Skip to main content

Plant Growth Promoting Rhizobacteria for Value Addition: Mechanism of Action

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Soil zone in the vicinity of plant roots is an area in which the chemistry and microbiology are influenced by their growth, respiration, and nutrient exchange known as rhizosphere. In the rhizosphere, bacteria are the most abundant microbes besides other microbes like fungi, protozoa, algae, etc. Plant roots release some nutrient rich substances. These substances could easily be utilized by some bacteria and developed colonies in the root zones of a plant. Such bacteria are known as rhizobacteria. These bacteria help to promote growth and development of the plants. Therefore, these bacteria are known as Plant Growth Promoting Rhizobacteria (PGPR). These bacteria have the ability to produce enzymes and hormones. They can fix nitrogen from the air and able to mineralize nutrients in the soil. Considering such multifunctional role of these bacteria, the application of such bacteria in the field of agriculture is increasing day by day and continuous research is going on to facilitate their application as a reliable component in the management of sustainable agricultural system. The applications of PGPR for improvement of medicinal plants along with their mechanism of action are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48

    Article  CAS  Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38 (Printed in The Netherlands)

    Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    Article  CAS  Google Scholar 

  • Banerjee MR, Yasmin L (2002) Sulfur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production. In: Proceedings of agroenviron, Cairo, pp 1–7

    Google Scholar 

  • Bernath J (2002) Preface. In: Bernath J, Zamborine Nemeth E, Craker, L Kock O (eds) International conference on medicinal and aromatic plants. Possibilities and limitations of medicinal and aromatic plant production in the 21st century. Acta Horticult, vol 576, ISHS, Budapest

    Google Scholar 

  • Bharti N, Yadav D, Bamawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. doi:10.1007/s00253-004-1696-1

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PJ, Dughri MH (1989) Population size and distribution of Rhizobium leguminosarum biovar trifolii in relation to total soil bacteria and soil depth. Appl Environ Microbiol 55:959–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bottomley PJ, Maggard SP (1990) Determination of viability within serotypes of a soil population of Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 56:533–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    Article  CAS  Google Scholar 

  • Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Cantarelli MA, Pellerano RG, Del Vitto LA, Eduardo J, Marchevsky EJ, Camina JM (2010) Characterisation of two South American food and medicinal plants by chemometric methods based on their multielemental composition. Phytochem Anal 21:550–555

    Article  CAS  PubMed  Google Scholar 

  • Cappellari LDR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Article  Google Scholar 

  • Castro RO, Cantero EV, Bucio JL (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Article  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  • Damayanti TA, Pardede H, Mubarik NR (2007) Utilization of root-colonizing bacteria to protect hot-pepper against Tobacco Mosaic Tobamovirus. Hayati J Biosci 14:105–109

    Google Scholar 

  • Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb var mungo. Biol Plant 29:350–354

    Article  CAS  Google Scholar 

  • Dastborhan S, Zehtab-Salmasi S, Nasrollahzadeh S, Tavassoli AR (2010) Effect of plant growth-promoting rhizobacteria and nitrogen fertilizer on yield and essential oil of german chamomile (Matricaria chamomilla L.). In: International symposium on medicinal and aromatic plants IMAPS 2010 and history of mayan ethnopharmacology IMAPS 2011. Acta horticulturae, vol 964, ISHS

    Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • De Smet I, Zhang H, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) A PGPR-Arabidopsis interaction is a useful system to study signalling pathways involved in plant developmental control. Plant Signal Behav 4:321–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. doi:10.1111/j.1744-7348.2010.00439.x

    Article  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth NR (1990) The role of ethno pharmacology in drug development. Ciba Found Symp 154:2–11

    CAS  PubMed  Google Scholar 

  • Forlani GM, Mantelli M, Nielsen E (1999) Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50:255–262

    Article  CAS  Google Scholar 

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Caracterização de rizóbios isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66:497–504 (article in Portuguese)

    Article  Google Scholar 

  • Germida JJ, Walley FL (1996) Plant growth promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field grown spring wheat. Biol Fertil Soils 23:113–120

    Article  CAS  Google Scholar 

  • Ghodsalavi B, Ahmadzadeh M, Soleimani M, Madloo PB, Taghizad-Farid R (2013) Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci 7:338–344

    CAS  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology principles and applications of recombinant DNA, 3rd edn. ASM Press, Washington, DC, pp 436–454

    Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropae-1-carboxylic acid deaminase play a role on plant growth by Pseudomonas putida GR12-2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 150–152

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gray MJ, Smith LM (2005) Influence of land use on post metamorphic body size of playa lake amphibians. J Wildl Manag 69:515–524

    Article  Google Scholar 

  • Gutierrez Manero FJ, Acero N, Lucas JA, Probanza A (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L) Gaertn.). II Characterisation and biological assays of metabolites from growth promoting and growth inhibiting bacteria. Plant Soil 182:67–74

    Article  CAS  Google Scholar 

  • Gutierrez Manero FJ, Ramos B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) Plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amount of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B: Biointerfaces 60:7–11

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alter phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209. doi:10.1016/j.procbio.2008.10.012

    Article  CAS  Google Scholar 

  • Karthikeyan B, Jaleel CA, Lakshmanan GMA, Deiveekasundaram M (2008) Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids Surf B: Biointerfaces 62:143–145

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G Don. Nat Croat 19:205–212

    Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Glichrist K, Katupitiya S (1997) Biological nitrogen fixation in non leguminous field crops: facilitating the evolution of an effective association between Azosirillun and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury AIMA, KecSkes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert Clarey, Tours, pp 879–882

    Google Scholar 

  • Kloepper JW, Lifshit R, Zablotwicz RM (1989) Free-living bacterial inoculation for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Klyuchnikov AA, Kozherin PA (1990) Dynamics of Pseudomonas fluorescens and Azospirillium brasilense populations during the formation of the vesicular arbuscular mycorrhiza. Microbiology 59:449–452

    Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems, 1st edn. Springer, New York, NY, pp 37–59

    Chapter  Google Scholar 

  • Laloo RC, Kharlukhi L, Jeeva S, Mishra BP (2006) Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, northeast India: population structure and regeneration efficacy of some important species. Curr Sci 90:225–231

    Google Scholar 

  • Li J, Ovakin DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Entreobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber by plant growth promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064–1068

    Article  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene independent signaling mechanism in Arabidopis thaliana. Mol Plant-Microbe Interact 20:207–217

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1983) Soil biotechnology: microbiological factors in crop productivity. Blackwell, Oxford

    Google Scholar 

  • Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 53:2316–2321

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Toledo MV, Rodelas B, Salmeron V, Pozo C, Gonzalez-Lopez J (1996) Production of pantothenic acid and thiamine by Azotobacter vinelandii in a chemically defined medium and a dialysed soil medium. Biol Fertil Soils 22:131–135

    Article  CAS  Google Scholar 

  • Meena AK, Bansal P, Kumar S, Rao MM, Garg VK (2010) Estimation of heavy metals in commonly used medicinal plants: a market basket survey. Environ Monit Assess 170:657–660

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335

    Article  PubMed  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4:92–96

    CAS  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52:119–129

    CAS  Google Scholar 

  • Naseri S, Sharafzadeh S (2013) Impact of Azotobacter on growth and total phenolic content of garden thyme. Adv Environ Biol 7:113–115

    CAS  Google Scholar 

  • Obiajunwa EI, Adebajo CA, Omobuwajo OR (2002) Essential and trace element contents of some Nigerian medicinal plants. J Radioanal Nucl Chem 252:473–476

    Article  CAS  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macas-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. Dekker, New York, NY, pp 1–17

    Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836. doi:10.1071/PP01045

    Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salehi A, Ghalavand A, Sephidkon F, Ghaedi A (2012) Effect of vermicompost, PGPR and zeolite application on yield, yield components, essential oil content and chamazulene percentage of german chamomile (Matricaria chamomilla L.). In: Proceedings of national congress on medicinal plants, Kish Island

    Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138. doi:10.3923/jest

    Article  CAS  Google Scholar 

  • Sarma H, Sarma CM (2008) Alien traditionally used plants species of Manas Biosphere Reserve, Indo-Burma hotspot. Z Arznei Gewurzpflanzen 13:117–120

    Google Scholar 

  • Sarma H, Sarma AM, Sarma CM (2008) Tradycyjna wiedza o roslinach dziko rosnacych uzywanych jako warzywa i do celow leczniczych w regione barpeta (Prowincja Assam, Indie). Herba Pol 54:80–88

    Google Scholar 

  • Sefidkon F (2012) Effects of organic fertilizers on essential oil content and composition of some aromatic plants. In: Proceedings of national congress on medicinal plants, Kish Island

    Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. J Phytol 2:91–100

    Google Scholar 

  • Sierra S, Rodelas B, Martinez-Toledo MV, Pozo C, Gonzalez-Lopez J (1999) Production of B-group vitamins by two Rhizobium strains in chemically defined media. J Appl Microbiol 86:851–858

    Article  CAS  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Solano BR, Maicas JB, Gutierrez Manero FJ (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions, strategies and techniques to promote plant growth. Wiley, Weinheim

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Stajner D, Gasaic O, Matkovic B, Varga SZI (1995) Metolachlor effect on antioxidants enzyme activities and pigments content in seeds and young leaves of wheat (Triticum aestivum L.). Agr Med 125:267–273

    Google Scholar 

  • Stajner D, Kevreaan S, Gasaic O, Mimica-Dudic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sumner ME (1990) Crop responses to Azospirillum inoculation. Adv Soil Sci 12:153–168

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  CAS  Google Scholar 

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. US Patent 4,988,586

    Google Scholar 

  • Van Loon LC (2007) Plant response to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Ecological suites. Springer, Berlin, pp 178–205

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner D (2001) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Dekker, New York, NY, pp 197–222

    Google Scholar 

  • Werner D (2004) Signalling in the rhizobia-legumes symbiosis. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, New York, pp 99–119

    Google Scholar 

  • Zahir ZA, Muhammad A, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168. doi:10.1016/S0065-2113(03)81003-9

    Article  CAS  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Article  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522

    Article  CAS  Google Scholar 

  • Zhuang XL, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deka, H., Deka, S., Baruah, C.K. (2015). Plant Growth Promoting Rhizobacteria for Value Addition: Mechanism of Action. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_15

Download citation

Publish with us

Policies and ethics