Skip to main content

Genes and Hearing Loss: Relationship to Oxidative Stress and Free Radical Formation

  • Chapter
Free Radicals in ENT Pathology

Abstract

Genetic evidence in humans and in mice supports the significance of reduction–oxidation (redox) balance in the development and maintenance of normal hearing. Variants in genes that directly or indirectly alter redox balance result in increased susceptibility to hearing loss, including age-related hearing loss and loss associated with noise and ototoxic drugs. Preexposure to low levels of noise, heat, or drugs activates pathways, including oxidative stress response genes, that can protect the cochlea from subsequent ototoxic damage. Further insight into the genetic control of redox balance and its influence on hearing will be accelerated by a variety of advances in genetic and genomic approaches. These include more extensive genome-wide association analyses and next-generation sequencing in human populations to identify genetic variants associated with age- and ototoxin-related hearing loss. In addition, innovations in cellular reprogramming strategies and genome engineering techniques will broaden the range of genetic model systems in which to investigate mechanisms of cochlear pathology and to test therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARHL:

Age-related hearing loss

CAT :

Catalase

CR:

Caloric restriction

CRISPR/Cas:

Clustered regularly interspaced short palindromic repeat/Cas9 endonucleases

ER:

Endoplasmic reticulum

ES:

Embryonic stem

GWAS:

Genome-wide association studies

H2O2 :

Hydrogen peroxide

HPA:

Hypothalamic–pituitary–adrenal axis

HSFs:

Heat shock transcription factors

HSPs:

Heat shock proteins

IDH2 :

Mitochondrial isocitrate dehydrogenase 2

Mt-Tr :

Mitochondrial tRNA arginine gene

NAT2 :

N-Acetyltransferase 2 gene

NF-κb:

Nuclear factor kappaB

NGS:

Next-generation sequencing

NIHL:

Noise-induced hearing loss

Redox:

Reduction–oxidation

ROS:

Reactive oxygen species

Sirt :

Sirtuin

SNPs:

Single nucleotide polymorphisms

SOD:

Superoxide dismutase

TALENs:

Transcription activator-like effector nucleases

UPR:

Unfolded protein response

References

  • Afzal AR, Mandal K, Nyamweya S, Foteinos G, Poloniecki J, Camm AJ, Jahangiri M, Xu Q (2008) Association of Met439Thr substitution in heat shock protein 70 gene with postoperative atrial fibrillation and serum HSP70 protein levels. Cardiology 110(1):45–52

    CAS  PubMed  Google Scholar 

  • Ahmed ZM, Yousaf R, Lee BC, Khan SN, Lee S, Lee K, Husnain T, Rehman AU, Bonneux S, Ansar M, Ahmad W, Leal SM, Gladyshev VN, Belyantseva IA, Van Camp G, Riazuddin S, Friedman TB, Riazuddin S (2011) Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. Am J Hum Genet 88(1):19–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews. Mol Cell Biol 11(8):545–555

    CAS  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altschuler RA, Fairfield D, Cho Y, Leonova E, Benjamin IJ, Miller JM, Lomax MI (2002) Stress pathways in the rat cochlea and potential for protection from acquired deafness. Audiol Neurootol 7(3):152–156

    CAS  PubMed  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. N Biotechnol 25(4):195–203

    CAS  PubMed  Google Scholar 

  • Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SNP, Collins FS, Yang IV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L, Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R, Iraqi FA, Pomp D, Threadgill D, de Villena FP-M, Churchill GA (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21(8):1213–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barden EK, Rellinger EA, Ortmann AJ, Ohlemiller KK (2012) Inheritance patterns of noise vulnerability and “protectability” in (C57BL/6J x CBA/J) F1 hybrid mice. J Am Acad Audiol 23(5):332–340

    PubMed  Google Scholar 

  • Basappa J, Graham CE, Turcan S, Vetter DE (2012) The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res 288(1–2):3–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bespalova IN, Van Camp G, Bom SJ, Brown DJ, Cryns K, DeWan AT, Erson AE, Flothmann K, Kunst HP, Kurnool P, Sivakumaran TA, Cremers CW, Leal SM, Burmeister M, Lesperance MM (2001) Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet 10(22):2501–2508

    CAS  PubMed  Google Scholar 

  • Blanco-Sanchez B, Clément A, Fierro J, Washbourne P, Westerfield M (2014) Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 7(5):547–559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolz H, von Brederlow B, Ramírez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, del C-Salcedó Cabrera M, Vila MC, Molina OP, Gal A, Kubisch C (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27(1):108–112

    CAS  PubMed  Google Scholar 

  • Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68(1):26–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boycott KM, Vanstone MR, Bulman DE, Mackenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14(10):681–691

    CAS  PubMed  Google Scholar 

  • Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han J-DJ (2013) Epigenomics and the regulation of aging. Epigenomics 5(2):205–227

    CAS  PubMed  Google Scholar 

  • Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14(6):427–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canlon B, Meltser I, Johansson P, Tahera Y (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226(1–2):61–69

    CAS  PubMed  Google Scholar 

  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang N-C, Ho C-K, Wu M-T, Yu M-L, Ho K-Y (2009) Effect of manganese-superoxide dismutase genetic polymorphisms IVS3-23T/G on noise susceptibility in Taiwan. Am J Otolaryngol 30(6):396–400

    CAS  PubMed  Google Scholar 

  • Cheng J, Zhu Y, He S, Lu Y, Chen J, Han B, Petrillo M, Wrzeszczynski KO, Yang S, Dai P, Zhai S, Han D, Zhang MQ, Li W, Liu X, Li H, Chen Z-Y, Yuan H (2011) Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64. Am J Hum Genet 89(1):56–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12(9):628–640

    CAS  PubMed  Google Scholar 

  • Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol 7(3):299–307

    PubMed Central  PubMed  Google Scholar 

  • Davis RR, Newlander JK, Ling X, Cortopassi GA, Krieg EF, Erway LC (2001) Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155(1–2):82–90

    CAS  PubMed  Google Scholar 

  • Dechesne CJ, Kim HN, Nowak TS Jr, Wenthold RJ (1992) Expression of heat shock protein, HSP72, in the guinea pig and rat cochlea after hyperthermia: immunochemical and in situ hybridization analysis. Hear Res 59(2):195–204

    CAS  PubMed  Google Scholar 

  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27(1):103–107

    PubMed  Google Scholar 

  • Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9(2):285–290

    CAS  PubMed  Google Scholar 

  • Endo T, Nakagawa T, Iguchi F, Kita T, Okano T, Sha S-H, Schacht J, Shiga A, Kim T-S, Ito J (2005) Elevation of superoxide dismutase increases acoustic trauma from noise exposure. Free Radic Biol Med 38(4):492–498

    CAS  PubMed  Google Scholar 

  • Esworthy RS, Ho YS, Chu FF (1997) The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys 340(1):59–63

    CAS  PubMed  Google Scholar 

  • Fairfield DA, Kanicki AC, Lomax MI, Altschuler RA (2004) Induction of heat shock protein 32 (Hsp32) in the rat cochlea following hyperthermia. Hear Res 188(1–2):1–11

    CAS  PubMed  Google Scholar 

  • Fairfield DA, Lomax MI, Dootz GA, Chen S, Galecki AT, Benjamin IJ, Dolan DF, Altschuler RA (2005) Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation. J Neurosci Res 81(4):589–596

    CAS  PubMed  Google Scholar 

  • Fortunato G, Marciano E, Zarrilli F, Mazzaccara C, Intrieri M, Calcagno G, Vitale DF, La Manna P, Saulino C, Marcelli V, Sacchetti L (2004) Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem 50(11):2012–2018

    CAS  PubMed  Google Scholar 

  • Francis SP, Kramarenko II, Brandon CS, Lee F-S, Baker TG, Cunningham LL (2011) Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis 2:e195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fransen E, Van Laer L, Lemkens N, Caethoven G, Flothmann K, Govaerts P, Van de Heyning P, Van Camp G (2004) A novel Z-score-based method to analyze candidate genes for age-related hearing impairment. Ear Hear 25(2):133–141

    PubMed  Google Scholar 

  • Friedman T, Battey J, Kachar B, Riazuddin S, Noben-Trauth K, Griffith A, Wilcox E (2000) Modifier genes of hereditary hearing loss. Curr Opin Neurobiol 10(4):487–493

    CAS  PubMed  Google Scholar 

  • Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van Eyken E, Corneveaux JJ, Tembe WD, Halperin RF, Thorburn AQ, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykkö I, Cremers CWRJ, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Makmura L, Ohmen JD, Linthicum FH, Fayad JN, Pearson JV, Craig DW, Stephan DA, Van Camp G (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18(4):785–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J, Monahan H, O’Geen H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L, Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G, Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 488(7414):91–100

    Google Scholar 

  • Gilels F, Paquette ST, Zhang J, Rahman I, White PM (2013) Mutation of foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci 33(47):18409–18424

    CAS  PubMed  Google Scholar 

  • Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45:203–226

    CAS  PubMed  Google Scholar 

  • Girotto G, Pirastu N, Sorice R, Biino G, Campbell H, d’Adamo AP, Hastie ND, Nutile T, Polasek O, Portas L, Rudan I, Ulivi S, Zemunik T, Wright AF, Ciullo M, Hayward C, Pirastu M, Gasparini P (2011) Hearing function and thresholds: a genome-wide association study in European isolated populations identifies new loci and pathways. J Med Genet 48(6):369–374

    PubMed  Google Scholar 

  • Gong TW, Fairfield DA, Fullarton L, Dolan DF, Altschuler RA, Kohrman DC, Lomax MI (2012) Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1−/− mice. J Assoc Res Otolaryngol 13(1):29–37

    PubMed Central  PubMed  Google Scholar 

  • Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, Lonsbury-Martin BL, Vázquez AE (2011) Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res 277(1–2):211–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan MX, Fischel-Ghodsian N, Attardi G (2000) A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet 9(12):1787–1793

    CAS  PubMed  Google Scholar 

  • Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78(3):361–369

    CAS  PubMed  Google Scholar 

  • Hein DW (2002) Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506–507:65–77

    PubMed  Google Scholar 

  • Hobbie SN, Bruell CM, Akshay S, Kalapala SK, Shcherbakov D, Böttger EC (2008) Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci U S A 105(9):3244–3249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    CAS  PubMed  Google Scholar 

  • Huyghe JR, Van Laer L, Hendrickx J-J, Fransen E, Demeester K, Topsakal V, Kunst S, Manninen M, Jensen M, Bonaconsa A, Mazzoli M, Baur M, Hannula S, Mäki-Torkko E, Espeso A, Van Eyken E, Flaquer A, Becker C, Stephens D, Sorri M, Orzan E, Bille M, Parving A, Pyykkö I, Cremers CWRJ, Kremer H, Van de Heyning PH, Wienker TF, Nürnberg P, Pfister M, Van Camp G (2008) Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait. Am J Hum Genet 83(3):401–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128(1):9–13

    Google Scholar 

  • Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13(1):20–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KR, Erway LC, Cook SA, Willott JF, Zheng QY (1997) A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res 114(1–2):83–92

    CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice. Genomics 70(2):171–180

    CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N (2001) A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Noben-Trauth K (2006) Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KR, Yu H, Ding D, Jiang H, Gagnon LH, Salvi RJ (2010) Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res 268(1–2):85–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KR, Gagnon LH, Longo-Guess C, Kane KL (2012) Association of a citrate synthase missense mutation with age-related hearing loss in A/J mice. Neurobiol Aging 33(8):1720–1729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61(4):310–318

    CAS  PubMed  Google Scholar 

  • Kawamoto K, Sha S-H, Minoda R, Izumikawa M, Kuriyama H, Schacht J, Raphael Y (2004) Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 9(2):173–181

    CAS  PubMed  Google Scholar 

  • Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91

    CAS  PubMed  Google Scholar 

  • Keithley EM, Canto C, Zheng QY, Wang X, Fischel-Ghodsian N, Johnson KR (2005) Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 209(1–2):76–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilbride SM, Prehn JHM (2013) Central roles of apoptotic proteins in mitochondrial function. Oncogene 32(22):2703–2711

    CAS  PubMed  Google Scholar 

  • Kinoshita M, Sakamoto T, Kashio A, Shimizu T, Yamasoba T (2013) Age-related hearing loss in Mn-SOD heterozygous knockout mice. Oxid Med Cell Longev 2013:325702

    PubMed Central  PubMed  Google Scholar 

  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500(7461):217–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71(5):379–391

    CAS  PubMed  Google Scholar 

  • Konings A, Van Laer L, Pawelczyk M, Carlsson P-I, Bondeson M-L, Rajkowska E, Dudarewicz A, Vandevelde A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G (2007) Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Hum Mol Genet 16(15):1872–1883

    CAS  PubMed  Google Scholar 

  • Konings A, Van Laer L, Michel S, Pawelczyk M, Carlsson P-I, Bondeson M-L, Rajkowska E, Dudarewicz A, Vandevelde A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G (2008) Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations. Eur J Hum Genet 17(3):329–335

    PubMed Central  PubMed  Google Scholar 

  • Kwak GH, Kim JR, Kim HY (2009) Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep 42(2):113–118

    CAS  PubMed  Google Scholar 

  • Kwak G-H, Lim D-H, Han JY, Lee YS, Kim H-Y (2012) Methionine sulfoxide reductase B3 protects from endoplasmic reticulum stress in Drosophila and in mammalian cells. Biochem Biophys Res Commun 420(1):130–135

    CAS  PubMed  Google Scholar 

  • Kwon T-J, Cho H-J, Kim U-K, Lee E, Oh S-K, Bok J, Bae YC, Yi J-K, Lee JW, Ryoo ZY, Lee S-H, Lee KY, Kim H-Y (2014) Methionine sulfoxide reductase B3 deficiency causes hearing loss due to stereocilia degeneration and apoptotic cell death in cochlear hair cells. Hum Mol Genet 23(6):1591–1601

    CAS  PubMed  Google Scholar 

  • Le T, Keithley EM (2007) Effects of antioxidants on the aging inner ear. Hear Res 226(1–2):194–202

    CAS  PubMed  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93(18):9782–9787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Hoe KL, Maeng PJ (2007) Yeast cells lacking the CIT1-encoded mitochondrial citrate synthase are hypersusceptible to heat- or aging-induced apoptosis. Mol Biol Cell 18(9):3556–3567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonard SE, Carroll KS (2011) Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology. Curr Opin Chem Biol 15(1):88–102

    CAS  PubMed  Google Scholar 

  • Leonova EV, Fairfield DA, Lomax MI, Altschuler RA (2002) Constitutive expression of Hsp27 in the rat cochlea. Hear Res 163(1–2):61–70

    CAS  PubMed  Google Scholar 

  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381

    CAS  PubMed  Google Scholar 

  • Lim HH, Jenkins OH, Myers MW, Miller JM, Altschuler RA (1993) Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea. Hear Res 69(1–2):146–150

    CAS  PubMed  Google Scholar 

  • Liu Y-M, Li X-D, Guo X, Liu B, Lin A-H, Ding Y-L, Rao S-Q (2010) SOD2 V16A SNP in the mitochondrial targeting sequence is associated with noise induced hearing loss in Chinese workers. Dis Markers 28(3):137–147

    PubMed Central  PubMed  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Hou J (2009) A “FOXO” in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 29(3):395–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293

    CAS  PubMed  Google Scholar 

  • May LA, Kramarenko II, Brandon CS, Voelkel-Johnson C, Roy S, Truong K, Francis SP, Monzack EL, Lee F-S, Cunningham LL (2013) Inner ear supporting cells protect hair cells by secreting HSP70. J Clin Invest 123(8):3577–3587

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden SL, Ding D, Burkard RF, Jiang H, Reaume AG, Flood DG, Salvi RJ (1999a) Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol 413(1):101–112

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999b) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20(1):1–8

    CAS  PubMed  Google Scholar 

  • Meltser I, Canlon B (2011) Protecting the auditory system with glucocorticoids. Hear Res 281(1–2):47–55

    CAS  PubMed  Google Scholar 

  • Michel V, Goodyear R, Weil D, Marcotti W, Perfettini I, Wolfrum U, Kros C, Richardson G, Petit C (2005) Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev Biol 280(2):281–294

    CAS  PubMed  Google Scholar 

  • Mikuriya T, Sugahara K, Takemoto T, Tanaka K, Takeno K, Shimogori H, Nakai A, Yamashita H (2005) Geranylgeranylacetone, a heat shock protein inducer, prevents acoustic injury in the guinea pig. Brain Res 1065(1–2):107–114

    CAS  PubMed  Google Scholar 

  • Mikuriya T, Sugahara K, Sugimoto K, Fujimoto M, Takemoto T, Hashimoto M, Hirose Y, Shimogori H, Hayashida N, Inouye S, Nakai A, Yamashita H (2008) Attenuation of progressive hearing loss in a model of age-related hearing loss by a heat shock protein inducer, geranylgeranylacetone. Brain Res 1212:9–17

    CAS  PubMed  Google Scholar 

  • Miller RA, Austad S, Burke D, Chrisp C, Dysko R, Galecki A, Jackson A, Monnier V (1999) Exotic mice as models for aging research: polemic and prospectus. Neurobiol Aging 20(2):217–231

    CAS  PubMed  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    CAS  PubMed  Google Scholar 

  • Myers MW, Quirk WS, Rizk SS, Miller JM, Altschuler RA (1992) Expression of the major mammalian stress protein in the rat cochlea following transient ischemia. Laryngoscope 102(9):981–987

    CAS  PubMed  Google Scholar 

  • Nagashima R, Ogita K (2006) Enhanced biosynthesis of glutathione in the spiral ganglion of the cochlea after in vivo treatment with dexamethasone in mice. Brain Res 1117(1):101–108

    CAS  PubMed  Google Scholar 

  • Nayagam BA, Edge AS, Needham K, Hyakumura T, Leung J, Nayagam DAX, Dottori M (2012) An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells Dev 22(6):901–912

    PubMed Central  PubMed  Google Scholar 

  • Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson RF, Glenn KA, Zhang Y, Wen H, Knutson T, Gouvion CM, Robinson BK, Zhou Z, Yang B, Smith RJH, Paulson HL (2007) Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 27(19):5163–5171

    CAS  PubMed  Google Scholar 

  • Nemoto M, Morita Y, Mishima Y, Takahashi S, Nomura T, Ushiki T, Shiroishi T, Kikkawa Y, Yonekawa H, Kominami R (2004) Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 324(4):1283–1288

    CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Johnson KR (2009) Inheritance patterns of progressive hearing loss in laboratory strains of mice. Brain Res 1277:42–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noben-Trauth K, Latoche JR, Neely HR, Bennett B (2010) Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5(7):e11459

    PubMed Central  PubMed  Google Scholar 

  • Oh SH, Yu WS, Song BH, Lim D, Koo JW, Chang SO, Kim CS (2000) Expression of heat shock protein 72 in rat cochlea with cisplatin-induced acute ototoxicity. Acta Otolaryngol 120(2):146–150

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ (1999) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 4(5):237–246

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1(3):243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK, Rybak Rice ME, Rosen AD, Montgomery SC, Gagnon PM (2011) Protection by low-dose kanamycin against noise-induced hearing loss in mice: dependence on dosing regimen and genetic background. Hear Res 280(1–2):141–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Op de Beeck K, Schacht J, Van Camp G (2011) Apoptosis in acquired and genetic hearing impairment: the programmed death of the hair cell. Hear Res 281(1–2):18–27

    PubMed  Google Scholar 

  • Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Wanaka A, Yoshikawa M (2013) Induction of inner ear hair cell-like cells from Math1-transfected mouse ES cells. Cell Death Dis 4:e700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paz Z, Freeman S, Horowitz M, Sohmer H (2004) Prior heat acclimation confers protection against noise-induced hearing loss. Audiol Neurootol 9(6):363–369

    PubMed  Google Scholar 

  • Peppi M, Kujawa SG, Sewell WF (2011) A corticosteroid-responsive transcription factor, promyelocytic leukemia zinc finger protein, mediates protection of the cochlea from acoustic trauma. J Neurosci 31(2):735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabbani B, Mahdieh N, Hosomichi K, Nakaoka H, Inoue I (2012) Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet 57(10):621–632

    CAS  PubMed  Google Scholar 

  • Rigoli L, Di Bella C (2012) Wolfram syndrome 1 and Wolfram syndrome 2. Curr Opin Pediatr 24(4):512–517

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, Joubert L-M, Oshima K, Heller S (2014) Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev 23(11):1275–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schacht J, Altschuler R, Burke DT, Chen S, Dolan D, Galecki AT, Kohrman D, Miller RA (2012) Alleles that modulate late life hearing in genetically heterogeneous mice. Neurobiol Aging 33(8):1842.e15–e29

    Google Scholar 

  • Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM, Kazmierczak P, Sczaniecka A, Kolatkar A, Wiltshire T, Kuhn P, Holt JR, Kachar B, Tarantino L, Müller U (2009) A mouse model for nonsyndromic deafness (DFNB12) links hearing loss to defects in tip links of mechanosensory hair cells. Proc Natl Acad Sci U S A 106(13):5252–5257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C, Goland R, Leibel RL, Egli D (2014) β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63(3):923–933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sliwinska-Kowalska M, Pawelczyk M (2013) Contribution of genetic factors to noise-induced hearing loss: a human studies review. Mutat Res 752(1):61–65

    CAS  PubMed  Google Scholar 

  • Someya S, Yamasoba T, Weindruch R, Prolla TA, Tanokura M (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28(10):1613–1622

    PubMed  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staecker H, Zheng QY, Van De Water TR (2001) Oxidative stress in aging in the C57B16/J mouse cochlea. Acta Otolaryngol 121(6):666–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187(2):367–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugahara K, Inouye S, Izu H, Katoh Y, Katsuki K, Takemoto T, Shimogori H, Yamashita H, Nakai A (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182(1–2):88–96

    CAS  PubMed  Google Scholar 

  • Tadros SF, D’Souza MD, Zhu X, Frisina RD (2014) Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits. PLoS One 9(2):e90279

    PubMed Central  PubMed  Google Scholar 

  • Takumida M, Anniko M (2005) Heat shock protein 70 delays gentamicin-induced vestibular hair cell death. Acta Otolaryngol 125(1):23–28

    CAS  PubMed  Google Scholar 

  • Taleb M, Brandon CS, Lee F-S, Lomax MI, Dillmann WH, Cunningham LL (2008) Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J Assoc Res Otolaryngol 9(3):277–289

    PubMed Central  PubMed  Google Scholar 

  • Taleb M, Brandon CS, Lee F-S, Harris KC, Dillmann WH, Cunningham LL (2009) Hsp70 inhibits aminoglycoside-induced hearing loss and cochlear hair cell death. Cell Stress Chaperones 14(4):427–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thalmann R, Henzl MT, Thalmann I (1997) Specific proteins of the organ of Corti. Acta Otolaryngol 117(2):265–268

    CAS  PubMed  Google Scholar 

  • Thamsen M, Jakob U (2011) The redoxome Proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15(1):113–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson AM, Neely JG (1992) Induction of heat shock protein in interdental cells by hyperthermia. Otolaryngol Head Neck Surg 107(6 Pt 1):769–774

    CAS  PubMed  Google Scholar 

  • Threadgill DW, Miller DR, Churchill GA, de Villena FP-M (2011) The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 52(1):24–31

    CAS  PubMed  Google Scholar 

  • Tong M, Hernandez JL, Purcell EK, Altschuler RA, Duncan RK (2010) The intrinsic electrophysiological properties of neurons derived from mouse embryonic stem cells overexpressing neurogenin-1. Am J Physiol Cell Physiol 299(6):C1335–C1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trott A, West JD, Klaic L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19(3):1104–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Unal M, Tamer L, Doğruer ZN, Yildirim H, Vayisoğlu Y, Camdeviren H (2005) N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope 115(12):2238–2241

    PubMed  Google Scholar 

  • Van Eyken E, Van Camp G, Fransen E, Topsakal V, Hendrickx JJ, Demeester K, Van de Heyning P, Mäki-Torkko E, Hannula S, Sorri M, Jensen M, Parving A, Bille M, Baur M, Pfister M, Bonaconsa A, Mazzoli M, Orzan E, Espeso A, Stephens D, Verbruggen K, Huyghe J, Dhooge I, Huygen P, Kremer H, Cremers CWRJ, Kunst S, Manninen M, Pyykkö I, Lacava A, Steffens M, Wienker TF, Van Laer L (2007a) Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet 44(9):570–578

    PubMed Central  PubMed  Google Scholar 

  • Van Eyken E, Van Camp G, Van Laer L (2007b) The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 12(6):345–358

    PubMed  Google Scholar 

  • Van Laer L, Huyghe JR, Hannula S, Van Eyken E, Stephan DA, Mäki-Torkko E, Aikio P, Fransen E, Lysholm-Bernacchi A, Sorri M, Huentelman MJ, Van Camp G (2010) A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet 18(6):685–693

    PubMed Central  PubMed  Google Scholar 

  • Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H, Roeb W, McCarthy S, Nord AS, Gordon CR, Ben-Neriah Z, Sebat J, Kanaan M, Lee MK, Frydman M, King M-C, Avraham KB (2010) Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet 87(1):101–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wan G, Corfas G, Stone JS (2013) Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 24(5):448–459

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165(1–2):96–102

    PubMed  Google Scholar 

  • Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St John G, Nathan C, Brot N (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397(2):172–178

    CAS  PubMed  Google Scholar 

  • Wilch E, Azaiez H, Fisher RA, Elfenbein J, Murgia A, Birkenhäger R, Bolz H, Da Silva-Costa SM, Del Castillo I, Haaf T, Hoefsloot L, Kremer H, Kubisch C, Le Marechal C, Pandya A, Sartorato EL, Schneider E, Van Camp G, Wuyts W, Smith RJH, Friderici KH (2010) A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression. Clin Genet 78(3):267–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiley SE, Andreyev AY, Divakaruni AS, Karisch R, Perkins G, Wall EA, van der Geer P, Chen Y-F, Tsai T-F, Simon MI, Neel BG, Dixon JE, Murphy AN (2013) Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca(2+) homeostasis. EMBO Mol Med 5(6):904–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willer CJ, Mohlke KL (2012) Finding genes and variants for lipid levels after genome-wide association analysis. Curr Opin Lipidol 23(2):98–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willott JF, Erway LC, Archer JR, Harrison DE (1995) Genetics of age-related hearing loss in mice. II. Strain differences and effects of caloric restriction on cochlear pathology and evoked response thresholds. Hear Res 88(1–2):143–155

    CAS  PubMed  Google Scholar 

  • Xiong H, Dai M, Ou Y, Pang J, Yang H, Huang Q, Chen S, Zhang Z, Xu Y, Cai Y, Liang M, Zhang X, Lai L, Zheng Y (2014) SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss. Exp Gerontol 51:8–14

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Shi X, Nuttall AL (2009) The influence of loud sound stress on expression of osmotic stress protein 94 in the murine inner ear. Neuroscience 158(4):1691–1698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasoba T, Dolan DF, Miller JM (1999) Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Hear Res 127(1–2):31–40

    CAS  PubMed  Google Scholar 

  • Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K (2013) Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 303:30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148(1–2):213–219

    CAS  PubMed  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19(22):10116–10124

    CAS  PubMed  Google Scholar 

  • Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC (2000) Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss. Hear Res 141(1–2):97–106

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Adachi E, Fukiya K, Iwai K, Tanaka K (2005) Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep 6(3):239–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Zuo J (2009) The practical use of Cre and loxP technologies in mouse auditory research. Methods Mol Biol 493:87–102

    CAS  PubMed  Google Scholar 

  • Yu Y, Szczepek AJ, Haupt H, Mazurek B (2009) Geldanamycin induces production of heat shock protein 70 and partially attenuates ototoxicity caused by gentamicin in the organ of Corti explants. J Biomed Sci 16:79

    PubMed Central  PubMed  Google Scholar 

  • Zheng QY, Ding D, Yu H, Salvi RJ, Johnson KR (2009) A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging 30(10):1693–1705

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kohrman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kohrman, D. (2015). Genes and Hearing Loss: Relationship to Oxidative Stress and Free Radical Formation. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_17

Download citation

Publish with us

Policies and ethics