedimentary Geology, v. 77, p. 249–257.

    Google Scholar 

  • Sun, S. Q., 1995, Dolomite reservoirs; porosity evolution and reservoir characteristics: American Association of Petroleum Geologists Bulletin, v. 79, p. 186–204.

    Google Scholar 

  • Sun, S. Q., and M. Esteban, 1994, Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality – Lessons from Miocene carbonates: Bulletin American Association of Petroleum Geologists, v. 78, p. 519–543.

    Google Scholar 

  • Svendsen, J. B., 2003, Parabolic halite dunes on the Salar de Uyuni, Bolivia: Sedimentary Geology, v. 155, p. 147–156.

    Google Scholar 

  • Swett, K., and A. H. Knoll, 1989, Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen: Sedimentology, v. 36, p. 75–93.

    Google Scholar 

  • Szynkiewicz, A., R. C. Ewing, C. H. Moore, M. Glamoclija, D. Bustos, and L. M. Pratt, 2010, Origin of terrestrial gypsum dunes--Implications for Martian gypsum-rich dunes of Olympia Undae: Geomorphology, v. 121, p. 69–83.

    Google Scholar 

  • Taimeh, A. Y., 1992, Formation of gypsic horizons in some arid regions soils of Jordan: Soil Science, v. 153, p. 486–498.

    Google Scholar 

  • Talbot, C. J., 2008, Hydrothermal salt--but how much?: Marine and Petroleum Geology, v. 25, p. 191–202.

    Google Scholar 

  • Talbot, C. J., W. Stanley, R. Soub, and N. Alsadoun, 1996, Epitaxial salt reefs and mushrooms in the southern Dead Sea: Sedimentology, v. 43, p. 1025–1047.

    Google Scholar 

  • Tekin, E., T. Ayyildiz, I. Gundogan, and F. Orti, 2007, Modern halolites (halite oolites) in the Tuz Golu, Turkey: Sedimentary Geology, v. 195, p. 101–112.

    Google Scholar 

  • Timms, B., 2009, A study of the salt lakes and salt springs of Eyre Peninsula, South Australia: Hydrobiologia, v. 626, p. 41–51.

    Google Scholar 

  • Truc, G., 1978, Lacustrine sediments in an evaporitic environment: the Ludian (Palaeogene) of the Mormoiron Basin, SE France, in A. Matter, and M. E. Tucker, eds., Modern and ancient lake sediments, International Association Sedimentologists, Spec. Publ. 2, p. 187–202.

    Google Scholar 

  • Turner, C. E., and N. S. Fishman, 1991, Jurassic Lake T’oo’dichi’: A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau: Geological Society of America Bulletin, v. 103, p. 538–558.

    Google Scholar 

  • Valero-Garces, B., C. Arenas, and A. Delgado-Huertas, 2001, Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina: Canadian Journal of Earth Sciences, v. 38, p. 1263–1283.

    Google Scholar 

  • Valero-Garces, B. L., A. Delgado-Huertas, N. Ratto, and A. Navas, 1999, Large C-13 enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina: Earth & Planetary Science Letters, v. 171, p. 253–266.

    Google Scholar 

  • Van Driessche, A. E. S., L. G. Benning, J. D. Rodriguez-Blanco, M. Ossorio, P. Bots, and J. M. Garcia-Ruiz, 2012, The role and implications of bassanite as a stable precursor phase to gypsum precipitation: Science, v. 336, p. 69–72.

    Google Scholar 

  • Van Lith, Y., C. Vasconcelos, R. Warthmann, J. C. F. Martins, and J. A. McKenzie, 2002, Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil): Hydrobiologia, v. 485, p. 35–49.

    Google Scholar 

  • Verwer, K., G. D. Porta, O. Merino-Tom, and J. A. M. Kenter, 2009, Controls and predictability of carbonate facies architecture in a Lower Jurassic three-dimensional barrier-shoal complex (Djebel Bou Dahar, High Atlas, Morocco): Sedimentology, v. 56, p. 1801–1831.

    Google Scholar 

  • Visscher, P. T., P. R. Reid, and B. M. Bebout, 2000, Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites: Geology, v. 28, p. 919–922.

    Google Scholar 

  • Visscher, P. T., and J. F. Stolz, 2005, Microbial mats as bioreactors: populations, processes, and products: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, p. 87–100.

    Google Scholar 

  • Vogel, M. B., D. J. Des Marais, M. N. Parenteau, L. L. Jahnke, K. A. Turk, and M. D. Y. Kubo, 2010, Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico: Sedimentary Geology, v. 223, p. 265–280.

    Google Scholar 

  • Vogel, M. B., D. J. Des Marais, K. A. Turk, M. N. Parenteau, L. L. Jahnke, and M. D. Y. Kubo, 2009, The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico: Astrobiology, v. 9, p. 875–893.

    Google Scholar 

  • Von der Borch, C. C., 1965, The distribution and preliminary geochemistry of modern carbonate sediments of the Coorong area, South Australia: Geochimica et Cosmochimica Acta, v. 29.

    Google Scholar 

  • Von der Borch, C. C., B. Bolton, and J. K. Warren, 1977, Environmental setting and microstructure of subfossil lithified stromatolites associated with evaporites, Marion Lake, South Australia: Sedimentology, v. 24, p. 693–708.

    Google Scholar 

  • Vreeland, R. H., W. D. Rosenzweig, and D. W. Powers, 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal: Nature, v. 407, p. 897–900.

    Google Scholar 

  • Walter, M. R., S. Golubic, and W. V. Preiss, 1973, Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia: Journal of Sedimentary Petrology, v. 43, p. 1021–1030.

    Google Scholar 

  • Warren, J. K., 1982a, The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia: Journal of Sedimentary Petrology, v. 52, p. 1171–1201.

    Google Scholar 

  • Warren, J. K., 1982b, Hydrologic setting, occurrence, and significance of gypsum in late Quaternary salt lakes, South Australia: Sedimentology, v. 29, p. 609–637.

    Google Scholar 

  • Warren, J. K., 1983a, Tepees, modern (southern Australia) and ancient (Permian – Texas and New Mexico) – a comparison: Sedimentary Geology, v. 34, p. 1–19.

    Google Scholar 

  • Warren, J. K., 1985, On the significance of evaporite lamination, in B. C. Schreiber, and H. L. Harner, eds., Sixth International Symposium on Salt, v. 6, p. 161–170.

    Google Scholar 

  • Warren, J. K., 1988, Sedimentology of Coorong dolomite in the Salt Creek region, South Australia: Carbonates and Evaporites, v. 3, p. 175–199.

    Google Scholar 

  • Warren, J. K., 1990, Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia: Journal of Sedimentary Petrology, v. 60, p. 843–858.

    Google Scholar 

  • Warren, J. K., 1991, Sulfate dominated sea-marginal and platform evaporative settings, in J. L. Melvin, ed., Evaporites, petroleum and mineral resources.: Developments in Sedimentology, v. 50: Amsterdam, Elsevier, p. 477–533.

    Google Scholar 

  • Warren, J. K., 1999, Evaporites: their evolution and economics: Oxford, UK, Blackwell Scientific, 438 p.

    Google Scholar 

  • Warren, J. K., 2000a, Dolomite: Occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1–81.

    Google Scholar 

  • Warren, J. K., 2006, Evaporites: Sediments, Resources and Hydrocarbons: Berlin, Springer, 1036 p.

    Google Scholar 

  • Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217–268.

    Google Scholar 

  • Warren, J. K., 2011, Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines, Doug Shearman Memorial Volume, (Wiley-Blackwell) IAS Special Publication Number 43, p. 315–392.

    Google Scholar 

  • Warren, J. K., K. G. Havholm, M. R. Rosen, and M. J. Parsley, 1990, Evolution of gypsum karst in the Kirschberg Evaporite Member near Fredericksburg, Texas: Journal of Sedimentary Petrology, v. 60, p. 721–734.

    Google Scholar 

  • Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013–1023.

    Google Scholar 

  • Watson, A., 1985, Structure, chemistry and origins of gypsum crusts in southern Tunisia and the central Namib Desert: Sedimentology, v. 32, p. 855–875.

    Google Scholar 

  • Webster, D. M., and B. F. Jones, 1994, Paleoenvironmental implicationsof lacustrine clay minerals from the Double Lakes Formation, southern Great Plains, Texas., in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, v. 50: Tulsa, Society Economic Paleontologists and Mineralogists Special Publication, p. 661–686.

    Google Scholar 

  • Wentworth, S. J., E. K. Gibson, M. A. Velbel, and D. S. McKay, 2005, Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars: Icarus, v. 174, p. 383–395.

    Google Scholar 

  • White, K., and N. Drake, 1993, Mapping the distribution and abundance of gypsum in south-central Tunisia from Landsat Thematic Mapper data: Zeitschrift fur Geomorphologie, v. 37, p. 309–325.

    Google Scholar 

  • Whiticar, M. J., and E. Suess, 1998, The cold carbonate connection between Mono Lake, California and the Bransfield Strait, Antarctica: Aquatic Geochemistry, v. 4, p. 419–454.

    Google Scholar 

  • Wilkins, D. E., and D. R. Currey, 1999, Radiocarbon chronology and d13 C analysis of mid- to late-Holocene aeolian environments, Guadalupe Mountains National Park, Texas, USA : Holocene, v. 9, p. 363–372.

    Google Scholar 

  • Williamson, C. R., and M. D. Picard, 1974, Petrology of carbonate rocks of the Green River Formation (Eocene): Journal of Sedimentary Petrology, v. 44, p. 738–759.

    Google Scholar 

  • Winsborough, B. M., J. S. Seeler, S. Golubic, R. L. Folk, and B. Maguire, Jr., 1994, Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from northeastern Mexico, in J. Bertrand-Sarfati, and C. Monty, eds., Phanerozoic Stromatolites II: Amsterdam, Kluwer Academic Publishers, p. 71–100.

    Google Scholar 

  • Yardley, B. W. D., and J. T. Graham, 2002, The origins of salinity in metamorphic fluids: Geofluids, v. 2, p. 249–256.

    Google Scholar 

  • Zheng, H. B., C. M. A. Powell, and H. Zhao, 2002, Eolian and lacustrine evidence of late Quaternary palaeoenvironmental changes in southwestern Australia: Global and Planetary Change, v. 35, p. 75–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, J.K. (2016). Interpreting Evaporite Textures. In: Evaporites. Springer, Cham. https://doi.org/10.1007/978-3-319-13512-0_1

Download citation

Publish with us

Policies and ethics