Skip to main content

Medicinal Plants and PGPR: A New Frontier for Phytochemicals

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Plants are a reservoir of biologically active compounds with therapeutic properties and have been used worldwide for the treatment of various ailments. Successful cultivation of medicinal plants depends on biotic and abiotic factors which can modulate the composition of secondary metabolites and essential oil, and the use of chemical fertilizers and pesticides should be avoided. Innovative biotechnological approaches such as the use of root-associated beneficial microbes which are able to promote plant growth, nutrient uptake, and protect plants against various soilborne pathogens can help plants to adapt to a number of environmental stresses and have vital importance in medicinal plant research. In this review, we examine plant–microbe interactions with medicinal plants and their functional characteristics. We also discuss the use of plant-associated beneficial microorganisms to enhance the levels of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Irmaileh BE, Afifi FU (2003) Herbal medicine in Jordan with special emphasis on commonly used herbs. J Ethnopharmacol 89:193–197

    PubMed  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–44

    CAS  Google Scholar 

  • Ardakani S, Heydari A, Tayebi L, Mohammadi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6:95–100

    Google Scholar 

  • Arpana J, Bagyaraj DJ (2007) Response of kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizomicroorganism at two levels of phosphorus fertilizers. Am Eur J Agric Environ Sci 2:33–38

    Google Scholar 

  • Atanasov AT, Spasov V (2000) Inhibiting and disaggregating effect of gel-filtered Galega officinalis L. herbal extract on platelet aggregation. J Ethnopharmacol 69:235–240

    CAS  PubMed  Google Scholar 

  • Bahadori F, Ashorabadi ES, Mirza M, Matinizade M, Abdosi V (2013) Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. Int J Agron Plant Prod 4:3384–3391

    CAS  Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    CAS  PubMed  Google Scholar 

  • Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus and Pinus sp. Microb Ecol 50:82–89

    CAS  PubMed  Google Scholar 

  • Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by Stenotrophomonas. In: Seckbach J, Grube M (eds) Symbioses and stress, cellular origin, life in extreme habitats and astrobiology, vol 17. Springer Verlag, Netherlands, pp 445–460

    Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    CAS  PubMed  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines linking plant biochemistry and physiology to human health. Plant Physiol 124:507–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cappellari LR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Google Scholar 

  • Çakmakcı R, Donmez D, Aydın A, Sahin F (2005) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Google Scholar 

  • Çakmakcı R, Dönmez MF, ErdoÄŸan Ãœ (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiariandy CM, Seaforth CE, Phelps RH, Pollard GV, Khambay BP (1999) Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties. J Ethnopharmacol 64:265–270

    Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. genovese. Mycorrhiza 16:485–494

    CAS  PubMed  Google Scholar 

  • Cousins D, Huffman MA (2002) Medicinal properties in the diet of gorillas—an ethnopharmacological evaluation. Afr Stud Monogr 23:65–68

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35

    CAS  Google Scholar 

  • Das K, Dang R (2010) Influence of biofertilizers on stevioside content in Stevia rebaudiana grown in acidic soil condition. Arch Appl Sci Res 4:44–49

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Doughari JH, Human IS, Bennade S, Ndakidemi PA (2009) Phytochemicals as chemotherapeutic agents and antioxidants: possible solution to the control of antibiotic resistant verocytotoxin producing bacteria. J Med Plant Res 3:839–848

    CAS  Google Scholar 

  • Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4:685–688

    CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Egamberdieva D (2011) Role of microorganisms in nitrogen cycling in soils. In: Miransari M (ed) Soil nutrients. Nova Science, New York, pp 159–176

    Google Scholar 

  • Egamberdieva D (2012) The management of soil quality and plant productivity in stressed environment with rhizobacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 27–40

    Google Scholar 

  • Egamberdieva D, Hoflich G (2004) Importance of plant growth promoting bacteria on growth and nutrient uptake of cotton and pea in semi-arid region Uzbekistan. J Arid Environ 56:293–301

    Google Scholar 

  • Egamberdieva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 257–281

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) PGPR to alleviate salinity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen L (2010) Root colonising Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis LAM) grown in potting soil. Eur J Soil Biol 46:269–272

    CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013a) Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7:7–10

    Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013b) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root colonising pseudomonas. Plant Soil 369(1):453–465

    CAS  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 25:3794–3800

    Google Scholar 

  • Elango KV (2004) Studies on the effect of native AM fungi and PGPR’s on growth and productivity of Gloriosa superba L. Ph.D. thesis, Bharathidasan University, Tiruchrappalli, Tamil Nadu, India pp 165

    Google Scholar 

  • Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB (2006) Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res 20:732–737

    CAS  PubMed  Google Scholar 

  • Firn R (2010) Nature’s chemicals: the natural products that shaped our world. Oxford University Press, Oxford, pp 74–75

    Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Hatami M, Khavaz K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Golpayegani A, Tilebeni HG (2011) Effect of biological fertilizers on biochemical and physiological parameters of basil (Ociumum basilicum L.) medicine plant. Am-Euras J Agric Environ Sci 11:411–416

    CAS  Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kuma S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    CAS  PubMed  Google Scholar 

  • Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

    CAS  Google Scholar 

  • Hameed A, Egamberdieva D, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 139–159

    Google Scholar 

  • Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ocimum basilicum L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Hosseinzadah F, Satei A, Ramezanpour MR (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis l. Middle East J Sci Res 8(5):947–953

    CAS  Google Scholar 

  • Jabborova D, Egamberdieva D, Räsänen L, Liao H (2013) Salt tolerant Pseudomanas strain improved growth, nodulation and nutrient uptake of soybean grown under hydroponic salt stress condition. In: XVII international plant nutrition colloquium and boron satellite meeting proceedings book, Istanbul, Turkey, pp 260–261

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Juliani HR, Kapteyn J, Jones D, Koroch AR, Wang M, Charles D, Simon JE (2006) Application of near-infrared spectroscopy in quality control and determination of adulteration of African essential oils. Phytochem Anal 17:121–128

    CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum amni (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    CAS  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    CAS  PubMed  Google Scholar 

  • Kar A (2007) Pharmacognosy and pharmacobiotechnology. New Age International, New Delhi, pp 332–600

    Google Scholar 

  • Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2012) Response of three mint and two oregano species to Glomus etunicatum inoculation. Aust J Crop Sci 6:164–169

    Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA (2009) Response of some medicinal plants to vesicular arbuscular mycorrhizal inoculations. J Sci Res 1:381–386

    Google Scholar 

  • Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural products from plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kavitha C, Rajamani K, Vadivel E (2010) Coleus forskohlii: a comprehensive review on morphology, phytochemistry and pharmacological aspects. J Med Plant Res 4:278–285

    CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 15:443–446

    Google Scholar 

  • Lakshmipathy R, Chandrika K, Gowda B, Balakrishna AN, Bagyaraj DJ (2001) Response of Saraca asoca (Roxb.) de Wilde to inoculation with Glomus mosseae, Bacillus coagulans and Trichoderma harzianum. J Soil Biol Ecol 21:76–80

    Google Scholar 

  • Lakshmipathy R, Chandrika K, Gowda Balakrishna AN, Bagyaraj DJ (2002) Response of Calamus thwaitessii var canaranus Wilde to inoculation with Glomus mosseale, Bacillus coagulans and Trichoderma harzianum. J Soil Biol Ecol 22:16–21

    Google Scholar 

  • Lichtenthaler HK (2009) Biosynthesis and accumulation of isoprenoid carotenoids and chlorophylls and emission of isoprene by leaf chloroplasts. Bull Georgian Natl Acad Sci 3:81–94

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Madziga HA, Sanni S, Sandabe UK (2010) Phytochemical and elemental analysis of Acalypha wilkesiana leaf. J Am Sci 6:510–514

    Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024

    CAS  PubMed  Google Scholar 

  • Martinez MJA, Lazaro RM, del Olmo LMB, Benito PB (2008) Anti-infectious activity in the anthemideae tribe. Stud Nat Prod Chem 35:445–516

    Google Scholar 

  • Maurya R, Singh G, Yadav PP (2008) Antiosteoporotic agents from natural sources. Stud Nat Prod Chem 35:517–545

    CAS  Google Scholar 

  • Mishra RK, Prakash O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. herit. Recent Res Sci Technol 2:53–57

    CAS  Google Scholar 

  • Muley BP, Khadabadi SS, Banarase NB (2009) Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res 8:455–465

    CAS  Google Scholar 

  • Ordookhani K, Sharafzadeh SH, Zare M (2011) Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv Environ Biol 5:672–677

    Google Scholar 

  • Palombo EA (2006) Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res 20:717–724

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Patil SM, Patil MB, Sapkale GN (2009) Antimicrobial activity of Glycyrrhiza glabra Linn. roots. Int J Chem Sci 7:585–591

    CAS  Google Scholar 

  • Perez-Balibrea S, Moreno DA, Garcia-Viguera C (2008) Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric 88:904–910

    CAS  Google Scholar 

  • Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243

    CAS  PubMed  Google Scholar 

  • Pitta ASI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258

    Google Scholar 

  • Prasad A, Kumar S, Pandey A, Chand S (2012a) Microbial and chemical sources of phosphorus supply modulate the yield and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soils. Biol Fertil Soils 48:117–122

    CAS  Google Scholar 

  • Prasad K, Aggarwal A, Yadav K, Tanwar A (2012b) Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. J Soil Sci Plant Nutr 12:451–462

    Google Scholar 

  • Pundarikakshudu K, Patel JK, Bodar MS, Deans SG (2001) Anti-bacterial activity of Galega officinalis L. (Goat’s rue). J Ethnopharmacol 77:111–112

    CAS  PubMed  Google Scholar 

  • Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  • Ram M, Gupta MM, Dwivedi S, Kumar S (1997) Effect of plant density on the yields of artemisinin and essential oil in Artemisia annua cropping under low input cost management in North-Central India. Planta Med 63:372–374

    CAS  PubMed  Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agric Biol 10:451–454

    Google Scholar 

  • Russo A, Borrelli F (2005) Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 12:305–317

    CAS  PubMed  Google Scholar 

  • Saganuwan AS (2010) Some medicinal plants of Arabian Peninsula. J Med Plant Res 4:766–767

    Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    CAS  PubMed  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    CAS  Google Scholar 

  • Sarker SD, Nahar L (2007) Chemistry for pharmacy students general: organic and natural product chemistry. Wiley, Chichester, p 283

    Google Scholar 

  • Seamon KB (1984) Forskolin and adenylate cyclase, new opportunities in drug design. Annu Rep Med Chem 19:293–302

    CAS  Google Scholar 

  • Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Indian J Appl Pure Biol 26:283–290

    Google Scholar 

  • Selvaraj T, Rajeskumar S, Nisha MC, Wondimo L, Tesso M (2008) Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Mj Int J Sci Technol 2:516–525

    CAS  Google Scholar 

  • Shi AD, Li Q, Huang JG, Yuan L (2013) Influence of arbuscular mycorrhizal fungi on growth, mineral nutrition and chlorogenic acid content of Lonicera confusa seedlings under field conditions. Pedosphere 23:333–339

    CAS  Google Scholar 

  • Singh R, Soni SK, Kalra A (2012) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    CAS  PubMed  Google Scholar 

  • Sumithra P, Selvaraj T (2011) Influence of Glomus walkeri and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Sphaeranthes amaranthoides (L.) Burm. Int J Agric Techol 7:1685–1692

    Google Scholar 

  • Tajpoor N, Moradi R, Zaeim AN (2013) Effects of various fertilizers on quantity and quality of dill (Anethum graveolens L.) essential oil. Int J Agric Crop Sci 6:1334–1341

    Google Scholar 

  • Teixeira da Silva JA, Egamberdieva D (2013) Plant-growth promoting rhizobacteria and medicinal plants. In: Govil JN, Bhattacharya S (eds) Recent progress in medicinal plants, vol 38, Essential oils III and phytopharmacology. Studium, Houston, pp 26–42

    Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tissue Organ Cult 66:9–16

    CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza, South Africa, pp 54–56

    Google Scholar 

  • Varsha N, Patel HH (2000) Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 32:559–565

    Google Scholar 

  • Venkateshwar Rao G, Manoharachary C, Rajeswara Rao BR (2002) Beneficial influence of arbuscular mycorrhizal fungal association on growth, yield and nutrient uptake of rose-scented geranium (Pelargonium species). Philipp J Sci 131:49–58

    Google Scholar 

  • Vinutha T (2005) Biochemical studies on Ocimum species inoculated with microbial inoculants. M.Sc. thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Wang X, Morris NSL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148

    PubMed  Google Scholar 

  • Wink M, Schimmer O (1999) Modes of action of defensive secondary metabolites. In: Wink M (ed) Functions of plant secondary metabolites and their exploitation in biotechnology. CRC Press, Boca Raton, FL, pp 17–112

    Google Scholar 

  • Wu JY, Ng J, Shi M, Wu SJ (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root bacteria coculture process. Appl Microbiol Biotechnol 77:543–550

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egamberdieva, D., Teixeira da Silva, J.A. (2015). Medicinal Plants and PGPR: A New Frontier for Phytochemicals. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_14

Download citation

Publish with us

Policies and ethics