Skip to main content

Biocontrol Activity of Medicinal Plants from Argentina

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

The use of plants with therapeutic properties is as ancient as human civilization, and for a long time, they were the main sources of drugs. In recent years, there has been a growing interest in alternative therapies especially those derived from plants. Natural products for plants seem to be a good alternative to chemical fungicides since numerous plants have the potential to control phytopathogenic fungi and have much prospect to be used as a fungicide. Several plants from central Argentina were evaluated on fungal species which attack crops of agronomic interest. Different extracts of Achyrocline satureioides, Aspidosperma quebracho blanco, Larrea cuneifolia, Larrea divaricata, Maytenus vitis-idaea, Minthostachys verticillata, and Verbascum thapsus were studied in vitro and in vivo on phytopathogenic growth and were also evaluated for their safety in seedlings. From the chloroform extract of Larrea divaricata, of antifungal high capacity, three compounds could be identified using chromatographic and spectroscopic methods: Apigenine-7-methylether, nordihydroguaiaretic acid, and 3,4-dihydroxy-3,4-dimethoxy-6,7-cyclolignan. The latter compound is described for the first time in the species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcalá de Marcano D, Vargas N, Pire A (2005) Efecto de extractos vegetales y fungicidas sintéticos sobre el crecimiento micelial in vitro de Sclerotium rolfsii y Thielaviopsis basicota. Rev Fac Agron 22:315–324

    Google Scholar 

  • Aliero A, Grierson D, Afolayan A (2006) Antifungal activity of Solanum pseudocapsicum. Res J Bot 1:129–133

    Article  Google Scholar 

  • Alonso J, Desmarchelier C (2007) Maytenus ilicifolia Martius (Congorosa). Boletín Latinoamericano y del Caribe de Plantas Medicinales 6:11–22

    Google Scholar 

  • Aqil F, Ahmad I, Owais M (2006) Targeted screening of bioactive plant extracts and phytocompounds against problematic groups of multidrug-resistant bacteria. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine. Turning medicinal plants into drugs. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 173–197

    Google Scholar 

  • Bajpai V, Rahman A, Chul Kang S (2007) Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glytostroboides Miki ex Hu. Ind Crop Prod 26:28–35

    Article  CAS  Google Scholar 

  • Bernard C, Arnason J, Philogène B, Lama J, Waddell T (1989) Effect of lignans and other secondary metabolites of the asteraceae on the mono-oxygenase activity of the European corn borer. Phytochemistry 28:1373–1377

    Article  CAS  Google Scholar 

  • Bisht D, Owais M, Venkatesan K (2006) Potential of plant-derived products in the treatment of mycobacterial infections. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine. Turning medicinal plants into drugs. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 293–311

    Google Scholar 

  • Bohnstedt C, Mabry T (1979) The volatile constituents of the genus Larrea (Zygophyllaceae). Rev Latinoam Quím 10:128–131

    CAS  Google Scholar 

  • Bourdy G, Oporto P, Jiménez A, Deharo E (2004) A search for natural bioactive compounds in Bolivia through a multidisciplinary approach Part VI. Evaluation of the antimalarial activity of plants used by Isoceño-Guaraní Indians. J Ethnopharmacol 93:269–277

    Article  CAS  PubMed  Google Scholar 

  • Bueno M, Alzugaray C, Giubileo G, Severin C, Carnevale N (2009) Evaluación de la calidad fisiológica de semillas de Maytenus vitis-idaea cultivadas in vitro. BOSQUE 30:146–150

    Article  Google Scholar 

  • Cosentino M, Bombelli R, Carcano E, Luini A, Marino F, Crema F, Dajas F, Lecchini S (2008) Immunomodulatory properties of Achyrocline satureioides (Lam.) D.C. infusion: a study on human leukocytes. J Ethnopharmacol 116:501–507

    Article  PubMed  Google Scholar 

  • Davicino R, Manuele M, Turner S, Ferraro G, Anesini C (2010) Antiproliferative activity of Larrea divaricata Cav. on lymphoma cell line: participation of hydrogen peroxide in its action. Cancer Invest 28:13–22

    Article  CAS  PubMed  Google Scholar 

  • De Feo V, Ricciardi A, Biscardi D, Senatore F (1998) Chemical composition and antimicrobial screening of the essential oil of Minthostachys verticillata (Griseb.) Epl. (Lamiaceae). J Essent Oil Res 10:61–65

    Article  Google Scholar 

  • Desmarchelier C, Coussio J, Ciccia G (1998) Antioxidant and free radical scavenging effects in extracts of the medicinal herb Achyrocline satureioides (Lam.) DC. (“marcela”). Braz J Med Biol Res 31:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Deutsch H, Evenson M, Drescher P, Christoph S, Madsen P (1994) Isolation and biological activity of aspidospermine and quebrachamine from Aspidosperma tree source. J Pharm Biomed Anal 12:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Dubey R, Kumar H, Pandey R (2009) Fungitoxic effect of neem extracts on growth and sclerotial survival of Macrophomina phaseolina in vitro. J Am Sci 5:17–24

    Google Scholar 

  • Elakovich S, Stevens K (1985) Phytotoxic properties of nordihydroguaiaretic acid, a lignan from Larrea tridentata (Creosote bush). J Chem Ecol 11:27–33

    Article  CAS  PubMed  Google Scholar 

  • Frías I, Trujillo J, Romero J, Hernandez J, Pérez J (1995) Lignan models as inhibitors of Phanerochaete chrysosporium lignin peroxidase. Biochimie 77:707–712

    Article  PubMed  Google Scholar 

  • Goleniowski M, Bongiovanni G, Palacio L, Nuñez C, Cantero J (2006) Medicinal plants from the “Sierra de Comechingones”, Argentina. J Ethnopharmacol 107:324–341

    Article  PubMed  Google Scholar 

  • Gonçalves S, Ferraz M, Romano A (2009) Phytotoxic properties of Drosophyllum lusitanicum leaf extracts and its main compound plumbagin. Sci Hortic 122:96–101

    Article  Google Scholar 

  • Gonnet J, Jay M (1972) Les aglycones flavoniques d’Anthyllis vulneraria. Phytochemistry 11:2313–2316

    Article  CAS  Google Scholar 

  • González Pereyra M, Cariddi L, Ybarra F, Isola M, Demo M, Sabini L, Maldonado A (2005) Immunomodulating properties of Minthostachys verticillata on human lymphocytes and basophils. Rev Alerg Mex 52:105–112

    PubMed  Google Scholar 

  • Gross K, Werner P (1978) The biology of Canadian weeds: Verbascum thapsus and Verbascum blattaria. Can J Plant Sci 58:401–403

    Article  Google Scholar 

  • Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan A (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extracts from Mentha longifolia L. ssp. Longifolia. Food Chem 103:1449–1456

    Article  CAS  Google Scholar 

  • Horn G, Gisvold O (1945) A phytochemical study of Larrea divaricata Cav. with special emphasis on its yellow pigments. J Am Pharm Assoc 34:82–86

    Article  CAS  Google Scholar 

  • Jasso de Rodríguez D, Rodríguez García R, Hernández Castillo F, Aguilar González C, Sáenz Galindo A, Villarreal Quintanilla J, Moreno Zuccolotto L (2011) In vitro antifungal activity of extracts of Mexican chihuahuan desert plants against postharvest fruit fungi. Ind Crop Prod 34:960–966

    Article  Google Scholar 

  • Kadarian C, Broussalis A, Miño J, Lopez P, Gorzalczany S, Ferraro G, Acevedo C (2002) Hepatoprotective activity of Achyrocline satureioides (lam) DC. Pharmacol Res 45:57–61

    Article  CAS  PubMed  Google Scholar 

  • Landau S, Silanikove N, Nitsan Z, Barkai D (2000) Short-term changes in eating patterns explains the effects of condensed tannins on feed intake in heifers. Appl Anim Behav Sci 69:199–213

    Article  PubMed  Google Scholar 

  • Lira-Saldívar RH (2003) Estado actual del conocimiento sobre las propiedades biocidas de la gobernadora (Larrea tridentata (D.C.) Coville). Rev Mex Fitopatol 21:214–222

    Google Scholar 

  • Mabry T, Di Feo T, Sakakibara C, Bohnstedt C, Seigler D (1977) The natural products: chemistry of Larrea. In: Mabry J, Hunziker D, Di Feo T (eds) Creosote Bush. Biology and Chemistry of Larrea in New Word Deserts. Hutchinson & Ross, Stroudsburg, PA, pp 115–133

    Google Scholar 

  • Macias F, Molinillo J, Galindo J, Varela R, Torres A, Simonet A (1999) Terpenoids with potential use as natural herbicide templates. In: Cutler H, Cutler S (eds) Biologically active natural products: agrochemicals. CRC Press, New York, NY, pp 15–32

    Google Scholar 

  • Mc Cutcheon A, Ellis S, Hancock R, Towers G (1994) Antifungal screening of medicinal plants of British Columbian native peoples. J Ethnopharmacol 44:157–169

    Article  CAS  Google Scholar 

  • Mc Cutcheon A, Roberts T, Gibbons E, Ellis S, Babiuk L, Hancock R, Towers G (1995) Antiviral screening of British Columbian medicinal plants. J Ethnopharmacol 49:101–110

    Article  CAS  Google Scholar 

  • Meepagala K, Schrader K, Wedge D, Duke S (2005) Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 66:2689–2695

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Ahmed B, Vishwakarma R, Thakur R (1989) Verbacoside. A new luteolin glycoside from Verbascum thapsus. J Nat Prod 52:640–643

    Article  CAS  Google Scholar 

  • Nguyen V, Nguyen D, Seo D, Park R, Jung W (2009) Antimycotic activities of Cinnamon-derived compounds against Rhizoctonia solani in vitro. Biocontrol 54:697–707

    Article  CAS  Google Scholar 

  • Pandey D, Tripathi N, Tripathi R, Dixit S (1982) Fungitoxic and phytotoxic properties of essential oil of Hyptis suaveolens. Pflanzenkrankheid Pflanzenschutz 89:344–349

    Google Scholar 

  • Park J, Ja Choi G, Soo Jang K, Kyoung Lim H, Tae Kim H, Yun Cho K, Kim J (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252:309–313

    Article  CAS  PubMed  Google Scholar 

  • Primo V, Sommaro C, Rovera M, Zanon S, Demo M (2000) Efecto antiviral y virucidal del aceite esencial de Minthostachys verticillata frente a Herpes simple tipo 1 y Herpes suis. Rev Latin Microbiol 42:558–562

    Google Scholar 

  • Rates S (2001) Plants as source of drugs. Toxicon 39:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ríos J, Giner R, Prieto J (2002) New findings on the bioactivity of lignans. In: Rahman A (ed) Studies in natural products chemistry, vol 26. Elsevier, Amsterdam, pp 183–292

    Google Scholar 

  • Rivera F, Gervaz E, Sere C, Dajas F (2004) Toxicological studies of the aqueous extract of Achyrocline satureioides (Lam.) DC (Marcela). J Ethnopharmacol 95:359–362

    Article  CAS  PubMed  Google Scholar 

  • Ruffa M, Ferraro G, Wagner M, Calcagno M, Campos R, Cavallaro L (2002) Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J Ethnopharmacol 79:335–339

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara M, Di Feo D, Nakatani N, Timmermann B, Mabry T (1976) Flavonoid methyl ethers on the external leaf surface of Larrea tridentata and L. divaricata. Phytochemistry 15:727–731

    Article  CAS  Google Scholar 

  • Schmidt-Lebuhn A (2008) Ethnobotany, biochemistry and pharmacology of Minthostachys (Lamiaceae). J Ethnopharmacol 118:343–353

    Article  CAS  PubMed  Google Scholar 

  • Svetaz L, Zuljan F, Derita M, Petenatti E, Tamayo G, Cáceres A, Cechinel Filho V, Giménez A, Pinzón R, Zacchino S, Gupta M (2010) Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol 127:137–158

    Article  PubMed  Google Scholar 

  • Tabanca N, Demirc B, Can Base H, Mincsovics E, Khan S, Jacob M, Wedge D (2007) Characterization of volatile constituents of Scaligeria tripartita and studies on the antifungal activity against phytopathogenic fungi. J Chromat 850:221–229

    CAS  Google Scholar 

  • Tegegne G, Pretorius J, Swart W (2008) Antifungal properties of Agapanthus africanus L. extracts against plant pathogens. Crop Protect 27:1052–1060

    Article  Google Scholar 

  • Timmermann B (1979) Flavonoids from Larrea nitida, Larrea divaricata and Larrea cuneifolia. Rev Latinoam Quím 10:81–83

    CAS  Google Scholar 

  • Trione S, Ruiz Leal A (1972) Composición aminada en hojas de especies y/o tipos genéticos del género Larrea. Rev Fac Cs Agrarias (Cuyo) 18:49–56

    CAS  Google Scholar 

  • Turker A, Camper N (2002) Biological activity of common mullein, a medicinal plant. J Ethnopharmacol 82:117–125

    Article  PubMed  Google Scholar 

  • Valesi A, Rodriguez E, Vander Velde G, Mabry T (1972) Methylated flavonoids in Larrea cuneifolia. Phytochemistry 11:2821–2826

    Article  CAS  Google Scholar 

  • Vargas-Arispuro I, Reyes-Báez R, Rivera-Castañeda G, Martínez-Téllez M, Rivero-Espejel I (2005) Antifungal lignans from the creosotebush (Larrea tridentata). Ind Crop Prod 22:101–107

    Article  CAS  Google Scholar 

  • Vargas-Arispuro I, Contreras-Valenzuela A, Martínez-Téllez M (2009) Lignans from Larrea tridentata (creosote bush) as fungal β-1,3-glucanase inhibitors. Pest Biochem Physiol 94:60–63

    Article  CAS  Google Scholar 

  • Vogt V (2011). Influence of extracts of medicinal and aromatic plants on the development of fungal pathogens. Doctoral thesis, Universidad Nacional de Río Cuarto, Argentina, pp 82–89

    Google Scholar 

  • Vogt V, Cifuente D, Tonn C, Sabini L, Rosas S (2013) Antifungal activity in vitro and in vivo of extracts and lignans from Larrea divaricata Cav. against phytopathogenic fungus. Ind Crop Prod 42:583–586

    Article  CAS  Google Scholar 

  • Vonka C, Chifa C (2008) Taninos condensados en Maytenus vitis-idaea Griseb. “tala salado” (Celastraceae). Acta Farm Bonaerense 27:240–243

    CAS  Google Scholar 

  • Waller C, Gisvold O (1945) A phytochemical investigation of Larrea divaricata Cav. J Am Pharm Assoc 34:78–81

    Article  CAS  Google Scholar 

  • Wilkinson J (2006) Methods for testing the antimicrobial activity of extracts. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine. Turning medicinal plants into drugs. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 157–171

    Google Scholar 

  • Zampini I, Cudmani N, Isla M (2007) Actividad antimicrobiana de plantas medicinales argentinas sobre bacterias antibiótico-resistentes. Acta Bioquim Clin Latinoam 41:385–393

    Google Scholar 

  • Zanon S, Ceriatti F, Rovera M, Sabini L, Ramos B (1999) Search for antiviral activity of certain medicinal plants from Cordoba, Argentina. Rev Latinoam Microbiol 41:59–62

    CAS  PubMed  Google Scholar 

  • Zarins I, Daugavietis M, Halimona J (2009) Biological activity of plant extracts and their application as ecologically harmless biopesticide. Sodininkiste ir Darzininkyste, vol 28. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture, pp 269–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vogt, V., Andrés, J.A., Rovera, M., Sabini, L., Rosas, S.B. (2015). Biocontrol Activity of Medicinal Plants from Argentina. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_20

Download citation

Publish with us

Policies and ethics