Skip to main content

A Review on the Riverine Carbon Sources, Fluxes and Perturbations

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Carbon is transported from the land to the oceans via rivers and groundwater. The transfer of organic matter from the land to the oceans via fluvial systems is a key link in the global carbon cycle. Rivers also provide a key link in the geological scale carbon cycle. Nevertheless, an appreciation of their roles is yet to be made. Even when their roles are included, data are drawn only from selected large rivers, often neglecting the small mountainous rivers. Previous studies have demonstrated that, the tropic rivers, especially located in Asian region play crucial role in regulating the global carbon budgets. Superimposed on the natural sources and fluxes, the anthropogenically-induced fluxes, primarily emanating from reduced sediment and discharge (as a result of constructions of dams and reservoirs), and enhanced detrital organic matter (as a result of increased surface flow due to land use change) introduce perturbations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitkenhead JA, McDowell WH (2000) Soil C/N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cycles 14:127–138

    Article  Google Scholar 

  • Arvidson RS, Mackenzie FT, Guidry M (2006) MAGic: a Phanerozoic model for the geochemical cycling of major rock-forming components. Am J Sci 306(3):135–190

    Article  Google Scholar 

  • Balakrishna K, Probst JL (2005) Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry 73:457–473

    Article  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Global Planet Change 75:97–122

    Article  Google Scholar 

  • Berner RA (2004) The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford, p 150

    Google Scholar 

  • Berner R, Lasaga A, Garrels R (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  Google Scholar 

  • Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N, and P. Global Biogeochem Cycles 19

    Google Scholar 

  • Billings SA, Buddemeier RW, Richter DdeB, Van Oost K, Bohling G (2010) A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochem Cycles 24:GB2001

    Google Scholar 

  • Bolin B (ed) (1981) Carbon cycle modelling. Wiley, New York

    Google Scholar 

  • Borges AV, Abril G (2012). In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 5. Academic Press, pp 119–161

    Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystem counts. Geophys Res Lett 32:1–4

    Google Scholar 

  • Bouchez J, Metivier F, Lupker M, Gaillardet J, France-Lanord C, Perez M, Maurice L (2010) Prediction of depth-integrated sedimentary fluxes in large rivers: particle aggregation as a complicating factor. doi:10.1002/hyp.7868

    Google Scholar 

  • Bouchez J, Gaillardet J, France-Lanord C, Dutra-Maia P, Maurice L (2011a) Grain size control of river suspended sediment geochemistry: clues from amazon river depth

    Google Scholar 

  • Bouchez J, Lupker M, Gaillardet J, France-Lanord C, Maurice L (2011b) How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from amazon river depth-profiles. Geochim Cosmochim Acta 75:6955–6970

    Article  Google Scholar 

  • Breithaupt JL, Smoak JM, Smith TJ, Sanders CJ, Hoare (2012) A organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob Biogeochem Cycles 26

    Google Scholar 

  • Cai W-J (2003) Riverine inorganic carbon flux and rate of biological uptake in the Mississippi river plume. Geophys Res Lett 30:1032

    Article  Google Scholar 

  • Canadell et al (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–130

    Article  Google Scholar 

  • Chen CTA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res II 56:578–590

    Article  Google Scholar 

  • Church TM (1996) An underground route for the water cycle. Science 380:579–580

    Google Scholar 

  • Cotrim da Cunha L, Buitenhuis ET, Le Quéré C, Giraud X, Ludwig W (2007) Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Glob Biogeochem Cycles 21:GB4007

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373

    Article  Google Scholar 

  • Dai, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeor 3:660–687

    Article  Google Scholar 

  • Degens ET, Kempe S and Richey JE (1991) Summary: biogeochemistry of the major world rivers. In: Degens ET et al (eds) Biogeochemistry of major world rivers, SCOPE 42. Wiley, New York, pp 323–347

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  Google Scholar 

  • Foley JA, Prenticen IC, Ramunkutty S, Levis D, Pollard S, Sitch and Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochem Cycles 10(4):603−628

    Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–75

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Allegre CJ (1999a) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23–24):4037–4051

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999b) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Article  Google Scholar 

  • Gislason SR, Oelkers EH, Snorrason A (2006) Role of river-suspended material in the global carbon cycle. Geology 34:49–52

    Article  Google Scholar 

  • Hem, John D (1985) Study and interpretation of the chemical characteristics of natural water. 3rd edn. US geological survey water supply paper 2254. Alexandria, VA, 263

    Google Scholar 

  • IPCC (2007) IPCC: fourth assessment report climate change 2007. Geneva: I intergovernmental panel on climate change

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean. Chem Geol 53(1–2):95–108

    Article  Google Scholar 

  • Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37

    Google Scholar 

  • Likens GE, Mackenzie FT, Richey JE, Sedwell JR, Turekian KK (1981) Flux of organic carbon from the major rivers of the world to the oceans (National technical information service, US department of commerce)

    Google Scholar 

  • Liu KK, Atkinson L, Quiñones R, Talaue-McManus (2010) L. carbon and nutrient fluxes in continental margins: a global synthesis, Springer

    Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Probst JL (1996) River discharges of carbon to the world’s oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon. CR Acad Sci Paris 323:1007−1014

    Google Scholar 

  • Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and global budgets. Am J Sci 298(4):265–295

    Article  Google Scholar 

  • Ludwig W, Probst J-L, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41

    Article  Google Scholar 

  • Lupker M, France-Lanord C, Lave J, Bouchez J, Galy V, Metivier F, Gaillardet J, Lartiges B, Mugnier JL (2011) A Rouse-based method to integrate the chemical composition of river sediments: application to the Ganga basin. J Geophys Res [Solid Earth]. doi:10.1029/2010JF001947

    Google Scholar 

  • Mackenzie FT, Lerman A, Ver LMB (1998) Role of the continental margin in the global carbon balance during the past three centuries. Geology 26:423–426

    Article  Google Scholar 

  • Mackenzie FT, Andersson AJ, Lerman A, Ver LM (2005) In: Robinson AR, Brink KH (eds) The sea. vol 13. Harvard University Press, pp 193–225

    Google Scholar 

  • Martin JM, Maybeck M (1979) Elemental mass of material balance carried by major world rivers. Mar Chem 7:173–206

    Article  Google Scholar 

  • Meybeck M (1979) Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. Rev Geol Dyn Geogr Phys 21:215–246

    Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282:401–450

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering from surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Meybeck M (1988) How to establish and use world budgets of riverine materials. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer Academic Publishers, pp 247−272

    Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon—sources, global typology and budget. Water Air Soil Pollut 70:443–463

    Article  Google Scholar 

  • Milliman J, Meade R (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21

    Article  Google Scholar 

  • Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–499

    Google Scholar 

  • Parton WJ, Ojima DS, Cole DV, Schimel DS (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Quantitative modeling of soil forming processes. SSSA Special Publication 39. Soil Science Society of America

    Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci 3:311–314

    Article  Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452

    Article  Google Scholar 

  • Richey JE (2004) In: Field CB, Raupach MR (eds) The global carbon cycle, integrating humans, climate, and the natural world, vol 17. Island Press, pp 329–340

    Google Scholar 

  • Richey JE, Victoria RL, Salati E (1991) The biogeochemistry of a major river system: the amazon case study. In: biogeochemistry of major world rivers, SCOPE/UNEP 42, Wiley, New York, pp 57−74

    Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562. doi:10.1016/j.epsl.2004.05.019

    Article  Google Scholar 

  • Sarin MM, Sudheer AK, Balakrishna K (2002) Significance of riverine transport: a case study of a large tropical river, Godavari (India). Sci China Ser C Life Sci 45:97−108

    Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget of the oceanc uptake of anthropogenic uptake of anthropogenic carbon dioxide. Nature 356:589–593

    Article  Google Scholar 

  • Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33:172−187

    Google Scholar 

  • Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the 21st century. UNESCO and Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  Google Scholar 

  • Simpkins WW, Parkin TB (1993) Hydrogeology and redox geochemistry of CH4 in a late Wisconsinan till and loess sequence in central Iowa. Water Resour Res 29:0043–1397

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89

    Article  Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob Biogeochem Cycles 15:697–707

    Article  Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 12:231–257

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Processes 16:2115–2129

    Article  Google Scholar 

  • Van der Leeden F, Troise FL, Todd DK (eds) (1990) The water encyclopedia, 2nd edn. Lewis Publishers, Chelsea, Mich, p 808

    Google Scholar 

  • Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: past, present, and future. Am J Sci 299:762–801

    Article  Google Scholar 

  • Walker JCG, Hays PB, Hastings JF (1981) A negative feedback mechanism for the long term stabilization of earth’s surface temperature. J Geophy Res 86:9776–9782

    Google Scholar 

  • West JB, HilleRisLambers J, Lee TD, Hobbie SE, Reich PB (2005) Legume species identity and soil nitrogen supply determine symbiotic nitrogen fixation responses to elevated atmospheric CO2. New Phytol 167:523–530

    Google Scholar 

  • Wollast R, Mackenzie FT (1989) In: Berger A, Schneider S, Duplessy JCl (eds) Climate and geo-sciences, vol 285. Academic Publishers, pp 453–473

    Google Scholar 

Download references

Acknowledgments

The review could not have been possible without the publications listed in this paper, for which, I express my sincere thanks to all those authors. Thanks are also due to the authors of these publications, for having enlightened me through their publications on the importance of understanding carbon transfer among earth’s components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumi Handique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Handique, S. (2015). A Review on the Riverine Carbon Sources, Fluxes and Perturbations. In: Ramkumar, M., Kumaraswamy, K., Mohanraj, R. (eds) Environmental Management of River Basin Ecosystems. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13425-3_19

Download citation

Publish with us

Policies and ethics