Skip to main content

Anisotropy Estimation of Trabecular Bone in Gray-Scale: Comparison Between Cone Beam and Micro Computed Tomography Data

  • Chapter
  • First Online:
Developments in Medical Image Processing and Computational Vision

Abstract

Measurement of anisotropy of trabecular bone has clinical relevance in osteoporosis. In this study, anisotropy measurements of 15 trabecular bone biopsies from the radius estimated by different fabric tensors on images acquired through cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) were compared. The results show that the generalized mean intercept length (MIL) tensor performs better than the global gray-scale structure tensor, especially when the von Mises-Fisher kernel is applied. Also, the generalized MIL tensor yields consistent results between the two scanners. These results suggest that this tensor is appropriate for estimating anisotropy in images acquired in vivo through CBCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burghardt A, Link T, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 469(8):2179–2193

    Google Scholar 

  2. Cowin S (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4(2):137–147

    Google Scholar 

  3. Driscoll JR, Healy DM (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15(2):202–250

    Google Scholar 

  4. Förstner W (1986) A feature based correspondence algorithm for image matching. Int Arch Photogramm Remote Sens 26:150–166

    Google Scholar 

  5. Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, van den Bergh J (2014) High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol 10(5):304–313

    Google Scholar 

  6. Gomberg B, Wehrli F, Vasilić B, Weening R, Saha P, Song H, Wright A (2004) Reproducibility and error sources of μ-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35(1):266–276

    Google Scholar 

  7. Granlund GH, Knutsson H (1995) Signal processing for computer vision. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Griffith J, Genant H (2012) New advances in imaging osteoporosis and its complications. Endocr 42:39–51

    Google Scholar 

  9. Groemer H (1996) Geometric applications of Fourier series and spherical harmonics. Cambridge University Press

    Google Scholar 

  10. Gross T, Pahr D, Zysset P (2013) Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiol 12(4):793–800

    Google Scholar 

  11. Hipp J, Jansujwicz A, Simmons C, Snyder B (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11(2):286–297

    Google Scholar 

  12. Horn BKP (1984) Extended Gaussian images. Proc IEEE 72(12):1671–1686

    Google Scholar 

  13. Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156

    Google Scholar 

  14. Jupp PE, Mardia KV (1989) A unified view of the theory of directional statistics, 1975–1988. Int Stat Rev 57(3):261–294

    Google Scholar 

  15. Köthe U, Felsberg M (2005) Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor. In: Scale Space and PDE Methods in Computer Vision, Hofgeismar Germany. LNCS 3459:179–191

    Google Scholar 

  16. Monje A, Monje F, Gonzalez-Garcia R, Galindo-Moreno P, Rodriguez-Salvanes F, Wang H (2014) Comparison between microcomputed tomography and cone-beam computed tomography radiologic bone to assess atrophic posterior maxilla density and microarchitecture. Cli Oral Implants Res 25(6):723–728

    Google Scholar 

  17. Moreno R, Smedby Ö (2014) Volume-based fabric tensors through lattice-Boltzmann simulations. In: Proceedings International Conference on Pattern Recognition (ICPR), Stockholm Sweden, pp 3179–3184

    Google Scholar 

  18. Moreno R, Borga M, Smedby Ö (2012) Generalizing the mean intercept length tensor for gray-level images. Med Phys 39(7):4599–4612

    Google Scholar 

  19. Moreno R, Pizarro L, Burgeth B, Weickert J, Garcia MA, Puig D (2012) Adaptation of tensor voting to image structure estimation. In: Laidlaw D, Vilanovaeds A (eds) New developments in the visualization and processing of tensor fields. Springer. pp 29–50

    Google Scholar 

  20. Moreno R, Borga M, Smedby Ö (2013) Correlations between fabric tensors computed on cone beam and micro computed tomography images. In: Tavares J, Natal-Jorge R (eds) Computational vision and medical image processing (VIPIMAGE). CRC Press (2013), pp 393–398

    Google Scholar 

  21. Moreno R, Borga M, Smedby Ö (2014) Techniques for computing fabric tensors: a review. In: Burgeth B, Vilanova A, Westin CF (eds) Visualization and processing of tensors and higher order descriptors for multi-valued data. Springer, pp 271–292

    Google Scholar 

  22. Mulder L, van Rietbergen B, Noordhoek NJ, Ito K (2012) Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone 50(1):200–208

    Google Scholar 

  23. Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R (1997) Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30(5):487–495

    Google Scholar 

  24. Tabor Z (2005) Novel algorithm detecting trabecular termini in μCT and MRI images. Bone 37(3):395–403

    Google Scholar 

  25. Tabor Z, Rokita E (2007) Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4):966–972

    Google Scholar 

  26. Tabor Z, Petryniak R, Latała Z, Konopka T (2013) The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone. Med Eng Phys 35(1):7–15

    Google Scholar 

  27. Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36(10):1469–1485

    Google Scholar 

  28. Zysset PK, Goulet RW, Hollister SJ (1998) A global relationship between trabecular bone morphology and homogenized elastic properties. J Biomech Eng 120(5):640–646

    Google Scholar 

Download references

Acknowledgements

We thank Andres Laib from SCANCO Medical AG for providing the micro-CT data of the specimens. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moreno, R., Borga, M., Klintström, E., Brismar, T., Smedby, Ö. (2015). Anisotropy Estimation of Trabecular Bone in Gray-Scale: Comparison Between Cone Beam and Micro Computed Tomography Data. In: Tavares, J., Natal Jorge, R. (eds) Developments in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-13407-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13407-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13406-2

  • Online ISBN: 978-3-319-13407-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics