Case Study IV: Recommender System Using Scalding and Spark

  • K. G. SrinivasaEmail author
  • Anil Kumar Muppalla
Part of the Computer Communications and Networks book series (CCN)


Recommender Systems are software tools that are used to suggest items of use to users based on certain assumptions [1, 2]. The item here refers to an entity that the system recommends to the users, and accordingly the recommender system’s design, GUI, recommendation technique are dependent on the specific type of item in the discussion.


Recommender System User Preference Implementation Detail Latent Semantic Analysis Recommendation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56-58 (1997)Google Scholar
  2. 2.
    Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377-408. Springer Berlin / Heidelberg (2007)Google Scholar
  3. 3.
    Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: 3rd International IEEE Conference on Intelligent Systems, pp. 355-360 (2006)Google Scholar
  4. 4.
    Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext, pp. 73-82. ACM (2009)Google Scholar
  5. 5.
    McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the net. In: KDD 09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 627-636. ACM, New York, NY, USA (2009)Google Scholar
  6. 6.
    Schwartz, B.: The Paradox of Choice. ECCO, New York (2004)Google Scholar
  7. 7.
    Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55-57 (2002)Google Scholar
  8. 8.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241-250 (2000)Google Scholar
  9. 9.
    Brusilovsky, Peter. Methods and techniques of adaptive hypermedia. User modeling and useradapted interaction 6.2-3 (1996): 87-129.Google Scholar
  10. 10.
    Montaner, M., Lopez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the Internet. Artificial Intelligence Review 19(4), 285-330 (2003)Google Scholar
  11. 11.
    Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 65-86 (2001)Google Scholar
  12. 12.
    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245-286 (2008)Google Scholar
  13. 13.
    Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforcement learning approach. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis, MN, USA, October 19-20, 2007, pp. 113-120 (2007)Google Scholar
  14. 14.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291-324. Springer Berlin / Heidelberg (2007)Google Scholar
  15. 15.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23 (1), 103-145 (2005)Google Scholar
  16. 16.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)Google Scholar
  17. 17.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to usenet news. Communications of the ACM 40 (3), 77-87 (1997)Google Scholar
  18. 18.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7 (1), 76-80 (2003)Google Scholar
  19. 19.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 43-52. Morgan Kaufmann (1998)Google Scholar
  20. 20.
    Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: SIGIR 03: Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 259-266. ACM, New York, NY, USA (2003)Google Scholar
  21. 21.
    Zitnick, C.L., Kanade, T.: Maximum entropy for collaborative filtering. In: AUAI 04: Proc. of the 20th Conf. on Uncertainty in Artificial Intelligence, pp. 636-643. AUAI Press, Arlington, Virginia, United States (2004)Google Scholar
  22. 22.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13 (5-6), 393-408 (1999)Google Scholar
  23. 23.
    Bridge, D., Goker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The Knowledge Engineering review 20 (3), 315-320 (2006)Google Scholar
  24. 24.
    Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001)Google Scholar
  25. 25.
    Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: GROUP 07: Proceedings of the 2007 international ACM conference on Supporting group work, pp. 127-136. ACM, New York, NY, USA (2007)Google Scholar
  26. 26.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proceedings of the 5th International Conference in Computers and Information Technology (2002)Google Scholar
  27. 27.
    Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: When being weak is brave: Privacy in recommender systems. IEEE Internet Computing cs.CG/0105028 (2001)Google Scholar
  28. 28.
    Herlocker, J., Konstan, J., Borchers, A., Riedl, J.. An Algorithmic Framework for Performing Collaborative Filtering. Proceedings of the 1999 Conference on Research and Development in Information Retrieval. Aug. 1999.Google Scholar
  29. 29.
  30. 30.
    Singhal, Amit. Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 24 (4): 35-43, 2001Google Scholar
  31. 31.
    Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin, Introduction to Data Mining, ISBN 0-321-32136-7, 2001Google Scholar
  32. 32.
    Yule, G.U and Kendall, M.G., An Introduction to the Theory of Statistics, 14th Edition (5th Impression 1968). Charles Griffin & Co. pp 258-270, 1950Google Scholar
  33. 33.
    Cai-Nicolas Ziegler, Book-Crossing dataset, [Online] Available:

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.M.S. Ramaiah Institute of TechnologyBangaloreIndia

Personalised recommendations