Skip to main content

Enhanced Efficiency of Medicinal and Aromatic Plants by PGPRs

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Plant growth-promoting rhizobacteria (PGPRs) are a specific group of soil microorganisms that aggressively colonize the rhizosphere and rhizoplane, and substantially improve plant growth and efficiency via direct or indirect mechanisms. Moreover, infection by microorganisms as well as physiological and genetic factors and environmental conditions are the main agents affecting the accumulation and composition of secondary metabolites. As an environmentally friendly strategy, PGPRs should be considered to achieve sustainable high yields of industrially important secondary metabolites in plants using minimum chemical inputs. This chapter aims to introduce proven or putative mechanisms by which PGPRs promote seed germination, growth, nutrient acquisition, and production of primary and secondary metabolites in aromatic and medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Google Scholar 

  • Abdel-Motal FF, Nassar MSM, El-Zayat SA, El-Sayed MA, Ito S (2009) Responses of fungi to tropane alkaloids produced by a medicinal plant Hyoscyamus muticus (Egyptian Henbane). Folia Microbiol 54:207–212

    Google Scholar 

  • Ardakani SS, Heydari A, Tayebi L, Mohammedi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6:95–100

    Google Scholar 

  • Attia FA, Saad OAO (2001) Biofertilizers as potential alternative of chemical fertilizer for Catharanthus roseus G. Don. J Agric Sci 26:7193–7208

    Google Scholar 

  • Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P (1976) Host-pathogen interactions: quantitative assays of elicitor activity and characterization of elicitor present in extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol 57:751–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128

    CAS  PubMed  Google Scholar 

  • Badalamenti F (2004) In: Green C (ed) Proceedings of the IFEAT international conference. The essential oils of the Mediterranean region. International Federation of Essential Oil and Aroma Trades (FEAT), London, pp 77–97

    Google Scholar 

  • Bahadur A, Singh UP, Sarma BK, Singh DP, Singh KP, Singh A (2007) Foliar application of plant growth-promoting rhizobacteria increases antifungal compounds in pea (Pisum sativum) against Erysiphe pisi. Mycobiology 35:129–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banchio E, Bogino P, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    CAS  Google Scholar 

  • Banchio E, Bogino PC, Santoro M, Torres L, Zygadlo J, Giordano W (2010) Systemic induction of monoterpene biosynthesis in Origanum × majoricum by soil bacteria. J Agric Food Chem 13:650–654

    Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    CAS  PubMed  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady NC (ed) Advances in agronomy. Academic, New York, pp 1–54

    Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    CAS  Google Scholar 

  • Bharathi S (2004) Development of botanical formulations for the management of major fungal diseases of tomato and onion. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India, p 152

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blume B, Nqrnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cappellari LDR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Google Scholar 

  • Castro RO, Cantero EV, Bucio JL (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Google Scholar 

  • Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH (2005) Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med 71:186–190

    CAS  PubMed  Google Scholar 

  • Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythioum aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    PubMed  Google Scholar 

  • Ebel J, Mithoefer A (1998) Early events in the elicitation of plant defense. Planta 206:335–348

    CAS  Google Scholar 

  • Farooqi AH, Sharma S (1988) Effect of growth retardants on growth and essential oil content in Japanese mint. Plant Growth Regul 7:39–45

    Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (1997) In: Franz C, Mathe A, Buchbauer G (eds) Essential oils: basic and applied research: proceedings of the 27th international symposium on essential oils. Allured, Carol Stream, IL, pp 95–107

    Google Scholar 

  • Figueiredo CA, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragrance J 23:213–226

    CAS  Google Scholar 

  • Ghorbanpour M, Hatami M (2013) PGPR strains affect seedling vigor index and seed secondary metabolites accumulation of black henbane under drought stress. Trakia J Sci 11:135–143

    Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Biopriming of Salvia officinalis L. seed with plant growth promoting rhizobacteria (PGPRs) changes the invigoration and primary growth indices. J Biol Environ Sci 8:29–36

    Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013a) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Ghorbanpour M, Khavazi K, Ghafarzadegan R, Hatami M (2013b) Two main tropane alkaloids variations of black henbane (Hyoscyamus niger) under PGPRs inoculation and water deficit stress induction at flowering stage. J Med Plants 45:29–42

    Google Scholar 

  • Ghorbanpour M, Khavazi K, Hatami M (2014) Chemical compositions and antimicrobial activity of Salvia officinalis L. essential oil under rhizobacteria (Pseudomonas fluorescens and Putida) inoculation. J Soil Biol (in press)

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Patten CL, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria, 1st edn. Imperial College Press, London

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth promoting rhizobacteria. Curr Microbiol 57:312–317

    CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Gupta V (2003) Seed germination and dormancy breaking techniques for indigenous medicinal and aromatic plants. J Med Aromat Plants Sci 25:402–407

    Google Scholar 

  • Harish Kumar RCD, Maheshwari DK (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenum-graecum L.). Crop Prot 30:1396–1403

    Google Scholar 

  • Harrewijn P, Van Oosten AM, Piron PGM (2001) Natural terpenoids as messengers. A multidisciplinary study of their production, biological functions and practical applications. Kluwer, London

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Hemashenpagam N, Selvaraj T (2011) Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. J Environ Biol 32:579–583

    CAS  PubMed  Google Scholar 

  • Hosseinzadah F, Satei A, Ramezanpour MR (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis L. Middle East J Sci Res 8:947–953

    CAS  Google Scholar 

  • Hu X, Neill SJ, Cai W, Tang Z (2003) Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol 30:901–907

    CAS  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alter phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209

    CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B: Biointerfaces 60:7–11

    CAS  PubMed  Google Scholar 

  • Jayanthi S, Bagyaraj DJ, Satyanarayana BN (2003) Enhanced growth and the nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotechnol 19:69–72

    Google Scholar 

  • Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol Cell 16:224–231

    CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology-applications in agricultural and environmental management. Dekker, New York, pp 255–274

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roland A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Kothari SK, Marchner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Google Scholar 

  • Lakshmipathy R, Chandrika K, Gowda B, Balakrishna AN, Bagyaraj DJ (2002) Response of Calamus thwaitesii var. canaranus Wilde to inoculation with Glomus mosseae, Bacillus coagulans and Trichoderma harzianum. J Soil Biol Ecol 22:16–21

    Google Scholar 

  • Lenin G, Jayanthi M (2012) Efficiency of plant growth promoting rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus. Int J Res Pure Appl Microbiol 2:37–42

    Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on Asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Mayak S, Tsipora T, Bernard R, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4:92–96

    CAS  Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90:7490–7494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162

    CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for the production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52:119–129

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signal molecules in plants. J Exp Bot 53:1237–1247

    CAS  PubMed  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag. doi:10.1094/CM-2004-0301-05-RV

    Google Scholar 

  • Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34:122–130

    Google Scholar 

  • Pathma J, Kennedy RK, Sakthivel N (2011) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 77–105

    Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Matraux J-P, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathway is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    CAS  PubMed  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) Scopolamine and hyoscyamine production by hairy root cultures of Brugmansia candida: influence of calcium chloride, hemicellulase and theophylline. Biotechnol Lett 22:1653–1656

    CAS  Google Scholar 

  • Prasad A, Kumar S, Pandey A (2012) Microbial and chemical sources of phosphorus supply modulate the field and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soils. Biol Fertil Soils 48:117–122

    CAS  Google Scholar 

  • Radman R, Sacz T, Bucke C, Keshvartz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop Prot 20:1–11

    CAS  Google Scholar 

  • Rathaur P, Wasudeo RP, Raja W, Ashish JS (2012) Isolation and characterization of nickel and cadmium tolerant plant growth promoting rhizobacteria from rhizosphere of Withania somnifera. J Biol Environ Sci 6:253–261

    Google Scholar 

  • Ravishankar GA, Rao SR (2000) Biotechnological production of phytopharmaceuticals. J Biochem Mol Biol Biophys 4:73–102

    CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CAS  PubMed  Google Scholar 

  • Sanchez BJ, Trinitario M, Ferradez T, Morales MA, Morte A, Alarcon JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682

    Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    CAS  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    CAS  PubMed  Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism. Chapman and Hall, Boston, MA, p 711

    Google Scholar 

  • Selvaraj T, Rajeshkumar S, Nisha MC, Wondimu L, Tesso M (2008) Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Maejo Int J Sci Technol 2:516–525

    CAS  Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006) Growth responses of Helianthus annus to plant growth promoting rhizobacteria used as a biofertilizer. J Agric Res 1:573–581

    Google Scholar 

  • Shulka A, Abad Farooqi AH, Shukla YN, Sharma S (1992) Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul 11:165–171

    Google Scholar 

  • Singh N, Luthra R, Sangwan RS (1990) Oxidative pathways of essential oil biosynthesis in the developing Cymbopogon flexuosus leaf. Plant Physiol Biochem 28:703–710

    CAS  Google Scholar 

  • Singh SK, Pancholy A, Jindal SK, Pathak R (2011) Effect of plant growth promoting rhizobia on seed germination and seedling traits in Acacia Senegal. Ann For Res 54:161–169

    Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40:289–297

    CAS  PubMed  Google Scholar 

  • Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 268:4086–4094

    CAS  PubMed  Google Scholar 

  • Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett 412:61–64

    CAS  PubMed  Google Scholar 

  • Tzakou O, Pitarokili D, Chinou IB, Harvala C (2001) Composition and antimicrobial activity of the essential oil of Salvia ringens. Planta Med 67:81–83

    CAS  PubMed  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2013) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact. doi:10.1080/17429145.779035

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Ecological suites. Springer, Berlin, pp 178–205

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO33 as nitrogen source. Can J Bot 80:571–576

    CAS  Google Scholar 

  • Vrbnicanin S, Bozic D, Saric M, Pavlovic D, Raicevic V (2011) Effect of plant growth promoting rhizobacteria on Ambrosia artemisiifolia L. seed germination. Pestic Phytomed (Belgrade) 26:141–146

    Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Google Scholar 

  • Zdor RE, Alexander CM, Kremer RJ (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299

    CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhao J, Guo Y, Fujita K, Sakai K (2004) Involvement of cAMP signaling pathway in elicitor- induced phytoalecin accumulation in Cupressus lusitanica cell cultures. New Phytol 161:723–733

    CAS  Google Scholar 

  • Zhao J, Lawrence CD, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    CAS  PubMed  Google Scholar 

  • Zhao J, Zhou L, Wub J (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522

    CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2000) Improved indole alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnol Lett 22:1221–1226

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghorbanpour, M., Hatami, M., Kariman, K., Khavazi, K. (2015). Enhanced Efficiency of Medicinal and Aromatic Plants by PGPRs. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_3

Download citation

Publish with us

Policies and ethics