Skip to main content

Loss of Residual Hearing Initiated by Cochlear Implantation: Role of Inflammation-Initiated Cell Death Pathways, Wound Healing and Fibrosis Pathways, and Potential Otoprotective Therapies

  • Chapter

Abstract

Cochlear implantation with electrode array insertion, even in the best of surgical hands, can be traumatic, causing the release of pro-inflammatory and apoptotic factors that lead to loss of auditory hair cells that are critical for the retention of a cochlear implant patient’s residual hearing. The chronic inflammatory process following cochlear implantation can lead to cochlear fibrosis and increased cochlear implant (CI) impedance. This can interfere with function of the implant alone or when combined with acoustic stimulation as in electroacoustic stimulation of the auditory system. Less-traumatic surgical techniques have been developed and electrode arrays have been modified to reduce trauma associated with cochlear implantation. In addition, several drug therapies have been shown to reduce postoperative inflammation and conserve residual hearing in animal models of electrode insertion trauma-induced hearing loss. These drug therapies show promise for future use in CI patients, where conservation of residual hearing is a goal and these promising therapies need to be tested in clinical trials. Preserving residual low-frequency hearing in CI patients may provide improved speech perception in quiet and noise and enhanced music perception compared to CI patients that lose residual audition. Despite conservation of residual hearing with more advanced surgical techniques and low trauma electrode designs, residual native auditory function continues to deteriorate years after surgery. Future trends of cochlear implantation will likely focus on drug-eluting electrodes and longer less-traumatic electrodes that can compensate for a loss of residual hearing many years post-implantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABR:

Auditory brainstem response

AIF:

Apoptosis-inducing factor

Apaf-1:

Apoptotic peptidase-activating factor 1

BAX:

Bcl-2-associated X protein

BID:

BH3 Interaction domain

BMPs:

Bone morphogenic proteins

CI:

Cochlear implant

Cyt. C :

Cytochrome C

DIABLO:

Direct Inhibition of apoptosis-binding protein with low pI

DISC:

Death-inducing signaling complex

D-JNKI-1:

D-JNK inhibitor peptide 1

DR:

Death receptor

DR3:

Death receptor three

DR4:

Death receptor four

DR5:

Death receptor five

DXM:

Dexamethasone

EAS:

Electroacoustic stimulation

EIT:

Electrode insertion trauma

EMT:

Epithelial to mesenchymal cell transition

Endo-G:

Endonuclease G

EP:

Endolymphatic potential

ERK:

Extracellular signal regulated kinase

FADD:

Fas-associated death domain

GCR:

Glucocorticoid receptor

HC:

Hair cells

IAPs:

Inhibitors of apoptosis

IHC:

Inner hair cell

IL-1β:

Interleukin one beta

IL-6:

Interleukin six

iNOS:

Inducible nitric oxide synthase

JNKs:

c-JUN N-terminal kinases

L-NAC:

l-N-acetylcysteine

MAPKs:

Mitogen-activated protein kinases

NFκB:

Nuclear factor kappa B

NT-3:

Neurotrophin-3

OC:

Organ of corti

OHC:

Outer hair cell

Omi/HtrA2:

Mammalian homology of bacterial high temperature requirement protein

PI3K:

Phosphatidylinositol 3-kinase

Ppy/pTS/NT-3:

Polypyrrole/para-toluene sulfonate containing neurotrophin-3

ROS:

Reactive oxygen species

SG:

Spiral ganglion

SIBS:

Styrene–isobutylene–styrene

Smac:

Second mitochondria-derived activator of caspases

tBID:

Truncated BID

TGFβ:

Transforming growth factor beta

TNF α:

Tumor necrosis factor alpha

TNFR1:

Tumor necrosis factor receptor 1

TRADD:

TNFR1-associated death domain

TRAIL-R1:

TNF-related apoptosis-inducing ligand receptor 1

TRAIL-R2:

TNF-related apoptosis-inducing ligand receptor 2

TRAMP:

TNF-like receptor apoptosis-mediating protein

XIAP:

X-linked inhibition of apoptosis proteins

References

  • Adunka OF, Radeloff A, Gstöettner WK, Pillsbury HC, Buchman CA (2007) Scala tympani cochleostomy. II. Topography and histology. Laryngoscope 117:2195–2200

    PubMed  Google Scholar 

  • Adunka OF, Pillsbury HC, Adunka MC, Buchman CA (2010) Is electric acoustic stimulation better than conventional cochlear implantation for speech perception in quiet? Otol Neurotol 31(7):1049–1054

    PubMed  Google Scholar 

  • Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA (2013) Hearing preservation and speech perception outcomes with electric-acoustic stimulation after 12 months of listening experience. Laryngoscope 123(10):2509–2515

    PubMed  Google Scholar 

  • Akhmetshina A1, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735, doi:10.1038/ncomms1734

  • Airel A, Timor O (2013) Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis. J Pathol 229(2):250–263

    Google Scholar 

  • Baker K, Staecker H (2012) Low dose oxidative stress induces mitochondrial damage in hair cells. Anat Rec (Hoboken) 295(11):1868–1876

    CAS  Google Scholar 

  • Balkany TJ, Connel SS, Hodges AV, Payne SL, Telischi FF, Eshraghi AA, Angeli SI, Germani R, Messiah S, Arheart KL (2006) Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 27:1083–1088

    PubMed  Google Scholar 

  • Bas E, Gupta C, Van De Water TR (2012) A novel organ of Corti explant model for the study of cochlear implantation trauma. Anat Rec (Hoboken) 295:1944–1956

    Google Scholar 

  • Baumgartner WD, Jappel A, Morera C, Gstöettner W, Müller J, Kiefer J, van de Heyning P, Anderson I, Nielsen SB (2007) Outcomes in adults implanted with the FLEXsoft electrode. Acta Otolaryngol 127:579–586

    PubMed  Google Scholar 

  • Bergmeier W, Hynes RO (2012) Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol 4(2):17. doi:10.1101/cshperspect.a005132

  • Berrettini S, Forli F, Passetti S (2008) Preservation of residual hearing following cochlear implantation: comparison between three surgical techniques. J Laryngol Otol 122:245–252

    Google Scholar 

  • Bochnia M, Morgenroth K, Dziewiszek W, Kassner J (2005) Experimental vibratory damage of the inner ear. Eur Arch Otorhinolaryngol 262(4):307–313

    PubMed  Google Scholar 

  • Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, Thome M, Bornand T, Hahne M, Schröter M, Becker K, Wilson A, French LE, Browning JL, MacDonald HR, Tschopp J (1997) TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (Apo-1/CD95). Immunity 6:79–88

    CAS  PubMed  Google Scholar 

  • Briggs RJS, Tykocinski M, Stidham K, Roberson JB (2005) Cochleostomy site: implication for electrode placement and hearing preservation. Acta Otolaryngol 125:870–876

    PubMed  Google Scholar 

  • Bruce IA, Bates JE, Melling C, Mawman D, Green KM (2011) Hearing preservation via a cochleostomy approach and deep insertion of a standard length cochlear implant electrode. Otol Neurotol 32(9):1444–1447

    Google Scholar 

  • Büchner A, Schüssler M, Battmer RD, Stöver T, Lesinski-Schiedat A, Lenarz T (2009) Impact of low-frequency hearing. Audiol Neurootol 14(Suppl 1):8–13

    PubMed  Google Scholar 

  • Carlson ML, Driscoll CL, Gifford RH, Service GJ, Tombers NM, Hughes-Borst BJ, Neff BA, Beatty CW (2011) Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 32(6):962–968

    PubMed Central  PubMed  Google Scholar 

  • Chang A, Eastwood H, Sly D, James D, Richardson R, O’Leary S (2009) Factors influencing the efficacy of round window dexamethasone protection of residual hearing post-cochlear implant surgery. Hear Res 255:67–72

    CAS  PubMed  Google Scholar 

  • Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7(6):821–830

    CAS  PubMed  Google Scholar 

  • Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106:353–362

    CAS  PubMed  Google Scholar 

  • Chen Y, Whetstone HC, Youn A, Nadesan P, Chow ECY, Lin AC, Alman BA (2007) β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282:526–533

    CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    CAS  PubMed  Google Scholar 

  • Choi CH, Oghalai JS (2005) Predicting the effect of post-implant cochlear fibrosis on residual hearing. Hear Res 205:193–200

    PubMed Central  PubMed  Google Scholar 

  • Clark GM, Shute SA, Shepherd RK, Carter TD (1995) Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing. Ann Otol Rhinol Laryngol Suppl 166:40–42

    CAS  PubMed  Google Scholar 

  • Cohen NL (1997) Cochlear implant soft surgery: fact or fantasy? Otolaryngol Head Neck Surg 117:214–216

    CAS  PubMed  Google Scholar 

  • Colwell AS, Krummel TM, Longaker MT, Lorenz HP (2006) Wnt-4 expression is increased in fibroblasts after TGF-beta1 stimulation and during fetal and postnatal wound repair. Plast Reconstr Surg 117:2297–2301

    CAS  PubMed  Google Scholar 

  • Connolly TM, Eastwood H, Kel G, Lisnichuk H, Richardson R, O’Leary S (2011) Pre-operative intravenous dexamethasone prevents auditory threshold shifts in a guinea pig model of cochlear implantation. Audiol Neurootol 16:137–144

    CAS  PubMed  Google Scholar 

  • Cosetti MK, Friedmann DR, Zhu BZ, Heman-Ackah SE, Fang Y, Keller RG, Shapiro WH, Roland JT Jr, Waltman SB (2013) The effects of residual hearing in traditional cochlear implant candidates after implantation with a conventional electrode. Otol Neurotol 34(3):516–521

    PubMed  Google Scholar 

  • D’Elia A, Bartoli R, Giagnotti F, Quaranta N (2012) The role of hearing preservation on electrical thresholds and speech performances in cochlear implantation. Otol Neurotol 33(3):343–347

    PubMed  Google Scholar 

  • Dalchow CV, Hagemeier KC, Muenscher A, Knecht R, Kameier F (2013) Investigation of noise levels generated by otologic drills. Eur Arch Otorhinolaryngol 270(2):505–510

    PubMed  Google Scholar 

  • Daudet N, Ripoll C, Moles JP, Rebillard G (2002) Expression of members of Wnt and Frizzled gene families in the postnatal rat cochlea. Brain Res Mol Brain Res 105:98–107

    CAS  PubMed  Google Scholar 

  • Delavary BM, van der Veer WM, van Egmong M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762

    CAS  Google Scholar 

  • Dinh CT, Haake S, Chen S, Hoang K, Nong E, Eshraghi AA, Balkany TJ, Van De Water TR (2008a) Dexamethasone protects organ of Corti explants against tumor necrosis factor-alpha-induced loss of auditory hair cells and alters the expression levels of apoptosis-related genes. Neuroscience 157(2):405–413

    CAS  PubMed  Google Scholar 

  • Dinh C, Hoang K, Haake S, Chen S, Angeli S, Nong E, Eshraghi AA, Balkany TJ, Van De Water TR (2008b) Biopolymer-released dexamethasone prevents tumor necrosis factor alpha-induced loss of auditory hair cells in vitro: implications toward the development of a drug-eluting cochlear implant electrode array. Otol Neurotol 29(7):1012–1019

    PubMed  Google Scholar 

  • Eastwood H, Chang A, Kel G, Sly D, Richardson R, O’Leary SJ (2010a) Round window delivery of dexamethasone ameliorates local and remote loss produced by cochlear implantation into the second turn of the guinea pig cochlea. Hear Res 265:25–29

    CAS  PubMed  Google Scholar 

  • Eastwood H, Pinder D, James D, Chang A, Galloway S, Richardson R, O’Leary S (2010b) Permanent and transient effects of locally delivered n-acetyl cysteine in a guinea pig model of cochlear implantation. Hear Res 259(1–2):24–30

    CAS  PubMed  Google Scholar 

  • Eshraghi AA, Polak M, He J, Telischi FF, Balkany TJ, Van De Water TR (2005) Pattern of hearing loss in a rat model of cochlear implantation trauma. Otol Neurotol (3):442–447

    Google Scholar 

  • Eshraghi AA (2006) Prevention of cochlear implant electrode damage. Curr Opin Otolaryngol Head Neck Surg 14:323–328

    PubMed  Google Scholar 

  • Eshraghi AA, Adil E, He J, Graves R, Balkany TJ, Van De Water TR (2007) Local dexamethasone therapy conserves hearing in an animal model of electrode insertion trauma-induced hearing loss. Otol Neurotol 28(6):842–849

    PubMed  Google Scholar 

  • Eshraghi AA, Dinh CT, Bohorquez J, Angeli S, Abi-Hachem R, Van De Water TR (2011) Local drug delivery to conserve hearing: mechanisms of action of eluted dexamethasone within the cochlea. Cochlear Implants Int 12(Suppl 1):S51–S53

    PubMed  Google Scholar 

  • Eshraghi AA, Gupta C, Ozdamar O, Balkany TJ, Truy E, Nazarian R (2012) Biomedical engineering principles of modern cochlear implants and recent surgical innovations. Anat Rec (Hoboken) 295(11):1957–1966

    Google Scholar 

  • Eshraghi AA, Gupta C, Van De Water TR, Bohorquez JE, Garnham C, Bas E, Talamo VM (2013) Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling. Laryngoscope 123(Suppl 1):S1–S14

    CAS  PubMed  Google Scholar 

  • Fayad JN, Makarem AO, Linthicum FH Jr (2009) Histopathologic assessment of fibrosis and new bone formation in implanted temporal bones using 3D reconstruction. Otolaryngol Head Neck Surg 141(2):247–252

    PubMed Central  PubMed  Google Scholar 

  • Fraysse B, Macías AR, Sterkers O, Burdo S, Ramsden R, Dequine O, Klenzner T, Lenarz T, Rodriguez MM, von Wallenberg E, James C (2006) Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otol Neurotol 27:624–633

    PubMed  Google Scholar 

  • Friedlander RM, Gagliardini V, Rotello RJ, Yuan J (1996) Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med 184(2):717–724

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gantz BJ, Turner C, Gfeller KE, Lowder MV (2005) Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115(5):796–802

    PubMed  Google Scholar 

  • Gantz BJ, Turner C, Gfeller KE (2006) Acoustic plus electric speech processing: preliminary results of a multicenter clinical trial of the Iowa/Nucleus Hybrid implant. Audiol Neurootol 11(Suppl 1):63–68

    PubMed  Google Scholar 

  • Gantz BJ, Hansen MR, Turner CW, Oleson JJ, Reiss LA, Parkinson AJ (2009) Hybrid 10 clinical trial: preliminary results. Audiol Neurootol 14(Suppl 1):32–38

    PubMed Central  PubMed  Google Scholar 

  • Garcia-Ibanez L, Macias AR, Morera C, Rodriguez MM, Szyfter W, Skarzynski H, Emamdjomeh H, Baumgartner WD (2009) An evaluation of the preservation of residual hearing with the Nucleus Contour Advance electrode. Acta Otolaryngol 129:651–664

    PubMed  Google Scholar 

  • Gfeller KE, Olszewski C, Turner C, Gantz B, Oleson J (2006) Music perception with cochlear implants and residual hearing. Audiol Neurootol 11(Suppl 1):12–15

    PubMed  Google Scholar 

  • Goyal A, Singh PP, Vashishth A (2013) Effect of mastoid drilling on hearing of the contralateral ear. J Laryngol Otol 127(10):952–956

    CAS  PubMed  Google Scholar 

  • Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH, Smith CA, Goodwin RG, Kubin MZ (1999) Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 162(5):2597–2605

    CAS  PubMed  Google Scholar 

  • Gstöettner W, Helbig S, Maier N, Kiefer J, Radeloff A, Adunka O (2006) Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation. Audiol Neurootol 11(Suppl 1):49–56

    PubMed  Google Scholar 

  • Gstöettner WK, Van de Heyning P, O’Connor AF, Morera C, Sainz M, Vermeire K, Mcdonald S, Cavallé L, Helbig S, Valdecasas JG, Anderson I, Adunka OF (2008) Electric acoustic stimulation of the auditory system: results of a multi-center investigation. Acta Otolaryngol 128(9):968–975

    PubMed  Google Scholar 

  • Haake SM, Dinh CT, Chen S, Eshraghi AA, Van De Water TR (2009) Dexamethasone protects auditory hair cells against TNF-alpha-initiated apoptosis via activation of PI3K/Akt and NFkappaB signaling. Hear Res 255(1–2):22–32

    CAS  PubMed  Google Scholar 

  • Han W, Shi X, Nuttall AL (2006) AIF and endo G translocation in noise exposure induced HC death. Hear Res 211:85–95

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Seki M, Miyasaka H, Watanabe K (2006) Effects of steroid on increased permeability of blood vessels of the stria vascularis by a drill in otologic surgery. Ann Otol Rhinol Laryngol 115(10):769–774

    PubMed  Google Scholar 

  • Havenith S, Lammers MJ, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJ, Grolman W (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34(4):667–674

    PubMed  Google Scholar 

  • Helbig S, Baumann U, Hey C, Helbig M (2011a) Hearing preservation after complete cochlear coverage in cochlear implantation with free-fitting FLEXSOFT electrode carrier. Otol Neurotol 32:973–979

    PubMed  Google Scholar 

  • Helbig S, Van de Heyning P, Kiefer J, Baumann U, kleine-Punte A, Brockmeier H, Anderson I, Gstöettner W (2011b) Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX (EAS) electrode array. Acta Otolaryngol 131:585–595

    PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The roles of oxidative stress in noise induced hearing loss. Ear Hear 27:1–19

    PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407 (6805):770–776

    Google Scholar 

  • Hirose K, Liberman MC (2003) Lateral wall histopathology and endocochlear potential in the noise damaged mouse cochlea. J Assoc Res Otolaryngol 4:339–352

    PubMed Central  PubMed  Google Scholar 

  • Ho L, Osaka H, Aisen PS, Pasinetti GM (1998) Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J Neuroimmunol 89(1–2):142–149

    CAS  PubMed  Google Scholar 

  • Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappaB activation. Cell 81:495–504

    CAS  PubMed  Google Scholar 

  • Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166(1–2):62–71

    PubMed  Google Scholar 

  • Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R (2009) Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 161(3):915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh N, Nagat S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937

    CAS  PubMed  Google Scholar 

  • Jamesdaniel S, Hu B, Kermany MH, Jiang H, Ding D, Coling D, Salvi R (2011) Noise induced changes in the expression of p38/MAPK signaling protein in the sensory epithelium of the inner ear. J Proteomics 75(2):410–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Venail F, Piron JP, Batrel C, Pelliccia P, Artières F, Uziel A, Mondain M (2011) Effect of surgical technique on electrode impedance after cochlear implantation. Ann Otol Rhinol Laryngol 120(8):529–534

    PubMed  Google Scholar 

  • Jian H, Shen X, Liu I, Semenov M, He X, Wang XF (2006) Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20:666–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karatas E, Miman MC, Ozturan O, Erdem T, Kalcioglu MT (2007) Contralateral normal ear after mastoid surgery: evaluation by otoacoustic emissions (mastoid drilling and hearing loss). ORL J Otorhinolaryngol Relat Spec 69(1):18–24

    PubMed  Google Scholar 

  • Kiefer J, Gstöettner W, Baumgartner W, Pok SM, Tillein J, Ye Q, von Ilberg C (2004) Conservation of low frequency hearing in cochlear implantation. Acta Otolaryngol 124:272–280

    PubMed  Google Scholar 

  • Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65(22):3525–3544

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laszig R, Ridder GJ, Fradis M (2002) Intracochlear insertion of electrodes using hyaluronic acid in cochlear implant surgery. J Laryngol Otol 116:371–372

    PubMed  Google Scholar 

  • Lee J, Ismail H, Lee JH, Kel G, O’Leary J, Hampson A, Eastwood H, O’Leary SJ (2013) Effect of both local and systemically administered dexamethasone on long-term haring and tissue response in a guinea pig model of cochlear implantation. Audiol Neurootol 18(6):392–405

    CAS  PubMed  Google Scholar 

  • Lehnhart E (1993) Intracochlear placement of cochlear implant electrodes in soft surgery technique. Head Neck Oncol 41:356–359

    Google Scholar 

  • Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22(13):4929–4942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412(6842):95–99

    Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    CAS  PubMed  Google Scholar 

  • Li PM, Somdas MA, Eddington DK, Nadol JB Jr (2007a) Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants. Ann Otol Rhinol Laryngol 116(10):731–738

    PubMed  Google Scholar 

  • Li PM, Wang H, Northrop C, Merchant SN, Nadol JB Jr (2007b) Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol 28:641–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation 9:274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282(2):C403–C407

    CAS  PubMed  Google Scholar 

  • McElveen JT, Wolford RD, Miyamoto RT (1995) Implications of bone pate in cochlear implant surgery. Otolaryngol Head Neck Surg 112:457–460

    PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    CAS  PubMed  Google Scholar 

  • Migirov L, Wolf M (2009) Influence of drilling on the distortion product otoacoustic emissions in the non-operated ear. ORL J Otorhinolaryngol Relat Spec 71(3):153–156

    PubMed  Google Scholar 

  • Moussavi-Najarkola SA, Khavanin A, Mirzaei R, Salehnia M, Akbari M (2012) Effects of whole body vibration on outer hair cells’ hearing response to distortion product otoacoustic emissions. In Vitro Cell Dev Biol Anim 48(5):276–283

    PubMed  Google Scholar 

  • Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21(4):461–465

    CAS  PubMed  Google Scholar 

  • Mutsaers SE, Bishop JE, McGrouther G, Laurent GF (1997) Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 29:5–17

    CAS  PubMed  Google Scholar 

  • Nam SI (2006) Interleukin-1beta up-regulates inducible nitric oxide by way of phosphoinositide 3-kinase-dependent in a cochlear cell model. Laryngoscope 116(12):2166–2170

    CAS  PubMed  Google Scholar 

  • Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477

    PubMed Central  PubMed  Google Scholar 

  • Nouvian R, Ruel J, Wang J, Guitton MJ, Pujol R, Puel JL (2003) Degeneration of sensory outer hair cells following pharmacological blockade of cochlear KCNQ channels in the adult guinea pig. Eur J Neurosci 17(12):2553–2562

    PubMed  Google Scholar 

  • O’Leary SJ, Monksfield P, Kel G, Connolly T, Souter MA, Chang A, Marovic P, O’Leary JS, Richardson R, Eastwood H (2013) Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res 298:27–35

    PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878:163–173

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236

    CAS  PubMed  Google Scholar 

  • Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, Walton KM, Ylikoski J (2000) Rescue of hearing, auditory HCs and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20:43–50

    CAS  PubMed  Google Scholar 

  • Plontke SK, Biegner T, Kammerer B, Delabar U, Salt AN (2008) Dexamethasone concentration gradients along scala tympani after application to the round window membrane. Otol Neurotol 29(3):401–406

    PubMed  Google Scholar 

  • Poje CP, Sewell DA, Saunders JC (1995) The effects of exposure to intense sound on the DC endocochlear potential in the chick. Hear Res 82(2):197–204

    CAS  PubMed  Google Scholar 

  • Postelmans JT, van Spronsen E, Grolman W, Stokroos RJ, Tange RA, Maré JM, Dreschler WA (2011) An evaluation of preservation of residual hearing using the suprameatal approach for cochlear implantation: can this implantation technique be used for preservation of residual hearing? Laryngoscope 121:1794–1799

    PubMed  Google Scholar 

  • Radeloff A, Unkelbach MH, Tillein J, Braun S, Helbig S, Gstöettner W, Adunka OF (2007) Impact of intrascalar blood on hearing. Laryngoscope 117:58–62

    PubMed  Google Scholar 

  • Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 295(11):1791–1811

    Google Scholar 

  • Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM, O’Leary SJ (2009) Polypyrrole coated electrode for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30(13):2614–2624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberson JB (2005) Cochlear implant surgery: minimally invasive technique. Oper Tech Otolaryngol 16:74–77

    Google Scholar 

  • Roland PS, Gstöettner W, Adunka O (2005) Method for hearing preservation in cochlear implant surgery. Oper Tech Otolaryngol 16:93–100

    Google Scholar 

  • Salazar KD, Lankford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-β1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297:L1002–L1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santa Maria PL, Domville-Lewis C, Sucher CM, Chester-Browne R, Atlas MD (2013) Hearing preservation surgery for cochlear implantation—hearing and quality of life after 2 years. Otol Neurotol 34(3):526–531

    PubMed  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21(3):415–428

    CAS  PubMed  Google Scholar 

  • Seki M, Miyasaka H, Edamatsu H, Watanabe K (2001) Changes in permeability of strial vessels following vibration given to auditory ossicle by drill. Ann Otol Rhinol Laryngol 110(2):122–126

    CAS  PubMed  Google Scholar 

  • Skarzynski H, Lorens A, D’Haese P, Walkowiak A, Piotrowska A, Sliwa L, Anderson I (2002) Preservation of residual hearing in children and post-lingually deafened adults after cochlear implantation: an initial study. ORL J Otorhinolaryngol Relat Spec 64:247–253

    PubMed  Google Scholar 

  • Skarzynski H, Lorens A, Piotrowska A, Anderson I (2007) Preservation of low frequency hearing in partial deafness cochlear implantation (PDCI) using the round window surgical approach. Acta Otolaryngol 127:41–48

    PubMed  Google Scholar 

  • Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES (2000) Molecular determinants of caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275:36152–36157

    CAS  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    CAS  PubMed  Google Scholar 

  • Syka J, Melichar I, Ulehlová L (1981) Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma. Hear Res 4(3–4):287–298

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Ando M, Kakigi A (2000) Mechanism generating endocochlear potential: role played by intermediate cells of stria vascularis. Biophys J 79:2572–2582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tandon A, Tovey JCK, Sharma A, Gupta R, Mohan RR (2010) Role of transforming growth factor beta in corneal function, biology and pathology. Curr Mol Med 10:565–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the 55 kD TNF receptor signals cell death. Cell 74:845–853

    CAS  PubMed  Google Scholar 

  • Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Söhl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21

    CAS  PubMed  Google Scholar 

  • Turner CW, Gantz BJ, Vidal C, Behrens A, Henry BA (2004) Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J Acoust Soc Am 115(4):1729–1735

    PubMed  Google Scholar 

  • Van Bergen P, Rauhala P, Spooner CM, Chiueh CC (1999) Hemoglobin and iron-evoked oxidative stress in the brain: protection by bile pigments, manganese, and S-nitrosoglutathione. Free Radic Res 31:631–640

    PubMed  Google Scholar 

  • Van De Water TR (2012) Historical aspects of inner ear anatomy and biology that underlie the design of hearing and balance prosthetic devices. Anat Rec (Hoboken) 295:1741–1759

    Google Scholar 

  • Vivero RJ, Joseph DE, Angeli S, He J, Chen S, Eshraghi AA, Balkany TJ, Van De Water TR (2008) Dexamethasone base conserves hearing from electrode trauma-induced hearing loss. Laryngoscope 118(11):2028–2035

    CAS  PubMed  Google Scholar 

  • Wang J, Li Q, Dong W, Chen J (1992) Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses. Hear Res 59(1):31–38

    CAS  PubMed  Google Scholar 

  • Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory HC death and hearing loss. J Neurosci 23:8596–8607

    CAS  PubMed  Google Scholar 

  • Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2:30

    PubMed Central  PubMed  Google Scholar 

  • Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, Shibata S, Kato A, Sunami K, Kawakatsu C (1995) The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl 519:87–92

    CAS  PubMed  Google Scholar 

  • Yamashita D, Miller JM, Jiang HY, Minami SB, Schacht J (2004) AIF and endo-G in noise-induced hearing loss. Neuroreport 15:2719–2722

    PubMed  Google Scholar 

  • Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17(12):1487–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zine A, Van De Water TR (2004) The MAPK/JNK signaling pathway offers potential therapeutic targets for the prevention of acquired deafness. Curr Drug Targets CNS Neurol Disord 3(4):325–332

    CAS  PubMed  Google Scholar 

  • Zou J, Bretlau P, Pyykkö I, Starck J, Toppila E (2001) Sensorineural hearing loss after vibration: an animal model for evaluating prevention and treatment of inner ear hearing loss. Acta Otolaryngol 121(2):143–148

    CAS  PubMed  Google Scholar 

  • Zou J, Pyykkö I, Sutinen P, Toppila E (2005) Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF. Hear Res 202(1–2):13–20

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The writing of this chapter was supported by the following grants: MED-EL Hearing Devices Company, Innsbruck, Austria to T.R.V. and E.B.; The American Hearing Research Foundation to E.B. and C.T.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Van De Water Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bas, E., Dinh, C.T., Ojo, R., Eshraghi, A.A., Van De Water, T.R. (2015). Loss of Residual Hearing Initiated by Cochlear Implantation: Role of Inflammation-Initiated Cell Death Pathways, Wound Healing and Fibrosis Pathways, and Potential Otoprotective Therapies. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_19

Download citation

Publish with us

Policies and ethics