Skip to main content

Cellular Mechanisms of Age-Related Hearing Loss

  • Chapter

Abstract

Age-related hearing loss (ARHL) is an exacerbation in the auditory receptor of the accumulation of cellular damage, characteristic of the aging process. In the cochlea, aging damage is likely aggravated by exceptional metabolic requirements and lifelong exposure to noise and other environmental damaging factors, on a background of genetic susceptibility. Genomic damage and instability, along with impaired epigenetic regulation and protein homeostasis, likely are primary causes of cellular aging (Cell 153:1194–1217, 2013). Relative contributions to ARHL still are unclear, although mutations in the mitochondrial genome seem particularly relevant. Primary damage mechanisms trigger defensive responses whose exhaustion leads to failure in cell function associated with aging. Relevant to ARHL are signaling pathways adapting cell growth and metabolism to ongoing needs, including those derived from damage. Insulin-like growth factor-1 (IGF-1), part of a major anabolic regulatory pathway, declines greatly in ARHL. Low levels of sirtuins, enzymes involved in catabolic control by regulating NAD+ levels, are also linked to ARHL. Beneficial effects of caloric restriction in ARHL may be mediated through sirtuin regulation of antioxidation mechanisms. A second most relevant aging defense mechanism which may be central to ARHL is exhausted mitochondrial function. Dysfunctional mitochondria, in connection with mitochondrial genome mutations and high cochlear metabolic demands, leads to excessive free radical buildup and cellular damage and apoptosis. This is likely a major contributor to ARHL, although a primary causative link is still missing. Age-related mitochondrial dysfunction in different cochlear cell types may be at the origin of different ARHL histopathologies. Like in aging in general, the combination of primary causes of damage and exhausted defensive mechanisms leads to the final ARHL phenotype. In this regard, the involvement in ARHL of age-related changes in central auditory pathways, due to a complex combination of limited inputs from the aged cochlea and brain aging, is very relevant. It includes changes in connectivity, synapses, and neurotransmitter systems which add further complexities and challenges to the understanding and management of ARHL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal Y, Platz EA, Niparko JK (2008) Prevalence of hearing loss and differences by demographic characteristics among US adults: data from the National Health and Nutrition Examination Survey, 1999–2004. Arch Intern Med 168:1522–1530

    PubMed  Google Scholar 

  • Alam SA, Oshima T, Suzuki M et al (2001) The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. Laryngoscope 111:528–534

    CAS  PubMed  Google Scholar 

  • Altschuler RA, Fairfield D, Cho Y et al (2002) Stress pathways in the rat cochlea and potential for protection from acquired deafness. Audiol Neurootol 7:152–156

    CAS  PubMed  Google Scholar 

  • Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC et al (2014) Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 6:29

    PubMed Central  PubMed  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Aging affects neural precision of speech encoding. J Neurosci 32:14156–14164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai U, Seidman MD, Hinojosa R, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study. Am J Otol 18:449–453

    CAS  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    CAS  PubMed  Google Scholar 

  • Bano D, Agostini M, Melino G, Nicotera P (2011) Ageing, neuronal connectivity and brain disorders: an unsolved ripple effect. Mol Neurobiol 43:124–130

    CAS  PubMed  Google Scholar 

  • Bao J, Ohlemiller KK (2010) Age-related loss of spiral ganglion neurons. Hear Res 264:93–97

    PubMed Central  PubMed  Google Scholar 

  • Bielefeld EC, Coling D, Chen G-D, Henderson D (2008) Multiple dosing strategies with acetyl L-carnitine (ALCAR) fail to alter age-related hearing loss in the Fischer 344/NHsd rat. J Negat Results Biomed 7:4

    PubMed Central  PubMed  Google Scholar 

  • Boettcher FA, White DR, Mills JH, Schmiedt BN (1995) Age-related changes in auditory evoked potentials of gerbils. III. Low-frequency responses and repetition rate effects. Hear Res 87:208–219

    CAS  PubMed  Google Scholar 

  • Böttger EC, Schacht J (2013) The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 303:12–19

    PubMed Central  PubMed  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bratic A, Larsson N-G (2013) The role of mitochondria in aging. J Clin Invest 123:951–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckiova D, Popelar J, Syka J (2006) Collagen changes in the cochlea of aged Fischer 344 rats. Exp Gerontol 41:296–302

    CAS  PubMed  Google Scholar 

  • Buckiova D, Popelar J, Syka J (2007) Aging cochleas in the F344 rat: morphological and functional changes. Exp Gerontol 42:629–638

    CAS  PubMed  Google Scholar 

  • Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169

    CAS  PubMed  Google Scholar 

  • Caspary DM, Holder TM, Hughes LF et al (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312

    CAS  PubMed  Google Scholar 

  • Caspary DM, Hughes LF, Ling LL (2013) Age-related GABAA receptor changes in rat auditory cortex. Neurobiol Aging 34:1486–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959

    CAS  PubMed  Google Scholar 

  • Cataldi M (2013) The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 11:276–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi Y-H, Miller JM, Tucker KL et al (2014) Antioxidant vitamins and magnesium and the risk of hearing loss in the US general population. Am J Clin Nutr 99:148–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coling D, Chen S, Chi L-H et al (2009) Age-related changes in antioxidant enzymes related to hydrogen peroxide metabolism in rat inner ear. Neurosci Lett 464:22–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruickshanks KJ, Klein R, Klein BE et al (1998a) Cigarette smoking and hearing loss: the epidemiology of hearing loss study. JAMA 279:1715–1719

    CAS  PubMed  Google Scholar 

  • Cruickshanks KJ, Wiley TL, Tweed TS et al (1998b) Prevalence of hearing loss in older adults in Beaver Dam Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148:879–886

    CAS  PubMed  Google Scholar 

  • Dai P, Yang W, Jiang S et al (2004) Correlation of cochlear blood supply with mitochondrial DNA common deletion in presbycusis. Acta Otolaryngol (Stockh) 124:130–136

    CAS  Google Scholar 

  • De Villers-Sidani E, Alzghoul L, Zhou X et al (2010) Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci U S A 107:13900–13905

    PubMed Central  PubMed  Google Scholar 

  • Dröse S, Brandt U (2012) Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145–169

    PubMed  Google Scholar 

  • Durga J, Verhoef P, Anteunis LJ, Schouten E, Kok FJ (2007) Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med 146:1–9

    PubMed  Google Scholar 

  • Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engle JR, Gray DT, Turner H et al (2014) Age-related neurochemical changes in the rhesus macaque inferior colliculus. Front Aging Neurosci 6:73

    PubMed Central  PubMed  Google Scholar 

  • Engle JR, Tinling S, Recanzone GH (2013) Age-related hearing loss in rhesus monkeys is correlated with cochlear histopathologies. PLoS One 8:e55092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fairfield DA, Kanicki AC, Lomax MI, Altschuler RA (2002) Expression and localization of heat shock factor (Hsf) 1 in the rodent cochlea. Hear Res 173:109–118

    CAS  PubMed  Google Scholar 

  • Fairfield DA, Kanicki AC, Lomax MI, Altschuler RA (2004) Induction of heat shock protein 32 (Hsp32) in the rat cochlea following hyperthermia. Hear Res 188:1–11

    CAS  PubMed  Google Scholar 

  • Fairfield DA, Lomax MI, Dootz GA et al (2005) Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation. J Neurosci Res 81:589–596

    CAS  PubMed  Google Scholar 

  • Ferraro JA, Minckler J (1977) The human lateral lemniscus and its nuclei. Brain Lang 4:156–164

    CAS  PubMed  Google Scholar 

  • Fetoni AR, Picciotti PM, Paludetti G, Troiani D (2011) Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 46:413–425

    PubMed  Google Scholar 

  • Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finlayson PG (1995) Decreased inhibition to lateral superior olive neurons in young and aged Sprague-Dawley rats. Hear Res 87:84–95

    CAS  PubMed  Google Scholar 

  • Fischel-Ghodsian N (2003) Mitochondrial hearing impairment. Audiol Med 1:56–66

    Google Scholar 

  • Fischel-Ghodsian N, Bykhovskaya Y, Taylor K et al (1997) Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations. Hear Res 110:147–154

    CAS  PubMed  Google Scholar 

  • Friedman LM, Avraham KB (2009) MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mamm Genome 20:581–603

    CAS  PubMed  Google Scholar 

  • Frisina RD, Walton JP (2001) Aging of the mouse central auditory system. In: Willott JP (ed) From behavior to molecular biology. CRC, New York, pp 339–379

    Google Scholar 

  • Frisina RD, Walton JP (2006) Age-related structural and functional changes in the cochlear nucleus. Hear Res 216–217:216–223

    PubMed  Google Scholar 

  • Garinis GA, van der Horst GTJ, Vijg J, Hoeijmakers JHJ (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10:1241–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gates GA (2012) Central presbycusis: an emerging view. Otolaryngol Head Neck Surg 147:1–2

    PubMed  Google Scholar 

  • Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120

    PubMed  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    CAS  PubMed  Google Scholar 

  • Glasauer A, Chandel NS (2013) ROS. Curr Biol 23:R100–R102

    CAS  PubMed  Google Scholar 

  • Gleich O, Netz J, Strutz J (2014) Comparing the inferior colliculus of young and old gerbils (Meriones unguiculatus) with an emphasis on GABA. Exp Gerontol 57C:155–162

    Google Scholar 

  • Gold M, Rapin I (1994) Non-Mendelian mitochondrial inheritance as a cause of progressive genetic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 30:91–104

    CAS  PubMed  Google Scholar 

  • Gong T-W, Fairfield DA, Fullarton L et al (2012) Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 -/- mice. J Assoc Res Otolaryngol 13:29–37

    PubMed Central  PubMed  Google Scholar 

  • Gopinath B, Rochtchina E, Wang JJ et al (2009) Prevalence of age-related hearing loss in older adults: Blue Mountains Study. Arch Intern Med 169:415–416

    PubMed  Google Scholar 

  • Gratton MA, Schmiedt RA, Schulte BA (1996) Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear Res 102:181–190

    CAS  PubMed  Google Scholar 

  • Gratton MA, Schulte BA (1995) Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear Res 82:44–52

    CAS  PubMed  Google Scholar 

  • Gray DT, Engle JR, Recanzone GH (2014) Age-related neurochemical changes in the rhesus macaque cochlear nucleus. J Comp Neurol 522:1527–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray DT, Rudolph ML, Engle JR, Recanzone GH (2013) Parvalbumin increases in the medial and lateral geniculate nuclei of aged rhesus macaques. Front Aging Neurosci 5:69

    PubMed Central  PubMed  Google Scholar 

  • Gutiérrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477

    PubMed  Google Scholar 

  • Han C, Someya S (2013) Maintaining good hearing: calorie restriction, Sirt3, and glutathione. Exp Gerontol 48:1091–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haupt H, Scheibe F (2002) Preventive magnesium supplement protects the inner ear against noise-induced impairment of blood flow and oxygenation in the guinea pig. Magnes Res 15:17–25

    CAS  PubMed  Google Scholar 

  • Helfert RH, Krenning J, Wilson TS, Hughes LF (2003) Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats. Hear Res 183:18–28

    PubMed  Google Scholar 

  • Helfert RH, Sommer TJ, Meeks J et al (1999) Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J Comp Neurol 406:285–298

    CAS  PubMed  Google Scholar 

  • Heman-Ackah SE, Juhn SK, Huang TC, Wiedmann TS (2010) A combination antioxidant therapy prevents age-related hearing loss in C57BL/6 mice. Otolaryngol Head Neck Surg 143:429–434

    PubMed  Google Scholar 

  • Hinojosa R, Nelson EG (2011) Cochlear nucleus neuron analysis in individuals with presbycusis. Laryngoscope 121:2641–2648

    PubMed  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    CAS  PubMed  Google Scholar 

  • Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14

    CAS  PubMed  Google Scholar 

  • Hu BH, Yang W-P, Bielefeld EC et al (2008) Apoptotic outer hair cell death in the cochleae of aging Fischer 344/NHsd rats. Hear Res 245:48–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idrizbegovic E, Bogdanovic N, Viberg A, Canlon B (2003) Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hear Res 179:33–42

    CAS  PubMed  Google Scholar 

  • Jiang H, Talaska AE, Schacht J, Sha S-H (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28:1605–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juarez-Salinas DL, Engle JR, Navarro XO, Recanzone GH (2010) Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging. J Neurosci 30:14795–14804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juiz JM, Helfert RH, Bonneau JM et al (1996) Three classes of inhibitory amino acid terminals in the cochlear nucleus of the guinea pig. J Comp Neurol 373:11–26

    CAS  PubMed  Google Scholar 

  • Juiz JM, Rueda J, Merchán JA, Sala ML (1989) The effects of kainic acid on the cochlear ganglion of the rat. Hear Res 40:65–74

    CAS  PubMed  Google Scholar 

  • Kazee AM, Han LY, Spongr VP et al (1995) Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear Res 89:109–120

    CAS  PubMed  Google Scholar 

  • Kazee AM, West NR (1999) Preservation of synapses on principal cells of the central nucleus of the inferior colliculus with aging in the CBA mouse. Hear Res 133:98–106

    CAS  PubMed  Google Scholar 

  • Keithley EM, Canto C, Zheng QY et al (2005) Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 209:76–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keithley EM, Croskrey KL (1990) Spiral ganglion cell endings in the cochlear nucleus of young and old rats. Hear Res 49:169–177

    CAS  PubMed  Google Scholar 

  • Kim TS, Chung JW (2013) Evaluation of age-related hearing loss. Korean J Audiol 17:50–53

    PubMed Central  PubMed  Google Scholar 

  • Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447

    CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    CAS  PubMed  Google Scholar 

  • Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK (2011) Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 158:38–53

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Hughes LF, Miller JM (2007) Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med 42:1454–1463

    PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Ojano-Dirain C, Rudnick EW et al (2014) Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity. J Assoc Res Otolaryngol 15:375–393

    PubMed Central  PubMed  Google Scholar 

  • Lee H-C, Wei Y-H (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327

    CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Fato R et al (2006) New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 8:417–437

    CAS  PubMed  Google Scholar 

  • Lim R, Alvarez FJ, Walmsley B (2000) GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus. J Physiol 525(Pt 2):447–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin FR, Maas P, Chien W et al (2012) Association of skin color, race/ethnicity, and hearing loss among adults in the USA. J Assoc Res Otolaryngol 13:109–117

    PubMed Central  PubMed  Google Scholar 

  • Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L (2011) Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci 66:582–590

    PubMed  Google Scholar 

  • Lin FR, Yaffe K, Xia J et al (2013) Hearing loss and cognitive decline in older adults. JAMA 173:293–299

    Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    CAS  PubMed  Google Scholar 

  • Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132:1103–1113

    CAS  PubMed  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed Central  PubMed  Google Scholar 

  • Marcus DC, Thalmann R, Marcus NY (1978) Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope 88:1825–1835

    CAS  PubMed  Google Scholar 

  • Markaryan A, Nelson EG, Hinojosa R (2009) Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope 119:1184–1189

    CAS  PubMed  Google Scholar 

  • Markaryan A, Nelson EG, Hinojosa R (2010) Major arc mitochondrial DNA deletions in cytochrome c oxidase-deficient human cochlear spiral ganglion cells. Acta Otolaryngol (Stockh) 130:780–787

    CAS  Google Scholar 

  • Marlenga B, Berg RL, Linneman JG et al (2012) Determinants of early-stage hearing loss among a cohort of young workers with 16-year follow-up. Occup Environ Med 69:479–484

    PubMed  Google Scholar 

  • Martin del Campo HN, Measor KR, Razak KA (2012) Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hear Res 294:31–39

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Burkard RF et al (1999a) Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol 413:101–112

    CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Reaume AG et al (1999b) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8

    CAS  PubMed  Google Scholar 

  • Menardo J, Tang Y, Ladrech S et al (2012) Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxid Redox Signal 16:263–274

    CAS  PubMed  Google Scholar 

  • Mikuriya T, Sugahara K, Sugimoto K et al (2008) Attenuation of progressive hearing loss in a model of age-related hearing loss by a heat shock protein inducer, geranylgeranylacetone. Brain Res 1212:9–17

    CAS  PubMed  Google Scholar 

  • Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol Aging 15:699–703

    CAS  PubMed  Google Scholar 

  • Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol 379:455–465

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevado J, Sanz R, Casqueiro JC et al (2006) Ageing evokes an intrinsic pro-apoptotic signalling pathway in rat cochlea. Acta Otolaryngol (Stockh) 126:1134–1139

    CAS  Google Scholar 

  • Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlemiller KK, Frisina RD (2008) Age-related hearing loss and its cellular and molecular bases. In: Schacht J, Popper AN, Fay RR (eds) Auditory trauma, protection and repair. Springer, New York, pp 145–194

    Google Scholar 

  • Ouda L, Druga R, Syka J (2008) Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp Gerontol 43:782–789

    CAS  PubMed  Google Scholar 

  • Ouda L, Syka J (2012) Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front Neural Circuits 6:68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouellet L, de Villers-Sidani E (2014) Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanat 8:40

    PubMed Central  PubMed  Google Scholar 

  • Parham K, McKinnon BJ, Eibling D, Gates GA (2011) Challenges and opportunities in presbycusis. Otolaryngol Head Neck Surg 144:491–495

    PubMed  Google Scholar 

  • Picciotti P, Torsello A, Wolf FI et al (2004) Age-dependent modifications of expression level of VEGF and its receptors in the inner ear. Exp Gerontol 39:1253–1258

    CAS  PubMed  Google Scholar 

  • Prazma J, Carrasco VN, Butler B et al (1990) Cochlear microcirculation in young and old gerbils. Arch Otolaryngol Head Neck Surg 116:932–936

    CAS  PubMed  Google Scholar 

  • Provenzano MJ, Domann FE (2007) A role for epigenetics in hearing: establishment and maintenance of auditory specific gene expression patterns. Hear Res 233:1–13

    PubMed Central  PubMed  Google Scholar 

  • Pujol R, Rebillard G, Puel JL et al (1991) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol (Stockh) Suppl 476:32–36

    Google Scholar 

  • Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raza A, Milbrandt JC, Arneric SP, Caspary DM (1994) Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hear Res 77:221–230

    CAS  PubMed  Google Scholar 

  • Richardson BD, Ling LL, Uteshev VV, Caspary DM (2013) Reduced GABA(A) receptor-mediated tonic inhibition in aged rat auditory thalamus. J Neurosci 33:1218–1227a

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riquelme R, Cediel R, Contreras J et al (2010) A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Front Neuroanat 4:27

    PubMed Central  PubMed  Google Scholar 

  • Rossman TG, Klein CB (2011) Genetic and epigenetic effects of environmental arsenicals. Met Integr Biometal Sci 3:1135–1141

    CAS  Google Scholar 

  • Ruben RJ (2000) Redefining the survival of the fittest: communication disorders in the 21st century. Laryngoscope 110:241–245

    CAS  PubMed  Google Scholar 

  • Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA (1997a) Increased laminin deposition in capillaries of the stria vascularis of quiet-aged gerbils. Hear Res 105:44–56

    CAS  PubMed  Google Scholar 

  • Sakaguchi N, Spicer SS, Thomopoulos GN, Schulte BA (1997b) Immunoglobulin deposition in thickened basement membranes of aging strial capillaries. Hear Res 109:83–91

    CAS  PubMed  Google Scholar 

  • Scheibe F, Haupt H, Vlastos GA (2000) Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig. Eur Arch Otorhinolaryngol 257:355–361

    CAS  PubMed  Google Scholar 

  • Schmiedt RA, Mills JH, Boettcher FA (1996) Age-related loss of activity of auditory-nerve fibers. J Neurophysiol 76:2799–2803

    CAS  PubMed  Google Scholar 

  • Schmiedt RA (1996) Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea. Hear Res 102:125–132

    CAS  PubMed  Google Scholar 

  • Schmiedt RA (2010) The physiology of cochlear presbycusis. In: Gordon-Salant S, Frisina RD, Popper AN, Fay RR (eds) Aging auditory system. Springer, New York, pp 9–38

    Google Scholar 

  • Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schucknecht HF (1955) Presbycusis. Laryngoscope 65:402–419

    Google Scholar 

  • Schucknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol Chic Ill 80:369–382

    Google Scholar 

  • Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16

    CAS  PubMed  Google Scholar 

  • Schulte BA, Schmiedt RA (1992) Lateral wall Na, K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear Res 61:35–46

    CAS  PubMed  Google Scholar 

  • Schumacher B, Garinis GA, Hoeijmakers JHJ (2008) Age to survive: DNA damage and aging. Trends Genet TIG 24:77–85

    CAS  PubMed  Google Scholar 

  • Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110:727–738

    CAS  PubMed  Google Scholar 

  • Seidman MD, Ahmad N, Joshi D et al (2004) Age-related hearing loss and its association with reactive oxygen species and mitochondrial DNA damage. Acta Oto-Laryngol Suppl 16–24

    Google Scholar 

  • Seidman MD, Bai U, Khan MJ, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and presbyacusis. Arch Otolaryngol Head Neck Surg 123:1039–1045

    CAS  PubMed  Google Scholar 

  • Seidman MD, Khan MJ, Dolan DF, Quirk WS (1996) Age-related differences in cochlear microcirculation and auditory brain stem response. Arch Otolaryngol Head Neck Surg 122:1221–1226

    CAS  PubMed  Google Scholar 

  • Seidman MD, Khan MJ, Tang WX, Quirk WS (2002) Influence of lecithin on mitochondrial DNA and age-related hearing loss. Otolaryngol Head Neck Surg 127:138–144

    PubMed  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sendowski I (2006) Magnesium therapy in acoustic trauma. Magnes Res 19:244–254

    CAS  PubMed  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sha S-H, Chen F-Q, Schacht J (2009) Activation of cell death pathways in the inner ear of the aging CBA/J mouse. Hear Res 254:92–99

    PubMed Central  PubMed  Google Scholar 

  • Sha S-H, Kanicki A, Halsey K et al (2012) Antioxidant-enriched diet does not delay the progression of age-related hearing loss. Neurobiol Aging 33:1010.e15–1010.e16

    CAS  Google Scholar 

  • Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155:1–8

    CAS  PubMed  Google Scholar 

  • Shankar SK (2010) Biology of aging brain. Indian J Pathol Microbiol 53:595–604

    CAS  PubMed  Google Scholar 

  • Shargorodsky J, Curhan SG, Eavey R, Curhan GC (2010) A prospective study of vitamin intake and the risk of hearing loss in men. Otolaryngol Head Neck Surg 142:231–236

    PubMed Central  PubMed  Google Scholar 

  • Sharma S, Nag TC, Thakar A et al (2014) The aging human cochlear nucleus: changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor. J Chem Neuroanat 56:1–12

    CAS  PubMed  Google Scholar 

  • Shi X (2011) Physiopathology of the cochlear microcirculation. Hear Res 282:10–24

    PubMed Central  PubMed  Google Scholar 

  • Shim HJ, Lee LH, Huh Y et al (2012) Age-related changes in the expression of NMDA, serotonin, and GAD in the central auditory system of the rat. Acta Otolaryngol (Stockh) 132:44–50

    CAS  Google Scholar 

  • Someya S, Prolla TA (2010) Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mech Ageing Dev 131:480–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Someya S, Xu J, Kondo K et al (2009) Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A 106:19432–19437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2002) Spiral ligament pathology in quiet-aged gerbils. Hear Res 172:172–185

    PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2005) Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hear Res 205:225–240

    PubMed  Google Scholar 

  • Sugahara K, Inouye S, Izu H et al (2003) Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 182:88–96

    CAS  PubMed  Google Scholar 

  • Szafranski K, Mekhail K (2014) The fine line between lifespan extension and shortening in response to caloric restriction. Nucl Austin Tex 5:56–65

    Google Scholar 

  • Tadros SF, D’Souza M, Zhu X, Frisina RD (2008) Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis Int J Program Cell Death 13:1303–1321

    CAS  Google Scholar 

  • Thomopoulos GN, Spicer SS, Gratton MA, Schulte BA (1997) Age-related thickening of basement membrane in stria vascularis capillaries. Hear Res 111:31–41

    CAS  PubMed  Google Scholar 

  • Trifunovic A, Hansson A, Wredenberg A et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102:17993–17998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    CAS  PubMed  Google Scholar 

  • Turner JG, Hughes LF, Caspary DM (2005) Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. J Neurophysiol 94:2738–2747

    PubMed  Google Scholar 

  • Usami S, Takumi Y, Fujita S et al (1997) Cell death in the inner ear associated with aging is apoptosis? Brain Res 747:147–150

    CAS  PubMed  Google Scholar 

  • Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L et al (2013) IGF-I deficiency and hearing loss: molecular clues and clinical implications. Pediatr Endocrinol Rev 10:460–472

    PubMed  Google Scholar 

  • Viña J, Borras C, Abdelaziz KM et al (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 19:779–787

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Turner JG, Ling L et al (2009) Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neuroscience 160:227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Menchenton T, Yin S et al (2010) Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging 31:1238–1249

    PubMed  Google Scholar 

  • Wang Y, Manis PB (2005) Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol 94:1814–1824

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Manis PB (2006) Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss. J Assoc Res Otolaryngol 7:412–424

    PubMed Central  PubMed  Google Scholar 

  • Watanabe K-I, Bloch W (2013) Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. Eur Arch Oto Rhino Laryngol 270:1823–1830

    Google Scholar 

  • Willott JF, Aitkin LM, McFadden SL (1993) Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. J Comp Neurol 329:402–411

    CAS  PubMed  Google Scholar 

  • Willott JF, Bross LS (1990) Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. J Comp Neurol 300:61–81

    CAS  PubMed  Google Scholar 

  • Willott JF, Bross LS, McFadden SL (1992) Morphology of the dorsal cochlear nucleus in C57BL/6J and CBA/J mice across the life span. J Comp Neurol 321:666–678

    CAS  PubMed  Google Scholar 

  • Willott JF, Bross LS, McFadden SL (1994) Morphology of the inferior colliculus in C57BL/6J and CBA/J mice across the life span. Neurobiol Aging 15:175–183

    CAS  PubMed  Google Scholar 

  • Willott JF, Jackson LM, Hunter KP (1987) Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. J Comp Neurol 260:472–480

    CAS  PubMed  Google Scholar 

  • Willott JF, Milbrandt JC, Bross LS, Caspary DM (1997) Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging. J Comp Neurol 385:405–414

    CAS  PubMed  Google Scholar 

  • Willott JF, Pankow D, Hunter KP, Kordyban M (1985) Projections from the anterior ventral cochlear nucleus to the central nucleus of the inferior colliculus in young and aging C57BL/6 mice. J Comp Neurol 237:545–551

    CAS  PubMed  Google Scholar 

  • Willott JF, Parham K, Hunter KP (1991) Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hear Res 53:78–94

    CAS  PubMed  Google Scholar 

  • World Health Organization (2014) WHO|Deafness and hearing loss, Fact Sheet No 300. In: WHO. http://www.who.int/mediacentre/factsheets/fs300/en/. Accessed 6 May 2014

  • Xie R, Manis PB (2013) Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss. J Neurophysiol 110:1848–1859

    PubMed Central  PubMed  Google Scholar 

  • Yamasoba T, Lin FR, Someya S et al (2013) Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 303:30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamasoba T, Someya S, Yamada C et al (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226:185–193

    CAS  PubMed  Google Scholar 

  • Yang Z, Ming X-F (2012) mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases. Obes Rev 13(Suppl 2):58–68

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Juiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melgar-Rojas, P., Alvarado, J.C., Fuentes-Santamaría, V., Juiz, J.M. (2015). Cellular Mechanisms of Age-Related Hearing Loss. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_15

Download citation

Publish with us

Policies and ethics