Skip to main content

Fabric Evolution and Its Effect on Strain Localization in Sand

  • Conference paper
  • First Online:
Book cover Bifurcation and Degradation of Geomaterials in the New Millennium (IWBDG 2014)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

  • 1852 Accesses

Abstract

Fabric anisotropy affects importantly the overall behaviour of sand including its strength and deformation characteristics. While both experimental and numerical evidence indicates that soil fabric evolves steadily with the applied stress/strain, how evolving fabric influences the initiation and development of shear band in sand remains an intriguing question to be fully addressed. In this paper, we present a numerical study on strain localization in sand, highlighting the special role played by soil fabric and its evolution. In particular, a critical state sand plasticity model accounting for the effect of fabric and its evolution is used in the finite element analysis of plane strain compression tests. It is found that the initiation of shear band is controlled by the initial fabric, while the development of shear band is governed by two competing physical mechanisms, namely, the structural constraint and the evolution of fabric. The evolution of fabric generally makes the sand response more coaxial with the applied load, while the structural constraint induced by the sample ends leads to more inhomogeneous deformation within the sand sample when the initial fabric is non-coaxial with the applied stress. In the case of smooth boundary condition, structural constraint dominates over the fabric evolution and leads to the formation of a single shear band. When the boundary condition is rough, the structural constraint may play a comparable role with fabric evolution, which leads to symmetric cross-shape shear bands. If the fabric is prohibited from evolving in the latter case, a cross-shape shear band pattern is found with the one initiated first by the structural constraint dominant over the second one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borja RI, Song XY, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61:219–234

    Article  Google Scholar 

  • Gao ZW, Zhao JD (2013) Strain localization and fabric evolution in sand. Int J Solid Struct 50:3634–3648

    Article  Google Scholar 

  • Gao ZW, Zhao JD, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Meth Geomech 38:370–390

    Article  Google Scholar 

  • Guo N, Zhao JD (2013) The signature of shear induced anisotropy in granular media. Comput Geotech 47:1–15

    Article  MathSciNet  Google Scholar 

  • Tatsuoka F, Nakamura S, Huang CC, Tani K (1990) Strength anisotropy and shear band direction in plane strain tests of sand. Soils Found 30(1):35–54

    Article  Google Scholar 

  • Tejchman J, Bauer E, Wu W (2007) Effect of fabric anisotropy on shear localization in sand during plane strain compression. Acta Mech 189:23–51

    Article  MATH  Google Scholar 

  • Zhao JD, Guo N (2013a) Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8):695–704

    Article  MathSciNet  Google Scholar 

  • Zhao JD, Guo N (2013b) A new definition on critical state of granular media accounting for fabric anisotropy. In: Powders and grains 2013: AIP conference proceedings, vol 1542, pp 229–232. doi: 10.1063/1.4811909

Download references

Acknowledgements

The study was financially supported by RGC/GRF 622910 and DAG08/09.EG04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, Z., Zhao, J. (2015). Fabric Evolution and Its Effect on Strain Localization in Sand. In: Chau, KT., Zhao, J. (eds) Bifurcation and Degradation of Geomaterials in the New Millennium. IWBDG 2014. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-13506-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13506-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13505-2

  • Online ISBN: 978-3-319-13506-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics