Skip to main content

Rhizosphere Microbes Interactions in Medicinal Plants

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Medicinal plants have been used extensively in complementary medicines for disease prevention and treatments. The demand for these medicines has been increasing in recent times. Many studies have shown that medicinal plants are interacting with diverse rhizosphere microorganisms such as both free-living and symbiotic microbes. Inoculation with microbes may enhance the growth of medicinal plants, nutrient uptake and the content of medicinal compounds. However, the diversity, function and applications of microbes to medicinal plants have received little attention so far. Studying rhizosphere microbiology in medicinal plants provides a better understanding of the role microbes played for the improvement of plant growth and active compound accumulation. The diversity of microorganisms in the rhizosphere of medicinal plants and their effect on the plant growth and quality and quantity of medicinal compounds are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  • Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659

    PubMed  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest AC (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower. Echinacea purpurea L. Moench. J Agric Food Chem 57:2255–2258

    CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arun B, Gopinath B, Sharma S (2012) Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis. World J Microbiol Biotechnol 28:2849–2857

    CAS  PubMed  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Google Scholar 

  • Bafana A, Lohiya R (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74

    CAS  PubMed  Google Scholar 

  • Baker S, Satish S (2013) Antimicrobial evaluation of fluorescent Pseudomonas sp inhabiting medicinal plant Annona squamosa L. J Pure Appl Microbiol 7:1027–1033

    Google Scholar 

  • Banik S, Dey BK (1983) Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a sole source of phosphorus. Zbl Mikrobiol 138:437–442

    CAS  Google Scholar 

  • Cai BY, Ge QP, Jie WG, Yan XF (2009) The community composition of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Mycosystema 28:512–520

    CAS  Google Scholar 

  • Cartmill AD (2004) Arbuscular mycorrhizal fungi enhance tolerance to bicarbonate in Rosa multiflora cv. Burr. Thesis for Master of Science. Texas A&M University

    Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piche Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    CAS  Google Scholar 

  • Chandra KK, Kumar N, Chand G (2010) Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. J Environ Biol 31:975–979

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Chatterjee S, Dutta S (2010) A survey on VAM association in three different species of Cassia and determination of antimicrobial property of these phytoextracts. J Med Plant Res 4:286–292

    Google Scholar 

  • Chen XH, Zhao B (2009) Arbuscular mycorrhizal fungi mediated uptake of nutrient elements by Chinese milk vetch (Astragalus sinicus L.) grown in lanthanum spiked soil. Biol Fertil Soils 45:675–678

    CAS  Google Scholar 

  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AM fungi inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic 122:633–637

    CAS  Google Scholar 

  • Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a Sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb Ecol 57:624–632

    PubMed  Google Scholar 

  • Cloete KJ, Przybylowicz WJ, Mesjasz-Przybylowicz J, Barnabas AD, Valentine AJ, Botha A (2010) Micro-particle-induced X-ray emission mapping of elemental distribution in roots of a Mediterranean type sclerophyll, Agathosma betulina (Berg.) Pillans, colonized by Cryptococcus laurentii. Plant Cell Environ 33:1005–1015

    CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ, Sander KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    CAS  PubMed  Google Scholar 

  • Dai CC, Xie H, Wang XX, Li PD, Zhang TL, Li YL, Tan X (2009) Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China. Afr J Biotechnol 8:3739–3746

    CAS  Google Scholar 

  • Dai CC, Chen Y, Wang XX, Li PD (2013) Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China. Agroforest Syst 87:417–426

    Google Scholar 

  • Deans SG, Waterman PG (1993) Biological activity of volatile oils. In: Hay RKM, Waterman PG (eds) Volatile oil crops. Longman Scientific and Technical, Harlow, pp 97–109

    Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64

    CAS  Google Scholar 

  • El-Zayat SA, Nassar MSM, El-Hissy FT, Abdel-Motaal FF, Ito SI (2008) Mycoflora associated with Hyoscyamus muticus growing under an extremely arid desert environment (Aswan region, Egypt). J Basic Microbiol 48:82–92

    PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542

    Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MB, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Gerke J, Meyer U (1995) Phosphate acquisition by red clover and black mustard on a humic podzol. J Plant Nutr 18:2409–2429

    CAS  Google Scholar 

  • Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Ind J Sci Technol 4:119–125

    Google Scholar 

  • Gorsi MS (2002) Studies on mycorrhizal association in some medicinal plants of Azad Jammu and Kashmir. Asian J Plant Sci 1:383–387

    Google Scholar 

  • Guo LP, Wang HG, Huang LQ, Jiang YX, Zhu YG, Kong WD, Chen BD, Chen ML, Lin SF, Fang ZG (2006) Effects of Arbuscular Mycorrhizae on growth and essential oil of Atractylodes lancea. China J Chin Mater Med 31:1491–1496

    Google Scholar 

  • Guo DZ, Chen J, Du XP, Han BX (2010) Screening of molluscicidal strain against Oncomelania hupensis from the rhizosphere of medicinal plant Phytolacca acinosa Roxb. Pharmacogn Mag 6:159–165

    PubMed Central  PubMed  Google Scholar 

  • Gupta ML, Janardhanan KK (1991) Mycorrhizal association of Glomus aggregatum with palmarosa enhances growth and biomass. Plant Soil 131:261–263

    Google Scholar 

  • Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

    CAS  Google Scholar 

  • Haq I, Hussain Z (1995) Medicinal plants of Palandri, District Poonch, Azad Jammu and Kashmir. Pak J Plant Sci 1:115–126

    Google Scholar 

  • Hemalatha M (2002) Synergistic effect of VA-mycorrhizae and Azospirillum on the growth and productivity of some medicinal plants. Ph.D. thesis, Bharathidasan University, Tamil Nadu, pp 108

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  PubMed  Google Scholar 

  • Hosamani PA, Lakshman HC, Sandeepkumar K, Kadam MA, Kerur AS (2011) Role of arbuscular mycorrhizae in conservation of Withania somnifera. Biosci Discov 2:201–206

    Google Scholar 

  • Hussain SA, Srinivas P (2013) Association of arbuscular mycorrhizal fungi and other rhizosphere microbes with different medicinal plants. Res J Biotechnol 8:24–28

    Google Scholar 

  • Imas P, Bar-Yossef B, Kafkafi U, Ganmore-Neumann R (1997) Phosphate induced carboxylate and proton release by tomato roots. Plant Soil 191:35–39

    CAS  Google Scholar 

  • Iqbal SH, Nasim G (1986) Vesicular-arbuscular mycorrhiza in roots and other underground portions of Curcuma longa. Biologia 32:223–228

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintains infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107

    Google Scholar 

  • Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) Phenolics composition and antioxidant activity of sweet Basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449

    CAS  PubMed  Google Scholar 

  • Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  PubMed  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Joy P, Thomos J, Mathew S, Skaria BP (1998) Medicinal plants. Kerala Agricultural University Press, Kerala

    Google Scholar 

  • Jungk A, Claassen N (1986) Availability of phosphate and potassium as the result of interactions between root and soil in the rhizosphere. Zt Pflanzenernaehr Bodenkde 149:411–427

    CAS  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, BiaÅ‚oÅ„ska D, Góralska K, Michael MT, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    PubMed  Google Scholar 

  • Karagiannidisa N, Thomidisa T, Lazarib D, Panou-Filotheoua E, Karagiannidoua C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129:329–334

    Google Scholar 

  • Karthikeyan B, Jaleel CA, Lakshmanan GMA, Deiveekasundaram M (2008) Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids Surf B Biointerfaces 62:143–145

    CAS  PubMed  Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA (2009) Response of some medicinal plants to vesicular arbuscular mycorrhizal inoculations. J Sci Res 1:381–386

    Google Scholar 

  • Khaliel AS, Shine K, Vijayakumar K (2011) Salt tolerance and mycorrhization of Bacopa monneiri grown under sodium chloride saline conditions. Afr J Microbiol Res 5:2034–2040

    CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, pp 879–882

    Google Scholar 

  • Koeberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front Microbiol 4:400

    Google Scholar 

  • Kumar A, Mangla C, Aggarwal A, Parkash V (2010) Arbuscular mycorrhizal fungal dynamics in the rhizospheric soil of five medicinal plants species. Middle-East J Sci Res 6:281–288

    Google Scholar 

  • Kumar G, Kanaujia N, Bafana A (2012) Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 167:220–225

    PubMed  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656

    CAS  Google Scholar 

  • Lee HR, Han SI, Rhee KH, Whang KS (2013) Mucilaginibacter herbaticus sp. nov., isolated from the rhizosphere of the medicinal plant Angelica sinensis. Int J Syst Evol Microbiol 63:2787–2793

    CAS  PubMed  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds of pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15:259–267

    CAS  Google Scholar 

  • Li XL, Jiang HM, Zhang B, Tang GQ, Penttinen P, Zeng Z, Zheng LY, Zhang XP (2013) Endophytic bacterial diversity in Codonopsis pilosula, Ephedra sinica, and Lamiophlomis rotate: a study with LH-PCR. J Appl Ecol 24:2511–2517

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lopez-Fuentes E, Ruiz-Valdiviezo VM, Martinez-Romero E, Gutierrez-Miceli FA, Dendooven L, Rincon-Rosales R (2012) Bacterial community in the roots and rhizosphere of Hypericum silenoides Juss. 1804. Afr J Microbiol Res 6:2704–2711

    CAS  Google Scholar 

  • Lu JY, Mao YM, Shen LY, Peng SQ, Li XL (2003) Effects of VA mycorrhizal fungi inoculated on drought tolerance of wild Jujube (Zizyphus spinosus Hu). Acta Hortic Sin 30:29–33

    Google Scholar 

  • Mansoor F, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24

    CAS  Google Scholar 

  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agric Univ Hebei 34:51–61

    CAS  Google Scholar 

  • Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tiss Organ Cult 93:139–149

    CAS  Google Scholar 

  • Murugappan RM, Begum SB, Roobia RR (2013) Symbiotic influence of endophytic Bacillus pumilus on growth promotion and probiotic potential of the medicinal plant Ocimum sanctum. Symbiosis 60:91–99

    Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130

    CAS  Google Scholar 

  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden (Salvia officinalis L.). J Sci Food Agric 89:1090–1096

    CAS  Google Scholar 

  • Nema R, Khare S, Jain P, Pradhan A, Gupta A, Singh D (2013) Natural products potential and scope for modern cancer research. Am J Plant Sci 4:1270–1277

    Google Scholar 

  • Nimnoi P, Lumyong S, Pongsilp N (2011) Impact of rhizobial inoculants on rhizosphere bacterial communities of three medicinal legumes assessed by denaturing gradient gel electrophoresis (DGGE). Ann Microbiol 61:237–245

    CAS  Google Scholar 

  • Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Wedilia chinensis (Osbeck) Merril. Ind J Sci Technol 3:676–678

    Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant Soil 237:197–201

    CAS  Google Scholar 

  • Olsson PA, Chalot M, Bååth E, Finlay RD, Söderström B (1996) Ectomycorrhizal mycelia reduce bacterial activity in sandy soil. FEMS Microbiol Ecol 21:77–86

    CAS  Google Scholar 

  • Panwar J, Tarafdar JC (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350

    Google Scholar 

  • Ponce MA, Scervino JM, Erra BR, Ocampo JA, Godeas A (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930

    CAS  PubMed  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    CAS  Google Scholar 

  • Qi JJ, Yao HY, Ma XJ, Zhou LL, Li XN (2009) Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Commun Soil Sci Plant Anal 40:1462–1482

    CAS  Google Scholar 

  • Qi XJ, Wang ES, Xing M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotechnol 28:2257–2265

    PubMed  Google Scholar 

  • Qi XJ, Wang ES, Chen X (2013) Molecular characterization of bacterial population in the Rumex patientia rhizosphere soil of Jilin, China. Res J Biotechnol 8:64–71

    CAS  Google Scholar 

  • Radhika KP, Rodrigues BF (2010) Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. J For Res 21:45–52

    Google Scholar 

  • Radhika KP, Rodrigues BF (2011) Influence of arbuscular mycorrhizal fungi on andrographolide concentration in Andrographis paniculata. Aust J Med Herbal 23:34–36

    Google Scholar 

  • Raichand R, Kaur I, Singh NK, Mayilraj S (2011) Pontibacter rhizosphera sp. nov., isolated from rhizosphere soil of an Indian medicinal plant Nerium indicum. Antonie Van Leeuwenhoek 100:129–135

    PubMed  Google Scholar 

  • Rajeshkumar S, Nisha MC, Selvaraj T (2008) Variability in growth, nutrition and phytochemical constituents of Plectranthus amboinicus (Lour) Spreng. as influenced by indigenous arbuscular mycorrhizal fungi. Mj Int J Sci Tech 2:431–439

    CAS  Google Scholar 

  • Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products, New York, pp 227–265

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    CAS  PubMed  Google Scholar 

  • Rosa-Mera CJDA, Ferrera-Cerrato R, Alarcón A, Sánchez-Colín MDJ, Muñoz-Muñiz OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2008) Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit. Mycorrhiza 18:185–205

    Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Google Scholar 

  • Sagar A, Kumari R (2009) Fungal associates of Centella asiatica and Ocimum sanctum. J Pure Appl Mirobiol 3:243–248

    Google Scholar 

  • Salvaraj T, Kim H (2004) Effect of vesicular-arbuscular mycorrhizal (VAM) fungi on tolerance of industrial effluent treatment in Datura metal. Agric Chem Biotechnol 47:106–109

    Google Scholar 

  • Sasanelli N, Anton A, Takacs T, Addabbo TD, Biro I, Malov X (2009) Influence of arbuscular mycorrhizal fungi on the nematicidal properties of leaf extracts of Thymus vulgaris L. Helminthologia 46:230–240

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plans: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma D, Kapoor R, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microbiol Biotechnol 24:395–400

    Google Scholar 

  • Shi JY, Yuan XF, Lin HR, Yang YQ, Li ZY (2011) Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci 12:3770–3785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi ZY, Chen YL, Hou XG, Gao SC, Wang F (2013) Arbuscular mycorrhizal fungi associated with tree peony in 3 geographic locations in China. Turk J Agric For 37:726–733

    Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London, p 800

    Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    CAS  Google Scholar 

  • Spearman MA, Ballon BC, Gerrard JM, Greenberg AH, Wright JA (1991) The inhibition of platelet aggregation of metastatic H-ras-transformed 10 T1/2 fibroblasts with castanospermine, an N-linked glycoprotein processing inhibitor. Cancer Lett 60:185–191

    CAS  PubMed  Google Scholar 

  • Sun XG, Tang M (2013) Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S Afr J Bot 88:373–379

    CAS  Google Scholar 

  • Sundar SK, Palavesam A, Parthipan B (2011) AM fungal diversity in selected medicinal plants of Kanyakumari District, Tamil Nadu, India. Ind J Microbiol 5:259–265

    Google Scholar 

  • Taber RA, Trappe JM (1982) Vesicular-arbuscular mycorrhiza in rhizomes, scale-like leaves, roots, and xylem of ginger. Mycologia 74:156–161

    Google Scholar 

  • Tamilarasi S, Nanthakumar K, Karthikeyan K, Lakshmanaperumalsamy P (2008) Diversity of root associated microorganisms of selected medicinal plants and influence of rhizomicroorganisms on the antimicrobial property of Coriandrum sativum. J Environ Biol 29:127–134

    CAS  PubMed  Google Scholar 

  • Tang M, Chen H, Shang HS (1999) Effects of arbuscular mycorrhizal fungi (AMF) on Hippophae rhamnoides drought-resistance. Sci Silvae Sin 35:48–52

    Google Scholar 

  • Tang M, Xue S, Yang HP (2004) Vesicular arbuscular mycorrhizal (VAM) fungi of xerophyte in Gansu. J Yunnan Agric Univ 19:638–642

    Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204

    CAS  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353

    PubMed  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    CAS  PubMed  Google Scholar 

  • Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116

    Google Scholar 

  • Udea T, Husoe T, Kubo S, Nakawashi I (1992) Vesicular arbuscular mycorrhizal fungi (Glomales) in Japan II: a field survey of vesicular arbuscular mycorrhizal association with medicinal plants in Japan. Trans Mycol Soc Japan 33:77–86

    Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Vasudha S, Shivesh S, Prasad SK (2013) Harnessing PGPR from rhizosphere of prevalent medicinal plants in tribal areas of Central India. Res J Biotechnol 8:76–85

    Google Scholar 

  • Waheed A (1982) Mycorrhizal and medicinal plants in Murree hills. M.Sc. thesis. The Punjab University, Lahore, Pakistan

    Google Scholar 

  • Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227

    CAS  PubMed  Google Scholar 

  • Wang CH, Yang XH, Li DY, Yu GB, Qin Q (2006) Effects of the different species of arbuscular mycorrhizal fungi on the vegetative growth and mineral contents in trifoliate orange seedlings. Chin Agric Sci Bull 22:199–203

    Google Scholar 

  • Wang S, Tang M, Niu ZC, Zhang HQ (2008) Relationship between AM fungi resources of rare medicinal plants and soil factors in Lishan Mountain. Acta Bot Bor-Occi Sin 28:355–361

    Google Scholar 

  • Wei GT, Wang HG (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura Stramonium L. Sci Agric Sin 25:56–61

    Google Scholar 

  • Wei LH, Shao Y, Wan JW, Feng H, Zhu H, Huang HW, Zhou YJ (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLoS ONE 9:e85988

    PubMed Central  PubMed  Google Scholar 

  • Whang KS, Lee JC, Lee HR, Han SI, Chung SH (2014) Terriglobus tenax sp. nov., an exopolysaccharide-producing Acidobacterium isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 64:431–437

    CAS  PubMed  Google Scholar 

  • Wu LK, Wang HB, Zhang ZX, Lin R, Zhang ZY, Lin WX (2011) Comparative Metaproteomic analysis on consecutively Rehmannia glutinosa monocultured rhizosphere soil. PLoS ONE 6:e20611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu LK, Li ZF, Li J, Khan MA, Huang WM, Zhang ZY, Lin WX (2013) Assessment of shifts in microbial community structure and catabolic diversity in response to Rehmannia glutinosa monoculture. Appl Soil Ecol 67:1–9

    Google Scholar 

  • Wubet T, Weib M, Kottke I, Teketay D, Oberwinkler F (2003) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528

    Google Scholar 

  • Xu Z, Xu QY, Zheng ZH, Huang YJ (2012) Kribbella amoyensis sp nov., isolated from rhizosphere soil of a pharmaceutical plant, Typhonium giganteum Engl. Int J Syst Evol Microbiol 62:1081–1085

    CAS  PubMed  Google Scholar 

  • Yang AN, Lu L, Wu CX, Xia MM (2011) Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). J Med Plant Res 5:4542–4548

    Google Scholar 

  • Yang L, Chen ML, Shao AJ, Yang G (2012) Discussion on applications and mechanisms of biocontrol microoganisms used for controlling medicinal plant soil-borne diseases. China J Chin Mater Med 37:3188–3192

    Google Scholar 

  • Yuan ZL, Dai CC, Chen LQ (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271

    CAS  Google Scholar 

  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

    CAS  PubMed  Google Scholar 

  • Zhang SS, Jin YL, Zhu WJ, Tang JJ, Hu SJ, Zhou TS, Chen X (2010) Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J Chem Ecol 36:329–338

    CAS  PubMed  Google Scholar 

  • Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ, Yu LY (2011a) Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 61:190–193

    CAS  PubMed  Google Scholar 

  • Zhang ZY, Lin WX, Yang YH, Chen H, Chen XJ (2011b) Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. Agric Sci China 10:1374–1384

    Google Scholar 

  • Zhang HY, Xue QH, Shen GH, Wang DS (2013) Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. J Appl Ecol 24:2287–2293

    CAS  Google Scholar 

  • Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agric Bor Occi Sin 20:184–189

    CAS  Google Scholar 

  • Zhao X, Yan XF (2006) Effects of arbuscular mycorrhizal fungi on the growth and absorption of nitrogen and phosphorus in Camptotheca acuminata seedlings. J Plant Ecol 30:947–953

    CAS  Google Scholar 

  • Zhao K, Penttinen P, Chen Q, Guan TW, Lindstrom K, Ao XL, Zhang LL, Zhang XP (2012) The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties. Appl Microbiol Biotechnol 94:1321–1335

    CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang X, Tan Z, Guo J, Zhu H (2013) Isolation and identification of cultivable myxobacteria in the rhizosphere soils of medicinal plants. Acta Microb Sin 53:657–668

    Google Scholar 

  • Zubek S, Blaszkowski J (2009) Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem Rev 8:571–580

    CAS  Google Scholar 

  • Zubek S, Blaszkowski J, Mleczko P (2011) Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Soc Bot Pol 80:285–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria M. Solaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solaiman, Z.M., Anawar, H.M. (2015). Rhizosphere Microbes Interactions in Medicinal Plants. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_2

Download citation

Publish with us

Policies and ethics