Skip to main content

Climate Effects on Recharge and Evolution of Natural Water Resources in middle-latitude Watersheds Under Arid Climate

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

This paper analyzes the physico-chemical characteristics of natural waters in middle-latitude drainage systems of central Asia, including the climatic, lithological and geomorphological conditions in which water flows and resides. This analysis allowed the identification of the geological evolution and recharge mechanism of the water resources in an arid environment. The studied waters at various sites are different in mineralization but similar to the majority of large rivers on earth, which are typically alkaline. However, no Cl-dominated water type occurs in the study area, indicating that these natural waters are still at an early stage of evolution. The regolith and geomorphological parameters controlling ground-surface temperature may play a large role in rock weathering regime and so in the geological evolution of water. Three main morphological and hydrological units are reflected in water physico-chemistry: the montane areas (recharge area) with silicate and carbonate weathering, the piedmonts and sedimentary platform (runoff area) with carbonate weathering, and the desert plains (discharge area) with evaporite dissolution. Climate influences the salinization of natural waters substantially. Direct recharge from seasonal snow and meltwater and infiltration of rainfall into the ground are thought to be significant recharge processes for natural waters in the study area, while recharge from potential deep groundwater may be much less important. The chemistry of lakes is generally consistent with those of large lakes in the world, but the enrichment of the ions in the lakes has been caused mainly by evaporation, rather than through the quality of the recharged water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdesselam S, Halitim A, Jan A, Trolard F, Bourrie G (2013) Anthropogenic contamination of groundwater with nitrate in arid region: case study of southern Hodna (Algeria). Environ Earth Sci 70:2129–2141

    Article  Google Scholar 

  • Ahmad T, Khanna PP, Chakrapani GJ, Balakrishnan S (1998) Geochemical characteristics of water and sediment of the Indus River, Trans-Himalaya, India: constraints on weathering and erosion. J Asian Earth Sci 16:333–346

    Article  Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspective. Glob Environ Change 9:5–23

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Berner RA, Lasaga AC, Garrells RM (1983) The carbonate silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  Google Scholar 

  • Beylich AA, Kolstrup E, Thyrsted T, Gintz D (2004) Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, arctic-oceanic Swedish Lapland. Geomorphology 58:125–143

    Article  Google Scholar 

  • Blum JD, Erel Y (1995) A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373:415–418

    Article  Google Scholar 

  • Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359

    Article  Google Scholar 

  • Burns DA, Klaus J, McHale MR (2007) Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J Hydrol 336:155–170

    Article  Google Scholar 

  • Chae GT, Yun ST, Kim KH, Lee PK, Choi BY (2004) Atmospheric versus lithogenic contribution to the composition of first- and second-order stream waters in Seoul and its vicinity. Environ Int 30:73–85

    Article  Google Scholar 

  • Day JA (1993) The major ion chemistry of some southern African saline systems. Hydrobiologia 267:37–59

    Article  Google Scholar 

  • Dessert C, Dupre B, Francois LM, Schott J, Gaillardet J, Chakrapani G, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474

    Article  Google Scholar 

  • Domros M, Peng G (1988) The climate of China. Springer, Berlin

    Book  Google Scholar 

  • Dunne T (1978) Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274:244–246

    Article  Google Scholar 

  • Edmond JM (1992) Himalayan tectonics, weathering processes and the strontium isotope record in marine limestones. Science 258:1594–1597

    Article  Google Scholar 

  • Egorov AN (1993) Mongolian salt lakes: some features of their geography, thermal patterns, chemistry and biology. Hydrobiologia 267:13–21

    Article  Google Scholar 

  • Eriksson E (1985) Principles and applications of hydrochemistry. Chapman and Hall, London

    Book  Google Scholar 

  • Feller MC (2005) Forest harvesting and streamwater inorganic chemistry in western North America: a review. J Am Water Resour Assoc 41:785–811

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Hagg W, Braun LN, Kuhn M, Nesgaard TL (2007) Modeling of hydrological response to climate change in glacierized Central Asian catchments. J Hydrol 332:40–53

    Article  Google Scholar 

  • Huh Y, Edmond JM (1999) The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberan Craton and the Trans-Baikal Highlands. Geochim Cosmochim Acta 63:967–987

    Article  Google Scholar 

  • Kilham P (1990) Mechanisms controlling the chemical composition of lakes and rivers: data from Africa. Limnol Oceanogr 35:80–83

    Article  Google Scholar 

  • Kimbadi S, Vandelannoote A, Deelstra H, Mbemba M, Ollevier F (1999) Chemical composition of the small rivers of the north-western part of lake Tanganyika. Hydrobiologia 407:75–80

    Article  Google Scholar 

  • Lettenmaier DP, Sheer DP (1991) Climatic sensitivity of California water resources. J Water Resour Plan Manage 117(1):108–125

    Article  Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. Geological Survey Paper, 440-G, pp 1–64

    Google Scholar 

  • Ma L (2002) Geological Atlas of China. Geological Press, Beijing (in Chinese)

    Google Scholar 

  • Martos-Rosillo S, Rodriguez-Rodriguez M, Pedrera A, Cruz-SanJulian JJ, Rubio JC (2013) Groundwater recharge in semi-arid carbonate aquifers under intensive use: the Estepa Range aquifers (Seville, southern Spain). Environ Earth Sci 70:2453–2468

    Article  Google Scholar 

  • Mast MA, Drever JI (1990) Chemical weathering in the Loch Vale watershed, Rocky Mountain National Park, Colorado. Water Resour Res 26:2971–2978

    Article  Google Scholar 

  • Meier M, Dyurgerov M (2002) Deciphering complex changes in snow and ice. Science 297:350–351

    Article  Google Scholar 

  • Melack JM (1983) Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105:223–230

    Article  Google Scholar 

  • Menzel L, Burger G (2002) Climate change scenarios and runoff response in the Mulde catchment (southern Elbe, Germany). J Hydrol 267:53–64

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Meybeck M (1996) River water quality: global ranges, time and space variabilities, proposals for some redefinitions. Verhandlungen des Internationalen Verein Limnologie 26:81–96

    Google Scholar 

  • Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Palaeogeogr Palaeoclimatol Palaeoecol 75:283–309

    Article  Google Scholar 

  • Meyer JL, McDowell WH, Bott TL, Elwood J, Ishizaki C, Melack JM, Peckarsky B, Peterson B, Rublee P (1988) Elemental dynamics in streams. J N Am Benthol Soc 7:410–432

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49:105–128

    Article  Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:29–34

    Article  Google Scholar 

  • Noh H, Huh Y, Qin J, Ellis A (2009) Chemical weathering in the three rivers region of Eastern Tibet. Geochim Cosmochim Acta 73:1857–1877

    Article  Google Scholar 

  • Pawellek F, Frauenstein F, Veizer J (2002) Hydrochemistry and isotope geochemistry of the upper Danube River. Geochim Cosmochim Acta 66:3839–3854

    Article  Google Scholar 

  • Raymo ME (1994) The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography 9:399–404

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16:649–653

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Granger DE, Finkel RC (2001) Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 29(6):511–514

    Article  Google Scholar 

  • Sener S, Davraz A, Karaguzel R (2013) Evaluating the anthropogenic and geologic impacts on water quality of the Eǧirdir Lake, Turkey. Environ Earth Sci 70:2527–2544

    Article  Google Scholar 

  • Singh P, Kumar N (1997) Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J Hydrol 193:316–350

    Article  Google Scholar 

  • Sun J, Ye J, Wu W, Ni X, Bi S, Zhang Z, Liu W, Meng J (2010) Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38:515–518

    Article  Google Scholar 

  • Sundquist ET (1991) Steady-and-non-steady-state carbonate–silicate controls on atmospheric CO2. Quatern Sci Rev 10:283–296

    Article  Google Scholar 

  • Vanderzalm JL, Jeuken BM, Wischusen JDH, Pavelic P, Salle CLGL, Knapton A, Dillon PJ (2011) Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia. J Hydrol 397:71–82

    Article  Google Scholar 

  • Velbel M (1993) Temperature dependence of silicate weathering in nature: how strong a negative feedback on long term accumulation of atmospheric CO2 and global greenhouse warming? Geology 21:1059–1062

    Article  Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnological analyses, 3rd edn. Springer, New York

    Book  Google Scholar 

  • White AF, Blum AE (1995) Effect of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • White AF, Blum AE, Schultz MS, Vivit DV, Stonestrom DA, Larson M, Murphy SF, Eberl D (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short term weathering fluxes. Geochim Cosmochim Acta 62:209–226

    Article  Google Scholar 

  • White AF, Blum AE, Bullen TD, Davison VV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of Granitoid rocks. Geochim Cosmochim Acta 63:3277–3291

    Article  Google Scholar 

  • Wu Y, Gibson CE (1996) Mechanisms controlling the water chemistry of small lakes in northern Ireland. Water Res 30:178–182

    Article  Google Scholar 

  • XETCAS (Xinjiang Expedition Team of the Chinese Academy of Sciences), IGCAS (Institute of Geography of the Chinese Academy of Sciences), DGBNU (Department of Geography of Beijing Normal University) (1978) Geomorphology in Xinjiang. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Xu CC, Chen Y, Hamid Y, Tashpolat T, Chen Y, Ge H, Li W (2009) Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrol Process 23:2045–2055

    Article  Google Scholar 

  • Xu CC, Chen Y, Yang Y, Hao X, Shen Y (2010) Hydrology and water resources variation and its response to regional climate change in Xinjiang. J Geog Sci 20:599–612

    Article  Google Scholar 

  • Xu CC, Chen YN, Chen YP, Zhao R, Ding H (2013) Responses of surface runoff to climate change and human activities in the arid region of Central Asia: a case study in the Tarim River Basin, China. Environ Manage 51:926–938

    Article  Google Scholar 

  • Yang X, Williams MAJ (2003) The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51:45–60

    Article  Google Scholar 

  • Zhang J, Takahashi K, Wushiki H, Yabuki S, Xiong J, Masuda A (1995) Water geochemistry of the rivers around the Taklimakan Desert (NW China): crustal weathering and evaporation processes in arid land. Chemical Geology 119:225–237

    Article  Google Scholar 

  • Zhu B, Yang X (2007) The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chin Sci Bull 52:2123–2129

    Article  Google Scholar 

  • Zhu B, Yang X (2010) The origin and distribution of soluble salts in the sand seas of northern China. Geomorphology 123:232–242

    Article  Google Scholar 

  • Zhu B, Yang X, Rioual P, Qin X, Liu Z, Xiong H, Yu JJ (2011) Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl Geochem 26:1535–1548

    Google Scholar 

  • Zhu B, Yu J, Qin X, Rioual P, Xiong H (2012a) Climatic and geological factors contributing to the natural water chemistry in an arid environment from watersheds in northern Xinjiang, China. Geomorphology 153–154:102–114

    Article  Google Scholar 

  • Zhu B, Yang X, Liu Z, Rioual P, Li C, Xiong H (2012b) Geochemical compositions of soluble salts in aeolian sands from the Taklamakan and Badanjilin deserts in northern China, and their influencing factors and environmental implications. Environ Earth Sci 66:337–353

    Article  Google Scholar 

  • Zhu B, Yu J, Qin X, Rioual P, Zhang Y, Liu Z, Mu Y, Li H, Ren X, Xiong H (2013a) Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. J Asian Earth Sci 66:277–294

    Article  Google Scholar 

  • Zhu B, Yu J, Qin X, Rioual P, Liu Z, Zhang Y, Jiang F, Mu Y, Li H, Ren X, Xiong H (2013b) The Significance of mid-latitude rivers for weathering rates and chemical fluxes: evidence from northern Xinjiang rivers. J Hydrol 486:151–174

    Article  Google Scholar 

  • Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333:239–251

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 41371060, 41271049) and the Kezhen Young Talent Project of the Institute of Geographic Sciences and Natural Resources Research, CAS (Grant No.: 2013RC101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhu, B., Yu, J., Rioual, P., Gao, Y., Zhang, Y., Xiong, H. (2015). Climate Effects on Recharge and Evolution of Natural Water Resources in middle-latitude Watersheds Under Arid Climate. In: Ramkumar, M., Kumaraswamy, K., Mohanraj, R. (eds) Environmental Management of River Basin Ecosystems. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13425-3_5

Download citation

Publish with us

Policies and ethics