Skip to main content

Strategies for Evaluating Antioxidant Efficacy in Clinical Trials Assessing Prevention of Noise-Induced Hearing Loss

  • Chapter
Free Radicals in ENT Pathology

Abstract

Outcomes in studies assessing the prevention of acquired hearing loss have been encouraging, particularly with respect to the prevention of noise-induced hearing loss (NIHL) in animal models. Data from human subjects are more limited, but several small-scale studies suggest potential benefit from several different agents with antioxidant properties. Our own research efforts have evaluated additional compounds with potential benefits for the prevention of NIHL (NCT00808470; NCT01444846). A number of other agents are entering human clinical trials, and this chapter provides a review of the test measures that are commonly used, as well as other emerging metrics that may have utility in the future. While we review current and completed clinical trials as part of this chapter, the field continues to advance at a rapid pace, and the information provided in this chapter will surely become quickly dated. Readers are encouraged to visit the National Institutes of Health online Clinical Trials Registry (http://clinicaltrials.gov/) for easy access to up-to-date clinical trial information. At the time of writing this chapter, there are no therapeutics approved by the US Food and Drug Administration (FDA) for the prevention of NIHL or hearing loss acquired secondary to other insults such as aminoglycoside antibiotic exposure or cisplatin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

Auditory brainstem response

ASHA:

American Speech–Language–Hearing Association

BKB:

Bamford-Kowal-Bench sentences

CST:

Connected Speech Test

CHABA:

Committee on Hearing, Bioacoustics, and Biomechanics

dB:

Decibel

DoD:

Department of Defense

DPOAE:

Distortion product otoacoustic emission

EHF:

Extended high frequency

FDA:

Food and Drug Administration

HCoE:

Department of Defense Hearing Center of Excellence

HINT:

Hearing in noise test

HPD:

Hearing Protection Device

Hz:

Hertz

kHz:

Kilohertz

NIHL:

Noise-induced hearing loss

NIOSH:

National institute of occupational safety and health

NIPTS:

Noise-induced permanent threshold shift

NU-6:

Northwestern University Auditory Test No. 6

OHC:

Outer hair cell

OSHA:

Occupational safety and health administration

PRO:

Patient reported observation

PTS:

Permanent threshold shift

RSIR:

Revised Speech intelligibility rating test

R-SPIN:

Revised speech perception in noise test

SIR:

Speech intelligibility rating test

SNR:

Signal to noise ratio

SPIN:

Speech perception in noise test

SPRINT:

Speech recognition in noise test

sSRT:

Sentence-based speech reception threshold

STS:

Standard threshold shift (OSHA), significant threshold shift (NIOSH)

TFI:

Tinnitus functional index

TTS:

Temporary threshold shift

TTS2:

Temporary threshold shift measured 2 min after noise exposure ends

QuickSIN:

Quick sentence in noise test

WIN:

Words in noise test

References

  • Abi-Hachem RN, Zine A, Van De Water TR (2010) The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotectives strategies. Recent Pat CNS Drug Discov 5:147–163

    CAS  PubMed  Google Scholar 

  • Ahmed HO, Dennis JH, Badran O, Ismail M, Ballal SG, Ashoor A, Jerwood D (2001) High-frequency (10-18 kHz) hearing thresholds: reliability, and effects of age and occupational noise exposure. Occup Med (Lond) 51:245–258

    CAS  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. J Speech Lang Hear Res 56(1):31–43

    PubMed Central  PubMed  Google Scholar 

  • Attias J, Weisz G, Almog S, Shahar A, Wiener M, Joachims Z, Netzer A, Ising H, Rebentisch E, Guenther T (1994) Oral magnesium intake reduces permanent hearing loss induced by noise exposure. Am J Otolaryngol 15:26–32

    CAS  PubMed  Google Scholar 

  • Attias J, Sapir S, Bresloff I, Reshef-Haran I, Ising H (2004) Reduction in noise-induced temporary threshold shift in humans following oral magnesium intake. Clin Otolaryngol 29:635–641

    CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P (2005) Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss. Hear Res 209:68–75

    PubMed  Google Scholar 

  • Axelsson A, Lindgren F (1978) Hearing in pop musicians. Acta Otolaryngol (Stockholm) 85:225–231

    CAS  Google Scholar 

  • Axelsson A, Eliasson A, Israelsson B (1995) Hearing in pop/rock musicians: a follow-up study. Ear Hear 16:245–253

    CAS  PubMed  Google Scholar 

  • Balatsouras DG, Homsioglou E, Danielidis V (2005) Extended high-frequency audiometry in patients with acoustic trauma. Clin Otolaryngol 30:249–254

    CAS  PubMed  Google Scholar 

  • Beck WG, Speaks C (1993) Intelligibility of selected passages from the Speech Intelligibility Rating (SIR) test. J Speech Hear Res 36:1075–1082

    CAS  PubMed  Google Scholar 

  • Bench J, Kowal A, Bamford J (1979) The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. Br J Audiol 13:108–112

    CAS  PubMed  Google Scholar 

  • Bhagat SP, Davis AM (2008) Modification of otoacoustic emissions following ear-level exposure to MP3 player music. Int J Audiol 47:751–760

    PubMed  Google Scholar 

  • Biassoni EC, Serra MR, Richtert U, Joekes S, Yacci MR, Carignani JA, Abraham S, Minoldo G, Franco G (2005) Recreational noise exposure and its effects on the hearing of adolescents. Part II: development of hearing disorders. Int J Audiol 44:74–85

    PubMed  Google Scholar 

  • Bilger RC, Nuetzel JM, Rabinowitz WM, Rzeczkowski C (1984) Standardization of a test of speech perception in noise. J Speech Hear Res 27:32–48

    CAS  PubMed  Google Scholar 

  • Carhart R (1951) Basic principles of speech audiometry. Acta Otolaryngol 40:62–71

    CAS  PubMed  Google Scholar 

  • Carhart R, Tillman TW (1970) Interaction of competing speech signals with hearing losses. Arch Otolaryngol 91:273–279

    CAS  PubMed  Google Scholar 

  • Cord MT, Walden BE, Atack RM. Speech recognition in noise test (SPRINT) for H-3 profile [Online] http://militaryaudiology.org/site/2009/01/sprint-test/

  • Cox RM, Alexander GC, Gilmore C (1987) Development of the connected speech test (CST). Ear Hear 8:119S–126S

    CAS  PubMed  Google Scholar 

  • Cox RM, Alexander GC, Gilmore C, Pusakulich KM (1988) Use of the connected speech test (CST) with hearing-impaired listeners. Ear Hear 9:198–207

    CAS  PubMed  Google Scholar 

  • Davenport TH, Harris JG (2007) Competing on analytics: the New science of winning. Harvard Business School Publishing Corporation, Boston

    Google Scholar 

  • de Souza Chelminski Barreto MA, Costa CS, de Souza Guarita LK, Oliveira CA, Bahmad JF (2011) Auditory monitoring by means of evaluation of the cochlea in soldiers of the Brazilian Army exposed to impulse noise. Int Tinnitus J 16:123–129

    PubMed  Google Scholar 

  • Dobie RA, Megerson SC (2000) Workers’ compensation. In: Berger EH, Royster LH, Royster JD, Driscoll DP, Layne M (eds) The noise manual, 5th edn. American Industrial Hygiene Association, Fairfax, pp 689–710

    Google Scholar 

  • Dolgin E (2012) Sound medicine. Nat Med 18:642–645

    CAS  PubMed  Google Scholar 

  • Erdreich J (1986) A distribution based definition of impulse noise. J Acoust Soc Am 79:990–998

    CAS  PubMed  Google Scholar 

  • Erickson DA, Fausti SA, Frey RH, Rappaport BZ (1980) Effects of steady-state noise upon human hearing sensitivity from 8000 to 20,000 Hz. Am Ind Hyg Assoc J 41:427–432

    CAS  PubMed  Google Scholar 

  • Fausti SA, Erickson DA, Frey RH, Rappaport BZ (1981a) The effects of impulsive noise upon human hearing sensitivity (8 to 20 kHz). Scand Audiol 10:21–29

    CAS  PubMed  Google Scholar 

  • Fausti SA, Erickson DA, Frey RH, Rappaport BZ, Schechter MA (1981b) The effects of noise upon human hearing sensitivity from 8000 to 20,000 Hz. J Acoust Soc Am 69:1343–1347

    CAS  PubMed  Google Scholar 

  • Fausti SA, Rappaport BZ, Schechter MA, Frey RH, Ward TT, Brummettt RE (1984a) Detection of aminoglycoside ototoxicity by high frequency auditory evaluation: selected case studies. Am J Otolaryngol 5:177–182

    CAS  PubMed  Google Scholar 

  • Fausti SA, Schechter MA, Rappaport BZ, Frey RH, Mass RE (1984b) Early detection of cisplatin ototoxicity. Selected case reports. Cancer 53:224–231

    CAS  PubMed  Google Scholar 

  • Fetoni AR, Garzaro M, Ralli M, Landolfo V, Sensini M, Pecorari G, Mordente A, Paludetti G, Giordano C (2009) The monitoring role of otoacoustic emissions and oxidative stress markers in the protective effects of antioxidant administration in noise-exposed subjects: a pilot study. Med Sci Monit 15:R1–R8

    Google Scholar 

  • Figueiredo RR, Azevedo AA, Oliveira PM, Amorim SP, Rios AG, Baptista V (2011) Incidence of tinnitus in mp3 player users. Braz J Otorhinolaryngol 77:293–298

    PubMed  Google Scholar 

  • Gaddam A, Ferraro JA (2008) ABR recordings in newborns using an ear canal electrode. Int J Audiol 47:499–504

    PubMed  Google Scholar 

  • Giguère C, Laroche C, Soli SD, Vaillancourt V (2008) Functionally-based screening criteria for hearing-critical jobs based on the Hearing in Noise Test. Int J Audiol 47:319–328

    PubMed  Google Scholar 

  • Goley GS, Song WJ, Kim JH (2011) Kurtosis corrected sound pressure level as a noise metric for risk assessment of occupational noises. J Acoust Soc Am 129:1475–1481

    PubMed Central  PubMed  Google Scholar 

  • Grant KW, Walden TC (2013) Understanding excessive SNR loss in hearing-impaired listeners. J Am Acad Audiol 24:258–273; quiz 337–8

    PubMed  Google Scholar 

  • Grant KW, Walden BE, Summers V, Leek MR (2013) Introduction: auditory models of suprathreshold distortion in persons with impaired hearing. J Am Acad Audiol 24:254–257

    PubMed  Google Scholar 

  • Gurgel RK, Jackler RK, Dobie RA, Popelka GR (2012) A new standardized format for reporting hearing outcome in clinical trials. Otolaryngol Head Neck Surg 147:803–807

    PubMed  Google Scholar 

  • Hall JW III (1992) Handbook of auditory evoked responses. Allyn and Bacon, Boston

    Google Scholar 

  • Hall JWI (2000) Handbook of otoacoustic emissions. Singular Publishers, San Diego

    Google Scholar 

  • Hamernik RP, Qiu W, Davis B (2007) Hearing loss from interrupted, intermittent, and time varying non-gaussian noise exposure: the applicability of the equal energy hypothesis. J Acoust Soc Am 122:2245–2254

    PubMed  Google Scholar 

  • Helleman HW, Dreschler WA (2012) Overall versus individual changes for otoacoustic emissions and audiometry in a noise-exposed cohort. Int J Audiol 51:362–372

    PubMed  Google Scholar 

  • Helleman HW, Jansen EJ, Dreschler WA (2010) Otoacoustic emissions in a hearing conservation program: general applicability in longitudinal monitoring and the relation to changes in pure-tone thresholds. Int J Audiol 49:410–419

    PubMed  Google Scholar 

  • Hellstrom PA, Axelsson A, Costa O (1998) Temporary threshold shift induced by music. Scand Audiol Suppl 48:87–94

    CAS  PubMed  Google Scholar 

  • Hopkins K, Moore BC (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349

    PubMed  Google Scholar 

  • Job A, Raynal M, Kossowski M, Studler M, Ghernaouti C, Baffioni-Venturi A, Roux A, Darolles C, Guelorget A (2009) Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study. Hear Res 251:10–16

    CAS  PubMed  Google Scholar 

  • Johnson DW, Sherman RE, Aldridge J, Lorraine A (1985) Effects of instrument type and orchestral position on hearing sensitivity for 0.25 to 20 kHz in the orchestral musician. Scand Audiol 14:215–221

    CAS  PubMed  Google Scholar 

  • Johnson DW, Sherman RE, Aldridge J, Lorraine A (1986) Extended high frequency hearing sensitivity. A normative threshold study in musicians. Ann Otol Rhinol Laryngol 95:196–202

    CAS  PubMed  Google Scholar 

  • Kalikow DN, Stevens KN, Elliott LL (1977) Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. J Acoust Soc Am 61:1337–1351

    CAS  PubMed  Google Scholar 

  • Kemp D (1997) Otoacoustic emissions in perspective. In: Robinette M, Glattke T (eds) Otoacoustic emissions: clinical applications. Thieme, New York, pp 1–21

    Google Scholar 

  • Keppler H, Dhooge I, Maes L, D’Haenens W, Bockstael A, Philips B, Swinnen F, Vinck B (2010) Short-term auditory effects of listening to an MP3 player. Arch Otolaryngol Head Neck Surg 136:538–548

    PubMed  Google Scholar 

  • Killion MC, Niquette PA, Gudmundsen GI, Revit LJ, Banerjee S (2004) Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 116:2395–2405

    PubMed  Google Scholar 

  • Kim MG, Hong SM, Shim HJ, Kim YD, Cha CI, Yeo SG (2009) Hearing threshold of Korean adolescents associated with the use of personal music players. Yonsei Med J 50:771–776

    PubMed Central  PubMed  Google Scholar 

  • Konrad-Martin D, Dille MF, McMillan G, Griest S, McDermott D, Fausti SA, Austin DF (2012a) Age-related changes in the auditory brainstem response. J Am Acad Audiol 23:18–35; quiz 74–5

    PubMed  Google Scholar 

  • Konrad-Martin D, Reavis K, McMillan G, Dille M (2012b) Multivariate DPOAE metrics for identifying changes in hearing: perspectives from ototoxicity monitoring. Int J Audiol 1(Suppl 1):S51–S62

    Google Scholar 

  • Kopke RD, Jackson RL, Coleman JKM, Liu J, Bielefeld EC, Balough BJ (2007) NAC for noise: from the bench top to the clinic. Hear Res 226:114–125

    PubMed  Google Scholar 

  • Kopke R, Slade MD, Jackson R, Hammill T, Fausti S, Lonsbury-Martin B, Sanderson A, Dreisbach L, Rabinowitz P, Torre P III, Balough B (2015) Efficacy and safety of N-acetylcysteine in prevention of noise induced hearing loss: a randomized clinical trial. Hear Res 323:40–50

    CAS  PubMed  Google Scholar 

  • Korres GS, Balatsouras DG, Tzagaroulakis A, Kandiloros D, Ferekidou E, Korres S (2009) Distortion product otoacoustic emissions in an industrial setting. Noise Health 11:103–110

    PubMed  Google Scholar 

  • Kramer S, Dreisbach L, Lockwood J, Baldwin K, Kopke RD, Scranton S, O’Leary M (2006) Efficacy of the antioxidant N-acetylcysteine (NAC) in protecting ears exposed to loud music. J Am Acad Audiol 17:265–278

    PubMed  Google Scholar 

  • Krishnamurti S, Grandjean PW (2003) Effects of simultaneous exercise and loud music on hearing acuity and auditory function. J Strength Cond Res 17:307–313

    PubMed  Google Scholar 

  • Kryter KD, Ward WD, Miller JD, Eldredge DH (1966) Hazardous exposure to intermittent and steady-state noise. J Acoust Soc Am 39:451–464

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound. Hear Res 74:122–134

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. pii: S0378-5955(15)00057-X. doi:10.1016/j.heares.2015.02.009. [Epub ahead of print]

  • Kuk FK, Tyler RS, Russell D, Jordan H (1990) The psychometric properties of a tinnitus handicap questionnaire. Ear Hear 11:434–445

    CAS  PubMed  Google Scholar 

  • Kumar A, Mathew K, Alexander SA, Kiran C (2009) Output sound pressure levels of personal music systems and their effect on hearing. Noise Health 11:132–140

    PubMed  Google Scholar 

  • Kuronen P, Sorri MJ, Paakkonen R, Muhli A (2003) Temporary threshold shift in military pilots measured using conventional and extended high-frequency audiometry after one flight. Int J Audiol 42:29–33

    PubMed  Google Scholar 

  • Lapsley Miller JA, Marshall L, Heller LM (2004) A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program. Int J Audiol 43:307–322

    PubMed  Google Scholar 

  • Lapsley Miller JA, Marshall L, Heller LM, Hughes LM (2006) Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss. J Acoust Soc Am 120:280–296

    PubMed  Google Scholar 

  • Le Prell CG, Bao J (2012) Prevention of noise-induced hearing loss: potential therapeutic agents. In: Le Prell CG, Henderson D, Fay RR, Popper AN (eds) Noise-induced hearing loss: scientific advances. Springer handbook of auditory research. Springer Science + Business Media, LLC, New York, pp 285–338

    Google Scholar 

  • Le Prell CG, Johnson A-C, Lindblad A-C, Skjönsberg A, Ulfendahl M, Guire K, Green GE, Campbell KCM, Miller JM (2011) Increased vitamin plasma levels in Swedish military personnel treated with nutrients prior to automatic weapon training. Noise Health 13:432–443

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Dell S, Hensley BN, Hall JWI, Campbell KCM, Antonelli PA, Green GE, Miller JM, Guire K (2012) Digital music exposure reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Ear Hear 33:e44–e58

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Spankovich C, Lobarinas E, Griffiths SK (2013) Extended high frequency thresholds in college students: effects of music player use and other recreational noise. J Am Acad Audiol 24(8):725–739

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Spankovich C, White K, Lobarinas E (2015) Prevention of hearing loss using dietary supplements. 38th midwinter meeting abstracts. Association for Research in Otolaryngology, Mt. Royal, p 500

    Google Scholar 

  • Lee PC, Senders CW, Gantz BJ, Otto SR (1985) Transient sensorineural hearing loss after overuse of portable headphone cassette radios. Otolaryngol Head Neck Surg 93:622–625

    CAS  PubMed  Google Scholar 

  • Lin CY, Wu JL, Shih TS, Tsai PJ, Sun YM, Ma MC, Guo YL (2010) N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear Res 269:42–47

    CAS  PubMed  Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616

    PubMed Central  PubMed  Google Scholar 

  • Lindblad AC, Rosenhall U, Olofsson A, Hagerman B (2011) The efficacy of N-acetylcysteine to protect the human cochlea from subclinical hearing loss caused by impulse noise: a controlled trial. Noise Health 13:92–401

    Google Scholar 

  • Lobarinas E, Spankovich C, Le Prell CG (2015) Normal thresholds but poorer hearing in noise following a “deafferenting” exposure. 38th midwinter meeting abstracts. Association for Research in Otolaryngology, Mt. Royal, p 447

    Google Scholar 

  • Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717

    PubMed Central  PubMed  Google Scholar 

  • McDaniel DM, Cox RM (1992) Evaluation of the speech intelligibility rating (SIR) test for hearing aid comparisons. J Speech Hear Res 35:686–693

    CAS  PubMed  Google Scholar 

  • Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, Myers PJ, Newman CW, Sandridge S, Turk DC, Folmer RL, Frederick EJ, House JW, Jacobson GP, Kinney SE, Martin WH, Nagler SM, Reich GE, Searchfield G, Sweetow R, Vernon JA (2012) The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear 33:153–176

    PubMed  Google Scholar 

  • Meinke DK, Clavier OH, Norris J, Kline-Schoder R, Allen L, Buckey JC (2013) Distortion product otoacoustic emission level maps from normal and noise-damaged cochleae. Noise Health 15:315–325

    PubMed  Google Scholar 

  • Meyer-Bisch C (1996) Epidemiological evaluation of hearing damage related to strongly amplified music (personal cassette players, discotheques, rock concerts)–high-definition audiometric survey on 1364 subjects. Audiology 35:121–142

    CAS  PubMed  Google Scholar 

  • Mostafapour SP, Lahargoue K, Gates GA (1998) Noise-induced hearing loss in young adults: the role of personal listening devices and other sources of leisure noise. Laryngoscope 108:1832–1839

    CAS  PubMed  Google Scholar 

  • Müller J, Dietrich S, Janssen T (2010) Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions. J Acoust Soc Am 128:1853–1869

    PubMed  Google Scholar 

  • National Institute for Occupational Safety and Health (2001) Work-related hearing loss. DHHS (NIOSH) Publication No. 2001-103

    Google Scholar 

  • NCT00808470. Micronutrients to prevent noise-induced hearing loss [Online] http://clinicaltrials.gov/ct2/show/NCT00808470. Accessed 8 May 2012

  • NCT01345474. Phase II Clinical Trial: D-Methionine to reduce noise-induced hearing loss (NIHL) [Online] http://clinicaltrials.gov/ct2/show/NCT01345474. Accessed 7 Apr 2014

  • NCT01444846. Otoprotection with SPI-1005 [Online] http://clinicaltrials.gov/ct2/show/NCT01444846. Accessed 11 Jan 2013

  • NCT01727492. Prevention of noise-induced damage by use of antioxidants [Online] http://clinicaltrials.gov/ct2/show/NCT01727492. Accessed 23 Jan 2014

  • NCT02049073. Prevention of noise-induced hearing loss [Online] http://clinicaltrials.gov/ct2/show/NCT02049073. Accessed 7 Apr 2014

  • NCT02257983. Protective effects of EPI-743 on Noise-induced Hearing Loss [Online] http://clinicaltrials.gov/ct2/show/NCT02257983. Accessed 17 Mar 2015

  • Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M (2005) The global burden of occupational noise-induced hearing loss. Am J Ind Med 48:446–458

    PubMed  Google Scholar 

  • Nilsson M, Soli SD, Sullivan JA (1994) Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise. J Acoust Soc Am 95:1085–1099

    CAS  PubMed  Google Scholar 

  • NIOSH. (1998). Criteria for a Recommended Standard, Occupational Noise Exposure, DHHS (NIOSH) Publication No.98-126

    Google Scholar 

  • OSHA (1983) 29 CFR 1910.95. Occupational Noise Exposure; Hearing Conservation Amendment; Final Rule, effective 8 March 1983. U.S. Department of Labor, Occupational Safety & Health Administration

    Google Scholar 

  • Osterhammel D (1979) High-frequency audiometry and noise-induced hearing loss. Scand Audiol 8:85–90

    CAS  PubMed  Google Scholar 

  • Peng JH, Tao ZZ, Huang ZW (2007) Risk of damage to hearing from personal listening devices in young adults. J Otolaryngol 36:181–185

    PubMed  Google Scholar 

  • Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B (2010) Oxidative stress in the cochlea: an update. Curr Med Chem 17:3591–3604

    CAS  PubMed  Google Scholar 

  • Pugsley S, Stuart A, Kalinowski J, Armson J (1993) Changes in hearing sensitivity following portable stereo system use. Am J Audiol 2:64–67

    Google Scholar 

  • Quaranta A, Scaringi A, Bartoli R, Margarito MA, Quaranta N (2004) The effects of ‘supra-physiological’ vitamin B12 administration on temporary threshold shift. Int J Audiol 43:162–165

    PubMed  Google Scholar 

  • Quaranta N, Dicorato A, Matera V, D’Elia A, Quaranta A (2012) The effect of alpha-lipoic acid on temporary threshold shift in humans: a preliminary study. Acta Otorhinolaryngol Ital 32:380–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quist-Hanssen S, Thorud E, Aasand G (1979) Noise-induced hearing loss and the comprehension of speech in noise. Acta Otolaryngol Suppl 360:90–95

    CAS  PubMed  Google Scholar 

  • Ramma L, Petersen L, Singh S (2011) Vuvuzelas at South African soccer matches: risks for spectators’ hearing. Noise Health 13:71–75

    PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2011) Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Natl Acad Sci U S A 108:15516–15521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2012) Why middle-aged listeners have trouble hearing in everyday settings. Curr Biol 22:1417–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samelli AG, Matas CG, Carvallo RM, Gomes RF, de Beija CS, Magliaro FC, Rabelo CM (2012) Audiological and electrophysiological assessment of professional pop/rock musicians. Noise Health 14:6–12

    PubMed  Google Scholar 

  • Schmuziger N, Patscheke J, Probst R (2006) Hearing in nonprofessional pop/rock musicians. Ear Hear 27:321–330

    PubMed  Google Scholar 

  • Schmuziger N, Patscheke J, Probst R (2007) An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry. Ear Hear 28:643–648

    PubMed  Google Scholar 

  • Seixas NS, Kujawa SG, Norton S, Sheppard L, Neitzel R, Slee A (2004) Predictors of hearing threshold levels and distortion product otoacoustic emissions among noise exposed young adults. Occup Environ Med 61:899–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seixas NS, Neitzel R, Stover B, Sheppard L, Feeney P, Mills D, Kujawa S (2012) 10-Year prospective study of noise exposure and hearing damage among construction workers. Occup Environ Med 69:643–650

    PubMed  Google Scholar 

  • Serra MR, Biassoni EC, Richter U, Minoldo G, Franco G, Abraham S, Carignani JA, Joekes S, Yacci MR (2005) Recreational noise exposure and its effects on the hearing of adolescents. Part I: an interdisciplinary long-term study. Int J Audiol 44:65–73

    PubMed  Google Scholar 

  • Shah S, Gopal B, Reis J, Novak M (2009) Hear today, gone tomorrow: an assessment of portable entertainment player use and hearing acuity in a community sample. J Am Board Fam Med 22:17–23

    PubMed  Google Scholar 

  • Shupak A, Tal D, Sharoni Z, Oren M, Ravid A, Pratt H (2007) Otoacoustic emissions in early noise-induced hearing loss. Otol Neurotol 28:745–752

    PubMed  Google Scholar 

  • Sisto R, Chelotti S, Moriconi L, Pellegrini S, Citroni A, Monechi V, Gaeta R, Pinto I, Stacchini N, Moleti A (2007) Otoacoustic emission sensitivity to low levels of noise-induced hearing loss. J Acoust Soc Am 122:387–401

    PubMed  Google Scholar 

  • Smoorenburg GF (1992) Speech reception in quiet and in noisy conditions by individuals with noise-induced hearing loss in relation to their tone audiogram. J Acoust Soc Am 91:421–437

    CAS  PubMed  Google Scholar 

  • Spankovich C, Griffiths SK, Lobarinas E, Morgenstein KE, de la Calle S, Ledon V, Guercio D, Le Prell CG (2013) Temporary threshold shift after impulse-noise during video game play: laboratory data. Int J Audiol 53(Suppl 2):S53–S65

    Google Scholar 

  • Speaks C, Trine TD, Crain TR, Niccum N (1994) A revised speech intelligibility rating (RSIR) test: listeners with normal hearing. Otolaryngol Head Neck Surg 110:75–83

    CAS  PubMed  Google Scholar 

  • Stamper GC, Johnson TA (2015) Auditory function in normal-hearing, noise-exposed human ears. Ear Hear 36(2):172–184

    PubMed  Google Scholar 

  • Suckfuell M, Canis M, Strieth S, Scherer H, Haisch A (2007) Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Otolaryngol 127:938–942

    CAS  PubMed  Google Scholar 

  • Sweetow RW, Levy MC (1990) Tinnitus severity scaling for diagnostic/therapeutic usage. Hear Instrum 41(20–21):46

    Google Scholar 

  • Tange RA, Dreschler WA, van der Hulst RJ (1985) The importance of high-tone audiometry in monitoring for ototoxicity. Arch Otorhinolaryngol 242:77–81

    CAS  PubMed  Google Scholar 

  • US Department of Defense (2004) DoD Hearing Conservation Program (HCP). DoD Instruction (DoDI) Number 6055.12; Reissued 3 Dec 2010

    Google Scholar 

  • Vassallo L, Sataloff J, Menduke H (1968) Very high frequency audiometric technique. Arch Otolaryngol 88:251–253

    CAS  PubMed  Google Scholar 

  • Vermiglio AJ, Soli SD, Freed DJ, Fisher LM (2012) The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index. J Am Acad Audiol 23:779–788

    PubMed  Google Scholar 

  • Wang Y, Ren C (2012) Effects of repeated “benign” noise exposures in young CBA mice: shedding light on age-related hearing loss. J Assoc Res Otolaryngol 13:505–515

    PubMed Central  PubMed  Google Scholar 

  • Wilson RH (2011) Clinical experience with the words-in-noise test on 3430 veterans: comparisons with pure-tone thresholds and word recognition in quiet. J Am Acad Audiol 22:405–423

    PubMed  Google Scholar 

  • Wilson RH, Burks CA (2005) Use of 35 words for evaluation of hearing loss in signal-to-babble ratio: a clinic protocol. J Rehabil Res Dev 42:839–852

    PubMed  Google Scholar 

  • Wilson RH, Cates WB (2008) A comparison of two word-recognition tasks in multitalker babble: speech recognition in noise test (SPRINT) and words-in-noise test (WIN). J Am Acad Audiol 19:548–556

    PubMed  Google Scholar 

  • Wilson RH, McArdle R (2007) Intra- and inter-session test, retest reliability of the Words-in-Noise (WIN) test. J Am Acad Audiol 18:813–825

    PubMed  Google Scholar 

  • Wilson RH, Watts KL (2012) The Words-in-Noise Test (WIN), list 3: a practice list. J Am Acad Audiol 23:92–96

    PubMed  Google Scholar 

  • Wilson PH, Henry J, Bowen M, Haralambous G (1991) Tinnitus reaction questionnaire: psychometric properties of a measure of distress associated with tinnitus. J Speech Hear Res 34:197–201

    CAS  PubMed  Google Scholar 

  • Wilson RH, Abrams HB, Pillion AL (2003) A word-recognition task in multitalker babble using a descending presentation mode from 24 dB to 0 dB signal to babble. J Rehabil Res Dev 40:321–327

    PubMed  Google Scholar 

  • Wilson RH, McArdle RA, Smith SL (2007) An evaluation of the BKB-SIN, HINT, QuickSIN, and WIN materials on listeners with normal hearing and listeners with hearing loss. J Speech Lang Hear Res 50P:844–856

    Google Scholar 

  • Wong TW, Van Hasselt CA, Tang LS, Yiu PC (1990) The use of personal cassette players among youths and its effects on hearing. Public Health 104:327–330

    CAS  PubMed  Google Scholar 

  • Zhao YM, Qiu W, Zeng L, Chen SS, Cheng XR, Davis RI, Hamernik RP (2010) Application of the kurtosis statistic to the evaluation of the risk of hearing loss in workers exposed to high-level complex noise. Ear Hear 31:527–532

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen G. Le Prell Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Prell, C.G., Lobarinas, E. (2015). Strategies for Evaluating Antioxidant Efficacy in Clinical Trials Assessing Prevention of Noise-Induced Hearing Loss. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_9

Download citation

Publish with us

Policies and ethics