Skip to main content

On Evolutionary Integral Models for Image Restoration

  • Chapter
  • First Online:
Developments in Medical Image Processing and Computational Vision

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 19))

Abstract

This paper analyzes evolutionary integral based methods for image restoration. They are multiscale linear models where the restored image evolves according to a Volterra equation, and the diffusion is handled by a convolution kernel. Well-posedness, scale-space properties, and long term behaviour are investigated for the continuous and semi-discrete models. Some numerical experiments are included. They provide different rules to select the kernel, and illustrate the performance of the evolutionary integral model in image denoising and contour detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álvarez L, Guichard F, Lions P-L, Morel J-M (1993) Axioms and fundamental equations for image processing. Arch Ration Mech Anal 123:199–257

    Article  MATH  Google Scholar 

  2. Aubert J, Kornprobst P (2001) Mathematical problems in image processing. Springer-Verlag, Berlin

    Google Scholar 

  3. Bartels S, Prohl A (2007) Stable discretization of scalar and constrained vectorial Perona–Malik equation. Interfaces Free Bound 4:431–453

    Article  MathSciNet  Google Scholar 

  4. Boyd, JP (2001) Chebyshev and Fourier spectral methods, 2nd edn. Dover, New York

    MATH  Google Scholar 

  5. Brezis H (2011) Functional analysis, Sobolev spaces and partial differential equations. Springer, New York

    MATH  Google Scholar 

  6. Calvo MP, Cuesta E, Palencia C (2007) Runge–Kutta convolution quadrature methods for well-posed equations with memory. Numer Math 107:589–614

    Article  MATH  MathSciNet  Google Scholar 

  7. Collatz L (1960) The numerical treatment of differential equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  8. Cuesta E, Finat J (2003) AQ1Image processing by means of a linear integro–differential equation. IASTED1:438–442

    Google Scholar 

  9. Cuesta E, Palencia C (2003) A numerical method for an integro–differential equation with memory in Banach spaces. SIAM J Numer Anal 41:1232–1241

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuesta E, Durán A, Kirane M, Malik SA (2012) Image filtering with generalized fractional integrals. In: Proceedings of the 12th international conference on computational and mathematical methods in science and engineering. CMMSE 2012:553–563

    Google Scholar 

  11. Cuesta E, Kirane M, Malik SA (2012) Image structure preserve denoising using generalized fractional time integrals. Signal Process 92:553–563

    Article  Google Scholar 

  12. Deng T-B, Qin W (2013) Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters. Signal Process 93:923–932

    Article  Google Scholar 

  13. Didas S, Burgeth B, Imiya A, Weickert J (2005) Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel R, Sochen N, Weickert J (eds) Scale-space and PDE methods in computer vision, LNCS, vol 3459. Springer-Verlag, Berlin, pp 13–25

    Google Scholar 

  14. Guidotti P, Lambers JV (2009) Two new nonlinear diffusion for noise reduction. J Math Imaging Vision 33:25–37

    Article  MathSciNet  Google Scholar 

  15. Kuo T-Y, Chen H-Ch, Horng T-L (2013) A fast Poisson solver by Chebyshev pseudospectral method using reflexive decomposition. Taiwan J Math 17:1167–1181

    MATH  MathSciNet  Google Scholar 

  16. Lee JS (1983) Digital image smoothing and the sigma filter. Comput Vision Graph Image Process 24:253–269

    Article  Google Scholar 

  17. López–Fernández M, Palencia C (2004) On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl Numer Math 51:289–303

    Article  MATH  MathSciNet  Google Scholar 

  18. López–Fernández M, Lubich Ch, Schadle A (2008) Adaptive, fast and oblivious convolution in evolution equations with memory. SIAM J Sci Comput 30:1015–1037

    Article  MATH  MathSciNet  Google Scholar 

  19. Lubich Ch (1988) Convolution quadrature and discretized operational calculus I. Numer Math 52:129–145

    Article  MATH  MathSciNet  Google Scholar 

  20. Lubich Ch (1988) Convolution quadrature and discretized operational calculus II. Numer Math 52:413–425

    Article  MATH  MathSciNet  Google Scholar 

  21. Magin R, Ortigueira MD, Podlubny I, Trujillo J (2011) On the fractional signals and systems. Signal Process 91:350–371

    Article  MATH  Google Scholar 

  22. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  23. Podlubny I (1999) Fractional differential equations. Academic, London

    MATH  Google Scholar 

  24. Proskurowsky W, Widlund O (1980) A finite element-capacitance matrix method for the Neumann problem for Laplace’s equation. SIAM J Sci Stat Comput 1:410–425

    Article  Google Scholar 

  25. Pruss J (1993) Evolutionary integral equations and applications. Birkhäuser, Basel

    Book  Google Scholar 

  26. Ross B, Samko S (1995) Fractional integration operator of variable order in the holder spaces \(h\lambda(x)\). Int J Math Math Sci 18:777–788

    Article  MATH  MathSciNet  Google Scholar 

  27. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithm. Phys D 60:259–268

    Article  MATH  Google Scholar 

  28. Scarpi G (1972) Sulla possibilita di un modello reologico di tipo evolutivo. Rend Sc Nat Fis Mat II 52:570–575

    MathSciNet  Google Scholar 

  29. Strickwerda JC (1989) Difference schemes and partial differential equations. Wadsworth and Brooks, Pacific Grove

    Google Scholar 

  30. Trefethen Ll N (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  31. Tseng Ch-Ch, Lee S-L (2013) Designs of two-dimensional linear phase FIR filters using fractional derivative constrains. Signal Process 93:1141–1151

    Article  Google Scholar 

  32. Weickert J (1997) A review of nonlinear diffusion filtering, Lecture notes in computer science—scale space theory in computer science. Springer, Berlin

    Book  Google Scholar 

  33. Weickert J (1998) Anisotropic diffusion in image processing. B. G. Teubner, Stuttgart

    MATH  Google Scholar 

  34. Yaroslavsky LP (1985) Digital picture processing. An introduction. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  35. Zhuang Y, Sun XH (2001) A high-order fast direct solver for singular Poisson equations. J Comput Phys 171:79–94

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cuesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuesta, E., Durán, A., Kirane, M. (2015). On Evolutionary Integral Models for Image Restoration. In: Tavares, J., Natal Jorge, R. (eds) Developments in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-13407-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13407-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13406-2

  • Online ISBN: 978-3-319-13407-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics