Skip to main content

A Question of Balance: Free Radicals and Cochlear Homeostasis

  • Chapter
Book cover Free Radicals in ENT Pathology

Abstract

The cochlea features multiple epithelia with a host of cell types, all of which must work together to support transduction. They achieve this by creating the correct fluid environment for sensory hair cells, including required ion concentrations, electrical potentials, and nutrients. This arrangement has led to variation by epithelium and cell type with respect to how cells communicate and exactly what is being communicated. Part of this communication is likely mediated by oxidants such as superoxide, peroxide, and nitric oxide (NO). These may have very different effects, depending on concentration, which in turn may vary with the local concentration of NO synthases and redox-sensitive factors such as NFκB and AP-1. When the adaptive range of oxidants is exceeded, local injury may result. This chapter focuses on the cochlea as an interdependent system of cells types having different tasks, chemistries, and potentially different sensitivities to oxidative stress. The interdependence of the organ of Corti and cochlear lateral wall is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrashkin KA, Izumikawa M, Miyazawa T, Wang C-H, Crumling MA, Swiderski DL, Beyer LA, Gong T-WL, Raphael Y (2006) The fate of outer hair cells after acoustic or ototoxic insults. Hear Res 218:20–29

    PubMed  Google Scholar 

  • Ando M, Edamatsu M, Fukuizumi S, Takeuchi S (2008) Cellular localization of facilitated glucose transporter 1 (GLUT-1) in the cochlear stria vascularis: its possible contribution to the transcellular glucose pathway. Cell Tissue Res 331:763–769

    CAS  PubMed  Google Scholar 

  • Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S (2013) TNF-a inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol 52:545–552

    PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    CAS  PubMed  Google Scholar 

  • Axelsson A (1988) Comparative anatomy of cochlear blood vessels. Am J Otolaryngol 9:278–290

    CAS  PubMed  Google Scholar 

  • Axelsson A, Ryan AF (2001) Ch.15. Circulation of the inner ear: I. Comparative study of the vascular anatomy in the mammalian cochlea. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the ear, 2nd edn. Singular, San Diego, pp 301–320

    Google Scholar 

  • Bai U, Seidman MD, Hinojosa R, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study. Am J Otol 18:449–453

    CAS  PubMed  Google Scholar 

  • Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K-H (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 29:46065–46072

    Google Scholar 

  • Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315

    CAS  PubMed  Google Scholar 

  • Berg D, Youdin MBH, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213

    PubMed  Google Scholar 

  • Bobbin RP (2001) ATP-induced movement of the stalks of isolated cochlear Deiters’ cells. Neuroreport 12:2923–2926

    CAS  PubMed  Google Scholar 

  • Bobbin RP, Salt AN (2005) ATP-g-S shifts the operating point of outer hair cell transduction towards scala tympani. Hear Res 205:35–43

    CAS  PubMed  Google Scholar 

  • Bohne BA, Rabbit KD (1983) Holes in the reticular lamina after noise exposure: implications for continued damage in the organ of corti. Hear Res 11:41–53

    CAS  PubMed  Google Scholar 

  • Böttger EC, Schacht J (2013) The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 303:12–19

    PubMed Central  PubMed  Google Scholar 

  • Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49:1834–1845

    CAS  PubMed  Google Scholar 

  • Canlon B (1997) Protection against noise trauma by sound conditioning. Ear Nose Throat J 76:248–255

    CAS  PubMed  Google Scholar 

  • Ceriani F, Mammano F (2012) Calcium signaling in the cochlea- molecular mechanisms and physiopathological implications. Cell Commun Signal 10:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Q, Tang W, Ahmad S, Zhou B, Lin X (2008) Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin 30 null mice. PLoS One 3:e4088

    PubMed Central  PubMed  Google Scholar 

  • Chen YS, Tseng FY, Lin K-N, Yang TH, Lin-Shiau SY, Hsu CJ (2008) Chronologic changes of nitric oxide concentration in the cochlear lateral wall and its role in noise-induced permanent threshold shift. Laryngoscope 118:832–836

    CAS  PubMed  Google Scholar 

  • Cheng PW, Liu S-H, Young Y-H, Hsu CJ, Lin-Shiau SY (2008) Protection from noise-induced temporary threshold shift by D-Methionine is associated with preservation of ATPase activities. Ear Hear 29:65–75

    PubMed  Google Scholar 

  • Ciuman RR (2009) Stria vascularis and vestibular dark cells: characterization of main structures responsible for inner-ear homeostasis, and their pathophysiological relations. J Laryngol Otol 123:151–162

    CAS  PubMed  Google Scholar 

  • Clerici WJ, Yang L (1996) Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function. Hear Res 101:14–22

    CAS  PubMed  Google Scholar 

  • Clerici WJ, DiMartino DL, Prasad MR (1995) Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res 84:30–40

    CAS  PubMed  Google Scholar 

  • Clerici WJ, Hensley K, DiMartino DL, Butterfield DA (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98:116–124

    CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Regnault B, Cayet N, Caille D, Dermuth K, Hardelin J-P, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes intrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A 105:6229–6234

    Google Scholar 

  • Coling DE, Yu KCY, Somand D, Satar B, Bai U, Huang T, Seidman MD, Epstein CJ, Mhatre AN, Lalwani AK (2003) Effect of SOD1 overexpression on age- and noise-related hearing loss. Free Radic Biol Med 34:873–880

    CAS  PubMed  Google Scholar 

  • Conlee JW, Bennet ML (1993) Turn-specific differences in the endocochlear potential between albino and pigmented guinea pigs. Hear Res 65:141–150

    CAS  PubMed  Google Scholar 

  • Dai CF, Steyger PS (2008) A systemic gentamicin pathway across the stria vascularis. Hear Res 235:114–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai M, Yang Y, Shi X (2011) Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol 301(4):H1248–H1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dallos P, Zheng J, Cheatham MA (2006) Prestin and the cochlear amplifier. J Physiol 576:37–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis RR, Newlander JK, Ling X-B, Cortopassi GA, Kreig EF, Erway LC (2001) Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155:82–90

    CAS  PubMed  Google Scholar 

  • Delprat B, Ruel J, Guitton MJ, Hamard G, Lenoir M, Pujol R, Puel JL, Brabet P, Hamel CP (2005) Deafness and cochlear fibrocyte alterations in mice deficient for the inner ear protein otospiralin. Mol Cell Biol 25:847–853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duan M, Laurell G, Qiu J, Borg E (2008) Susceptibility to impulse noise trauma in different species: guinea pig, rat and mouse. Acta Otolaryngol 128:277–283

    PubMed  Google Scholar 

  • Duvall AJ, Hukee MJ, Santi PA (1981) Mannitol induced stria vascularis edema. Arch Otolaryngol 107

    Google Scholar 

  • Fernandez EA, Ohlemiller KK, Gagnon PM, Clark WW (2010) Protection against noise-induced hearing loss in young CBA/J mice by low-dose kanamycin. J Assoc Res Otolaryngol 11:235–244

    PubMed Central  PubMed  Google Scholar 

  • Fredelius L (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. Acta Otolaryngol 106:373–385

    CAS  PubMed  Google Scholar 

  • Fredelius L, Johansson B, Bagger-Sjoback D, Wersall J (1987) Qualitative and quantitative changes in the guinea pig organ of Corti after pure tone acoustic overstimulation. Hear Res 30:157–168

    CAS  PubMed  Google Scholar 

  • Frisina RD (2001) Possible neurochemical and neuroanatomical bases of age-related hearing loss–Presbycusis. Semin Hear 22:213–225

    Google Scholar 

  • Frisina RD (2009) Age-related hearing loss: ear and brain mechanisms. Ann N Y Acad Sci 1170:708–717

    PubMed  Google Scholar 

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83:575–583

    CAS  PubMed  Google Scholar 

  • Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226:79–91

    PubMed  Google Scholar 

  • Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 125:654–659

    CAS  PubMed  Google Scholar 

  • Gill S, Salt AN (1997) Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs. Hear Res 113:191–197

    CAS  PubMed  Google Scholar 

  • Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005) The human spiral ganglion: new insights into ultrastructure, survival rate, and implications for cochlear implants. Audiol Neurotol 10:258–273

    Google Scholar 

  • Gratton MA, Smyth BJ, Lam CF, Boettcher FA, Schmiedt RA (1997) Decline in the endocochlear potential corresponds to decreased Na, K-ATPase activity in the lateral wall of quiet-aged gerbils. Hear Res 108:9–16

    CAS  PubMed  Google Scholar 

  • Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72

    CAS  PubMed  Google Scholar 

  • Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192:83–89

    PubMed  Google Scholar 

  • Gutteridge JMC, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564

    CAS  PubMed  Google Scholar 

  • Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    CAS  PubMed  Google Scholar 

  • Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38:199–212

    CAS  PubMed  Google Scholar 

  • Han C, Someya S (2013) Maintaining good hearing: calorie restriction, Sirt3, and glutathione. Exp Gerontol 48:1091–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han W, Shi X, Nuttall AL (2006) AIF and endoG translocation in noise exposure induced hair cell death. Hear Res 211:85–95

    CAS  PubMed  Google Scholar 

  • Harding GW, Bohne BA (2004) Noise-induced hair-cell loss and total exposure energy: analysis of a large data set. J Acoust Soc Am 115:2207–2220

    PubMed  Google Scholar 

  • Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2007) Hearing in women at menopause: prevalence of hearing loss, audiometric configuration and relation to hormone replacement therapy. Acta Otolaryngol 27:49–155

    Google Scholar 

  • Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2010) The menopause triggers hearing decline in healthy women. Hear Res 259:31–35

    CAS  PubMed  Google Scholar 

  • Heinrich U-R, Helling K (2012) Nitric oxide: a versatile key player in cochlear function and hearing disorders. Nitric Oxide 27:106–116

    CAS  PubMed  Google Scholar 

  • Heman-Ackah SE, Juhn SK, Huang TC, Wiedmann TS (2010) A combination antioxidant therapy prevents age-related hearing loss in C57BL/6 mice. Otolaryngol Head Neck Surg 143:429–434

    PubMed  Google Scholar 

  • Henderson D, Subramaniam M, Boettcher FA (1993) Individual susceptibility to noise-induced hearing loss: an old topic revisited. Ear Hear 14:152–168

    CAS  PubMed  Google Scholar 

  • Henderson D, Hu BH, Bielefeld E (2008) Patterns and mechanisms of noise-induced cochlear pathology. In: Schacht J, Popper AN, Fay RR (eds) Auditory trauma, protection, and repair. Springer Science, New York, pp 195–217

    Google Scholar 

  • Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–344

    CAS  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y (2010) How is the highly positive endocochlear potential formed? the specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch 459:521–533

    CAS  PubMed  Google Scholar 

  • Hirose K, Liberman MC (2003) Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol 4:339–352

    PubMed Central  PubMed  Google Scholar 

  • Hirose K, Hockenbery DM, Rubel EW (1997) Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res 104:1–14

    CAS  PubMed  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194

    PubMed  Google Scholar 

  • Ho Y-S, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 31:32804–32812

    Google Scholar 

  • Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramanthasivam V, Tadros SF, Wong ACY, Froud KE, Cederholm JME, Sivakumaran Y, Snguanwongchai P, Khakh BS, Cockayne DA, Thorne PR, Ryan AF (2013) ATP-gated ion channels mediate adaptation to elevated sound levels. Proc Natl Acad Sci U S A 110:7494–7499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu CJ, Shau W-Y, Chen Y-S, Liu T-C, Lin-Shiau SY (2000) Activities of Na+, K+ -ATPase and Ca2+ -ATPase in cochlear lateral wall after acoustic trauma. Hear Res 142:203–211

    CAS  PubMed  Google Scholar 

  • Ichimiya I, Yoshida K, Hirano T, Suzuki M, Mogi G (2000) Significance of spiral ligament fibrocytes with cochlear inflammation. Int J Pediatr Otorhinolaryngol 56:45–51

    CAS  PubMed  Google Scholar 

  • Jiang H, Sha S, Schacht J (2005) NF-kB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J Neurosci Res 79:644–651

    CAS  PubMed  Google Scholar 

  • Jiang H, Talaska AE, Schacht J, Sha S-H (2006) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28(10):1605–1612

    PubMed Central  PubMed  Google Scholar 

  • Kirk EC, Smith DW (2003) Protection from acoustic trauma is not a primary function of the medial olivocochlear system. J Assoc Res Otolaryngol 4:445–465

    Google Scholar 

  • Kostandy BB (2012) The role of glutamate i neuronal ischemic injury: the role of spark in fire. Neurol Sci 33:223–237

    PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise: evidence of a misspent youth. J Neurosci 26:2115–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci 29:14077–14085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang H, Schulte BA, Zhou D, Smythe NM, Spicer SS, Schmiedt RA (2006) Nuclear factor kB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26:3541–3550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lautermann J, Crann SA, McLauren J, Schacht J (1997) Glutathione-dependent antioxidant systems in the mammalian ear: effects of aging, ototoxic drugs and noise. Hear Res 114:75–82

    CAS  PubMed  Google Scholar 

  • Le Prell CG, Bao J (2012) Prevention of noise-induced hearing loss: potential therapeutic agents. In: Le Prell CG, Henderson D, Fay RR, Popper AN (eds) Springer handbook of auditory research, vol 40, Noise-induced hearing loss: scientific advances. Springer, New York, pp 285–338

    Google Scholar 

  • Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM (2007) Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 226:22–43

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Ojano-Dirain C, Rudnick EW, Nelson MA, DeRemer SJ, Prieskorn DM, Miller JM (2014) Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity. J Assoc Res Otolaryngol 15:375–393

    PubMed Central  PubMed  Google Scholar 

  • Lee JH, Chiba T, Marcus DC (2001) P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J Neurosci 21:9168–9174

    CAS  PubMed  Google Scholar 

  • Lei XG (2001) Glutathione peroxidase-1 gene knockout on body antioxidant defense in mice. Biofactors 14:93–99

    CAS  PubMed  Google Scholar 

  • Liang Z (1992) Parametric relation between impulse noise and auditory damage. In: Dancer A, Henderson D, Salvi RJ, Hamernik RP (eds) Noise-induced hearing loss. Mosby Year Book, St Louis, pp 325–335

    Google Scholar 

  • Linnane AW, Kios M, Vitetta L (2007) Healthy aging: regulation of the metabolome by cellular redox modulation and pro-oxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8:445–467

    CAS  PubMed  Google Scholar 

  • Liu L, Wang H, Shi L, Almuklass A, He T, Aiken S, Bance M, Yin S, Wang J (2012) Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing. PLoS One 7:e49550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    CAS  PubMed  Google Scholar 

  • Makary CA, Shin S, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717

    PubMed Central  PubMed  Google Scholar 

  • Matsunami T, Suzuki T, Hisa Y, Takata K, Takamatsu T, Oyamada M (2006) Gap junctions mediate glucose transport between GLUT1-positive and -negative cells in the spiral limbus of the rat cochlea. Cell Commun Adhes 13:93–102

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999a) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Burkard RF, Jiang H, Reaume AG, Flood DG, Salvi RJ (1999b) Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol 413:101–112

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D-L, Ohlemiller KK, Salvi RJ (2001) The role of superoxide dismutase in age-related and noise-induced hearing loss: clues from Sod1 knockout mice. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC, New York, pp 489–504

    Google Scholar 

  • Miller JM, Brown JN, Schacht J (2003) 8-Iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8:207–221

    CAS  PubMed  Google Scholar 

  • Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, Suzuki M, Furukawa M, Kawase T, Zheng Y, Ogura M, Asada Y, Watanabe K, Yamanaka H, Gotoh S, Nishi-Takeshima M, Sugimoto T, Kikuchi T, Takasaka T, Noda T (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafnesss. Science 285:1408–1411

    CAS  PubMed  Google Scholar 

  • Mockett BG, Housley GD, Thorne PR (1994) Fluorescence imaging of extracellular purinergic sites and putative ecto-ATPase sites on isolated cochlear hair cells. J Neurosci 14:1692–1707

    Google Scholar 

  • Morizane I, Hakuba N, Shimizu Y, Shinomori Y, Fujita K, Yoshida T, Shudou M, Gyo K (2005) Transient cochlear ischemia and its effects on the stria vascularis. Neuroreport 16:799–802

    PubMed  Google Scholar 

  • Mukherjea D, Jajoo S, Whitworth C, Bunch JR, Turner JG, Rybak LP, Ramkumar V (2008) Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci 28:13056–13065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagashima R, Yamaguchi T, Tanaka H, Ogita K (2010) Mechanism underlying the protective effect of tempol and Nw-nitro-L-arginine methyl ester on acoustic injury: possible involvement of c-Jun N-terminal kinase pathway and Connexin26 in the cochlear spiral ligament. J Pharmacol 114:50–62

    CAS  Google Scholar 

  • Nagashima R, Yamaguchi T, Kuramoto N, Ogita K (2011) Acoustic overstimulation activates 5′-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice. Neurochem Int 59:812–820

    CAS  PubMed  Google Scholar 

  • Nakai Y, Hilding D (1968) Oxidative enzymes in the cochlea. Acta Otolaryngol 130:459–467

    Google Scholar 

  • Nakashima T, Naganawa S, Sone M, Tominaga M, Hayash H, Yamamoto H, Liu X, Nuttall AL (2003) Disorders of cochlear blood flow. Brain Res Rev 43:7–28

    Google Scholar 

  • Neng L, Zhang F, Kachelmeier A, Shi X (2013) Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J Assoc Res Otolaryngol 14:175–185

    PubMed Central  PubMed  Google Scholar 

  • Nickel R, Forge A (2008) Gap junctions and connexins in the inner ear: their role in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 16:452–457

    PubMed  Google Scholar 

  • Nin F, Hibino H, Doi KS, Suzuki T, Hisa Y, Kurachi Y (2008) The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105:1751–1756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK (2008) Recent findings and emerging questions in cochlear noise injury. Hear Res 245:5–17

    PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK (2012) Chapter 1: current issues in noise exposure. In: Tremblay KL, Burkard RF (eds) Translational perspectives in hearing science, special topics, vol 3. Plural, San Diego, pp 1–34

    Google Scholar 

  • Ohlemiller KK, Frisina RD (2008) Age-related hearing loss and its cellular and molecular bases. In: Schacht J, Popper AN, Fay RR (eds) Auditory trauma, protection, and repair. Springer, New York, pp 145–194

    Google Scholar 

  • Ohlemiller KK, Gagnon PM (2007) Genetic dependence of cochlear cells and structures injured by noise. Hear Res 224:34–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding D-L, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ (1999) Targeted deletion of the cytosolic Cu/Zn-Superoxide Dismutase gene (SOD1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 4:237–246

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding D-L, Lear PM, Ho Y-S (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK, Lett JM, Gagnon PM (2006) Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear Res 220:10–26

    PubMed  Google Scholar 

  • Ohlemiller KK, Rice MR, Lett JM, Gagnon PM (2009) Absence of strial melanin coincides with age associated marginal cell loss and endocochlear potential decline. Hear Res 249:1–14

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Dahl AR, Gagnon PM (2010) Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. J Assoc Res Otolaryngol 11:605–623

    PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK, Rosen AR, Rellinger EA, Montgomery SC, Gagnon PM (2011) Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 12:45–58

    PubMed Central  PubMed  Google Scholar 

  • Patuzzi R (2011a) Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endocochlear potential. Hear Res 277:4–19

    PubMed  Google Scholar 

  • Patuzzi R (2011b) Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hear Res 280:3–20

    CAS  PubMed  Google Scholar 

  • Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, Walton KM, Ylikoski J (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20:43–50

    CAS  PubMed  Google Scholar 

  • Poirrier AL, Pincemail J, Van den Ackerveken P, Lefebvre PP, Malgrange B (2010) Oxidative stress in the cochlea: an update. Cur Med Chem 17:3591–3604

    CAS  Google Scholar 

  • Pujol R, Rebillard G, Puel J-L, Lenoir M, Eybalin M, Recasens M (1991) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol 476:32–36

    Google Scholar 

  • Pujol R, Puel J-L, D’Aldin CG, Eybalin M (1993) Pathophysiology of the glutamate synapses of the cochlea. Acta Otolaryngol 113:330–334

    CAS  PubMed  Google Scholar 

  • Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rego AC, Oliviera CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    CAS  PubMed  Google Scholar 

  • Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    PubMed  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med 38:1543–1552

    CAS  PubMed  Google Scholar 

  • Sakagami M, Matsunaga T, Hashimoto PH (1982) Fine structure and permeability of capillaries in the stria vascularis and spiral ligament of the inner ear of the guinea pig. Cell Tissue Res 226:511–522

    CAS  PubMed  Google Scholar 

  • Salameha A, Dheinb S, Biedlingmaier A (2005) Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim Biophys Acta 1719:36–58

    Google Scholar 

  • Santi PA, Lakhani BN, Edwards LB, Morizono T (1985) Cell volume density alterations within the stria vascularis after administration of a hyperosmotic agent. Hear Res 18:283–290

    CAS  PubMed  Google Scholar 

  • Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K (2006) CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1+/GFP mice. J Assoc Res Otolaryngol 7:361–372

    PubMed Central  PubMed  Google Scholar 

  • Schmiedt RA (1993) Cochlear potentials in quiet-aged gerbils: does the aging cochlea need a jump start? In: Verillo RT (ed) Sensory research: multimodal perspectives. Lawrence Erlbaum, Hillsdale, pp 91–103

    Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, De Murcia G (2006) Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    CAS  PubMed  Google Scholar 

  • Schuknecht HF, Watanuki K, Takahashi T, Belal AA, Kimura RS, Jones DD (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84:1777–1821

    CAS  PubMed  Google Scholar 

  • Schulte BA, Schmiedt RA (1992) Lateral wall Na, K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear Res 61:35–46

    CAS  PubMed  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sewell W (1984) The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats. Hear Res 14:305–314

    CAS  PubMed  Google Scholar 

  • Shen J, Harada N, Yamashita T (2003) Nitric oxide inhibits adenosine 5′-triphosphate-induced Ca2+ response in inner hair cells of the guinea pig cochlea. Neurosci Lett 337:135–138

    CAS  PubMed  Google Scholar 

  • Shen H, Zhange B, Shin J-H, Lei D, Du Y, Gao X, Dai C, Ohlemiller KK, Bao J (2007) Prophylactic and therapeutic functions of T-type calcium blockers on noise-induced hearing loss. Hear Res 226:52–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi X, Nuttall AL (2003) Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res 976:1–10

    Google Scholar 

  • Shi X, Nuttall AL (2007) Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res 224:1–14

    CAS  PubMed  Google Scholar 

  • Shi X, Dai C, Nuttall AL (2003) Altered expression of inducible nitric oxide synthase (iNOS) in the cochlea. Hear Res 177:43–52

    CAS  PubMed  Google Scholar 

  • Shi L, Liu L, He T, Guo X, Yu Z, Yin S, Wang J (2013) Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage. PLoS One 8:e81566

    PubMed Central  PubMed  Google Scholar 

  • Sliwinska-Kowalska M, Pawelczyk M (2013) Contribution of genetic factors to noise-induced hearing loss: a human studies review. Mutat Res 752:61–65

    CAS  PubMed  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12

    CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2002) Spiral ligament pathology in quiet-aged gerbils. Hear Res 172:172–185

    PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2005) Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hear Res 205:225–240

    PubMed  Google Scholar 

  • Staecker H, Zheng QY, Van De Water TR (2001) Oxidative stress in aging in the C57B16/J mouse cochlea. Acta Otolaryngol 121:666–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki M, Yamasoba T, Ishibashi T, Miller JM, Kaga K (2002) Effect of noise exposure on blood-labyrinth barrier in guinea pigs. Hear Res 164:12–18

    PubMed  Google Scholar 

  • Suzuki T, Matsunami T, Hisa Y, Takata K, Takamatsu T, Oyamada M (2009) Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea. Histochem Cell Biol 131:89–102

    CAS  PubMed  Google Scholar 

  • Tanaka C, Coling DE, Manohar S, Chen G-D, Hu BH, Salvi R, Henderson D (2012) Expression pattern of oxidative stress and antioxidant defense-related genes in the aging Fischer 344/NHsd rat cochlea. Neurobiol Aging 33:1842, e1-14

    PubMed Central  PubMed  Google Scholar 

  • Todt I, Ngezahayo A, Ernst A, Kolb H-A (1999) Inhibition of gap junctional coupling in cochlear supporting cells by gentamicin. Pflugers Arch 438:865–867

    CAS  PubMed  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222:115–124

    CAS  PubMed  Google Scholar 

  • Trune DR (2010) Ion homeostasis in the inner ear: mechanisms, maladies, and management. Curr Opin Otolaryngol Head Neck Surg 18:413–419

    PubMed Central  PubMed  Google Scholar 

  • Tsai BM, Wang M, March KL, Turrentine MW, Brown JW, Meldrum DR (2004) Preconditioning: evolution of basic mechanisms to potential therapeutic strategies. Shock 21:195–209

    CAS  PubMed  Google Scholar 

  • Tylstedt S, Rask-Andersen H (2001) A 3-D model of membrane specializations between human auditory spiral ganglion cells. J Neurocytol 30:465–473

    CAS  PubMed  Google Scholar 

  • Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512

    CAS  PubMed  Google Scholar 

  • Uemaetomari I, Tabuchi K, Nakamagoe M, Tanaka S, Murashita H, Hara A (2009) L-type voltage-gated calcium channel is involved in the pathogenesis of acoustic injury in the cochlea. Tohoku J Exp Med 218:41–47

    CAS  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    PubMed Central  PubMed  Google Scholar 

  • Wangemann P (2002) K+ recycling and the endocochlear potential. Hear Res 165:1–9

    CAS  PubMed  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(1):11–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wangemann P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay RD (eds) The cochlea. Springer, New York, pp 130–185

    Google Scholar 

  • Wu T, Dai M, Shi X, JIang ZG, Nuttall AL (2011) Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol 301:H69–H78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281:28–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Nicholson J (2013) The role of connexin in ear and skin physiology—functional insights from disease-associated mutations. Biochim Biophys Acta 1828:167–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto H, Omelchenko I, Shi S, Nuttall AL (2009) The influence of NfkB signal-transduction pathways on the murine inner ear by acoustic overstimulation. J Neurosci Res 87:1832–1840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima K (1995) Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol 252:504–508

    CAS  PubMed  Google Scholar 

  • Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219

    CAS  PubMed  Google Scholar 

  • Yoshida T, Maulik N, Engelman RM, Ho Y-S, Magnenat J-L, Rousou JA, Flack JE, Deaton D, Das DK (1997) Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation 96:216–220

    CAS  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124

    CAS  PubMed  Google Scholar 

  • Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC (2000) Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss. Hear Res 141:97–106

    CAS  PubMed  Google Scholar 

  • Yoshihara T, Satoh M, Yamamura Y, Itoh H, Ishii T (1999) Ultrastructural localization of glucose transporter 1 (GLUT-1) in guinea pig stria vascularis and vestibular dark cell areas: an immunogold study. Acta Otolaryngol 119:336–340

    CAS  PubMed  Google Scholar 

  • Zhang F, Dai M, Neng L, Zhang JH, Zhi Z, Fridberger A, Shi X (2013) Perivascular macrophage-like melanocyte responsiveness to acoustic trauma–a salient feature of strial barrier associated hearing loss. FASEB J 27(9):3730–3740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao H-B, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Zhao HB (2010) ATP-mediated potassium in the cochlear supporting cells. Purinergic Signal 6:221–229

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Rick Chole and the WUSM Department of Otolaryngology for patient support of our work. Portions of work shown were supported by NIDCD P30 DC004665 (R.A. Chole) and T35 DC008765 (W.W. Clark). Images in Fig. 3.7 were excerpted from a study performed by Veronica Henson as part of her Capstone research in partial fulfillment of requirements for an AuD in the WUSM Program in Audiology and Communication Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Ohlemiller Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ohlemiller, K.K. (2015). A Question of Balance: Free Radicals and Cochlear Homeostasis. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_3

Download citation

Publish with us

Policies and ethics