Skip to main content

Free Radicals in Nasal and Paranasal Diseases

  • Chapter
Free Radicals in ENT Pathology

Abstract

Free radicals play an important role in nasal and paranasal diseases. The formation of free radicals in these diseases is similar to other tissues. In many cases antioxidants can ameliorate the course of the disease. Inflammations such as rhinitis, allergic rhinitis, sinusitis, acute and chronic tonsillitis or inflammations evoked by cigarette smoke are common nasal and paranasal diseases associated with free radicals. Nitric oxide, as a free radical, has been shown to effect vasodilatation, patency of the nose, secretion of saliva, immunological properties, cytokine stimulation, and wound healing. Nasal and paranasal diseases often influence the composition of saliva; this characteristic can be used to make a diagnosis or better manage patient therapy. Polyps and tumors are affected by free radicals as well, but antioxidant therapy of tumors, especially in advanced cases, may be not suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end-products

AMP:

Adenosine monophosphate

AOPP:

Advanced oxidation protein products

ATP:

Adenosine triphosphate

GPx:

Glutathione peroxidase

GRX-1:

Glutaredoxin, glutathione-dependent oxidoreductase 1

GSH:

Reduced glutathione

GSSG:

Oxidated glutathione

IgE:

Immunoglobulin E

IL:

Interleukine

INFγ:

Interferon γ

iNOS:

Inducible nitric oxide synthase

NO:

Nitric oxide

oxLDL:

Oxidated low density lipoprotein

PGE:

Prostaglandin

RAGE:

Receptor of advanced glycation products

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNFα:

Tumor necrosis factor-α

References

  • Akatov VS, Evtodienko YV, Leschenko VV, Teplova VV, Potselueva MM, Kruglov AG, Lezhnev EX, Yakubovskaya RI (2000) Combined vitamins B12b and C induce glutathione depletion and the death of epidermoid human larynx carcinoma cells HEp-2. Biosci Rep 20:411–417

    Article  CAS  PubMed  Google Scholar 

  • Aksoy F, Demirhan H, Veyseller B, Yldirim YS, Ozturan O, Basinoglu F (2009) Advanced oxidation protein products as an oxidative stress marker in allergic rhinitis. Kulak Burun Bogaz Ihtis Derg 19:279–284

    PubMed  Google Scholar 

  • Alobid I, Benitez P, Valero A, Munoz R, Langdon C, Mullol J (2012) Oral and intranasal steroid treatments improve nasal patency and paradoxically increase nasal nitric oxide in patients with severe nasal polyposis. Rhinology 50:171–177. doi:10.4193/Rhin

    CAS  PubMed  Google Scholar 

  • Baglam T, Sari M, Miner Yazici Z, Yuksel M, Uneri C (2010) Chemiluminiscence assay of reactive oxygen species in laryngeal cancer. J Laryngol Otol 124(10):1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Baraldi E, Pasquale MF, Cangiotti AM, Zanconato S, Zacchello F (2004) Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesis. Eur Respir J 24:881–883

    Article  CAS  PubMed  Google Scholar 

  • Cekin E, Ipcioglu OM, Erkul BE, Kapucu B, Ozcan O, Cincik H, Gungor A (2009) The association of oxidative stress and nasal polyposis. J Int Med Res 37:325–330

    Article  CAS  PubMed  Google Scholar 

  • Cheng YK, Tsai MH, Lin CD, Hwang GY, Hang LW, Tseng GC, Shen PS, Chang WC (2006) Oxidative stress in nonallergic nasal polyps associated with bronchial hyperresponsiveness. Allergy 61(11):1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Corbelli R, Hammer J (2007) Measurement of nasal nitric oxide. Paediatr Respir Rev 8:269–272

    Article  PubMed  Google Scholar 

  • Djupesland PG, Chatkin JM, Qian W, Haight JS (2001) Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. Am J Otolaryngol 22:19–32

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi R, Raturi D, Kandpal N, Dwivedi R, Singh R, Puri Y (2008) Oxidative stress in patients with laryngeal carcinoma. Indian J Cancer 45:97–99

    Article  PubMed  Google Scholar 

  • Dye JA, Adler KB (1994) Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax 49:825–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elsherif HS, Landis BN, Hamad MH, Hugentobler M, Bahig SM, Gamaa AM, Lacroix JS (2007) Olfactory function and nasal nitric oxide. Clin Otolaryngol 32:356–360

    Article  CAS  PubMed  Google Scholar 

  • Fetoni AR, Placetini R, Fiorita A, Paludetti G, Troiani D (2009) Water-soluble coenzyme Q10 formulation (Q-ter) promotes outer hair cell survival in a quinea pig model of noise induced hearing loss (NIHL). Brain Res 1257:108–116

    Article  CAS  PubMed  Google Scholar 

  • Getchell ML, Shah DS, Buch SK, Davis DG, Getchell TV (2003) 3-Nitrotyrosine immunoreactivity in olfactory receptor neurons of patients with Alzheimer’s disease: implications for impaired odor sensitivity. Neurobiol Aging 24:663–673

    Article  CAS  PubMed  Google Scholar 

  • Gonzáles D, Marquina R, Rondón N, Rodroguez-Malaver AJ, Reyes R (2008) Effects of aerobic exercise on uric acid, total antioxidant activity, oxidative stress, and nitric oxide in human saliva. Res Sports Med 16:128–137

    Article  Google Scholar 

  • Guilemany JM, Angrill J, Alobid I, Centellas S, Pujols L, Bartra J, Bernal-Sprekelsen M, Valero A, Picado C, Mullol J (2009) United airways again: high prevalence of rhinosinusitis and nasal polyps in bronchiectasis. Allergy 64:790–797

    Article  CAS  PubMed  Google Scholar 

  • Guilemany JM, Garcia-Piňero A, Alobid I, Centellas S, Mariňo FS, Valero A, Bernal-Sprekelsen M, Picado C, Mullol J (2012) The loss of smell in persistent allergic rhinitis is improved by levocetirizine due to reduction of nasal inflammation but not nasal congestion (the CIRANO study). Int Arch Allergy Immunol 158:184–190

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Drusch J, Landis BN, Hummel T (2013) Nasal nitric oxide levels do not allow for discrimination between olfactory loss due to various etiologies. Laryngoscope 123:311–314

    Article  CAS  PubMed  Google Scholar 

  • Guven M, Aladag I, Eyibilen A, Filiz NO, Ozyurt H, Yelken K (2007) Experimentally induced acute sinusitis and efficacy of vitamin A. Acta Otolaryngol 127:855–860

    Article  CAS  PubMed  Google Scholar 

  • Hasnis E, Reznick AZ, Pollack S, Klein Z, Nagler RM (2004) Synergistic effect of cigarette smoke and saliva on lymphocytes—the mediatory role of volatile aldehydes and redox active iron and the possible implications for oral cancer. Int J Biochem Cell Biol 36:826–839

    Article  CAS  PubMed  Google Scholar 

  • Hays GL, Bullock Q, Lazzari EP, Puente ES (1992) Salivary pH while dissolving vitamin C-containing tablets. Am J Dent 5:269–271

    CAS  PubMed  Google Scholar 

  • Jiang G, Zhang J, Li W (2011) Clinical significances of serum NO an oxLDL in obstructive sleep apnea-hypopnea syndrome. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 25:974–976

    CAS  PubMed  Google Scholar 

  • Jiao J, Zhang W, Meng N, Wang H, Zhang L (2010) Changes of oxidative stress in peripheral serum of patients with allergic rhinitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 45:455–458

    PubMed  Google Scholar 

  • Marteus H, Thörnberg DC, Weitzberg E, Schedin U, Alving K (2005) Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation. Thorax 60:219–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagler R, Dayan D (2006) The dual role of saliva in oral carcinogenesis. Oncology 71:10–17

    Article  CAS  PubMed  Google Scholar 

  • Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A (2007) Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol 28:334–337

    Article  CAS  PubMed  Google Scholar 

  • Noda N, Takeno S, Fukuiri T, Hirakawa K (2012) Monitoring of oral and nasal exhaled nitric oxide in eosinophilic chronic rhinosinusitis: a prospective study. Am J Rhinol Allergy 26:255–259

    Article  PubMed  Google Scholar 

  • Park IH, Park SJ, Cho JS, Moon YM, Kim TH, Lee SH, Lee HM (2012) Role of reactive oxygen species in transforming growth factor beta1-induced alpha smooth-muscle actin and collagen production in nasal polyp-derived fibroblasts. Int Arch Allergy Immunol 159:278–286

    Article  CAS  PubMed  Google Scholar 

  • Proud D (2005) Nitric oxide and the common cold. Curr Opin Allergy Clin Immunol 5:37–42

    Article  CAS  PubMed  Google Scholar 

  • Rahman ZA, Abdullah N, Singh R, Sosroseno W (2010) Effect of acute excercise on the levels of salivary cortisol, tumor necrosis factor-alpha and nitric oxide. J Oral Sci 2010(52):133–136

    Article  Google Scholar 

  • Rai B, Kharb S, Jain R, Anand SC (2007) Salivary vitamins E and C in oral cancer. Redox Rep 12:163–164

    Article  CAS  PubMed  Google Scholar 

  • Reiter M, Rupp K, Baummeister P, Zieger S, Harreus (2009) Antioxidant effects of quercetin and coenzyme Q10 in mini cultures of human nasal cells. Anticancer Res 29:33–39

    CAS  PubMed  Google Scholar 

  • Rettori V, Lomniczi A, Elverdin JC, Suburo A, Faletti A, Franchi A, Mc Cann SM (2000) Control salivary secretion by nitric oxide and its role in neuroimmunomodulation. Ann NY Acad Sci 917:258–267

    Article  CAS  PubMed  Google Scholar 

  • Seiberling KA, Church CA, Herring JL, Sowers LC (2012) Epigenetics of chronic rhinosinusitis and the role of the eosinophil. Int Forum Allergy Rhinol 2:80–84

    Article  PubMed Central  PubMed  Google Scholar 

  • Selimoglu E (2005) Nitric oxide in health and disease from the point of view of the otorhinolaryngologist. Curr Pharm Des 11:3051–3060

    Article  CAS  PubMed  Google Scholar 

  • Seri M, D’Alessandro A, Seri S (1999) The effect of cigarette smoking on vitamin C and vitamin E levels of gingival cervicular fluid. Boll Soc Ital Biol Sper 75:21–25

    CAS  PubMed  Google Scholar 

  • Serrano C, Valero T, Bartra J, Torrego T, Mullol J, Picado C (2007) Effects on nasal nitric oxide production of 2 mechanisms of vasoconstriction. J Investig Allergol Clin Immunol 17:337–340

    CAS  PubMed  Google Scholar 

  • Taylor DR, Mandhane P, Greene JM, Hancox RJ, Filsell S, McLachlan CR, Williamson AJ, Cowan JO, Smith AD, Sears MR (2007) Factors affecting exhaled nitric oxide measurements: the effect of sex. Respir Res 8:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Udgar-Cankal D, Ozmeric N (2006) A multifaced molecule, nitric oxide in oral and periodontal diseases. Clin Chim Acta 366:90–100

    Article  Google Scholar 

  • Uneri C, Sari M, Baglam T, Polat S, Yüksel M (2006) Effects of vitamin E on cigarette smoke induced oxidative damage in larynx and lung. Laryngoscope 116:97–100

    Article  PubMed  Google Scholar 

  • Veyseller B, Aksoy E, Ertas B, Keskin M, Ozturan O, Yildirim YS, Bayraktar EG, Oztürk H (2010) A new oxidative stress marker in patients with nasal polyposis: advanced oxidation protein products (AOPP). B-ENT 6:105–109

    CAS  PubMed  Google Scholar 

  • Wan J, Diaz-Sanchez D (2007) Antioxidant enzyme induction: a new protective approach against the adverse effects of diesel exhaust particles. Inhal Toxicol 19(Suppl 1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Weitzberg E, Hezel M, Lundberg JO (2010) Nitrate-nitrite-nitric oxide pathway: implications for anesthesiology and intensive care. Anesthesiology 113:1460–1475

    Article  CAS  PubMed  Google Scholar 

  • Weschta M, Deutschle T, Riechelmann H (2008) Nasal fractional exhaled nitric oxide analysis with a novel hand-held device. Rhinology 46:23–27

    PubMed  Google Scholar 

  • Westerveld GJ, Dekker I, Voss HP, Basr A, Scheeren RA (1997) Antioxidant levels in the nasal mucosa of patients with chronic sinusitis and healthy controls. Arch Otolaryngol Head Neck Surg 123:201–204

    Article  CAS  PubMed  Google Scholar 

  • Woo HJ, Bae CH, Song SY, Kim YW, Lee HM, Kim YD (2009) Expression of glutaredoxin-1 in nasal polyps and airway epithelial cells. Am J Rhinol Allergy 23:288–293

    Article  PubMed  Google Scholar 

  • Yilmaz YF, Akbiyik F, Tuncel U, Unal A (2007) Lipid peroxidation and antioxidant levels in patients with laryngeal carcinoma. Kulak Burun Bogaz Ihtis Derg 17:81–84

    PubMed  Google Scholar 

  • Yu MS, Park HW, Kwon HJ, Kwon HJ, Jang YJ (2011) The effect of a low concentration of hypochlorous acid on rhinovirus infection of nasal epithelial cells. Am J Rhinol Allergy 25:40–44

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The paper was supported by the Charles University grant PRVOUK P34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Holecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holecek, V., Rokyta, R., Slipka, J. (2015). Free Radicals in Nasal and Paranasal Diseases. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_24

Download citation

Publish with us

Policies and ethics