Skip to main content

Systemic Induction of Secondary Metabolite Biosynthesis in Medicinal Aromatic Plants Mediated by Rhizobacteria

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Plant growth-promoting rhizobacteria (PGPR) are increasingly accepted and important in agricultural production worldwide. There is rising demand for food produced without synthetic chemical products, for sustainable agricultural methods, and for a holistic vision of development associated with environmental protection. In this study, we found that the effects of PGPR inoculation and volatile organic compound (VOC) emission on various aromatic plant species (Origanum majorana [sweet marjoram], Origanum x majoricum [Italian oregano], Ocimum basilicum [sweet basil], Tagetes minuta [wild marigold], Mentha x piperita [peppermint]) varied depending on the inoculated strain (Pseudomonas fluorescens WCS417r, Azospirillum brasilense Sp7, Bacillus subtilis GB03, or their combination). PGPR-inoculated plant species display host response specificity. The responses we observed were diverse. In most cases, the growth parameters evaluated (leaf number, shoot fresh weight, root dry weight) were significantly increased by P. fluorescens inoculation. Essential oil (EO) yield was increased to varying degrees in O. majorana, O. x majoricum, and T. minuta inoculated with P. fluorescens. Monoterpene accumulation was increased ~2-fold in most cases and 24-fold in O. majorana.

The effects of VOCs emitted by P. fluorescens evaluated in M. piperita showed the same tendency that of direct inoculation. In contrast, inoculation with B. subtilis showed different effects upon the affected plant: O. majorana and O. majoricum did not show any change in EO yield in contrast with O. basilicum. The same result was observed with the exposition to B. subtilis VOCs in O. basilicum but in M. piperita did not affect the total monoterpene accumulation. The total EO yield was increased by direct root inoculation with A. brasilense in O. x majoricum but not in T. minuta. Our findings indicate that inoculation with certain PGPR causes systemic induction of monoterpene pathways in various aromatic plants species, suggesting that PGPR inoculation can significantly increase productivity and reduce the amount of fertilizer required for economically viable aromatic crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EOs:

Essential oils

PGPR:

Plant growth-promoting rhizobacteria

VOCs:

Volatile organic compounds

References

  • Adam KI (2005) Herb production in organic systems. A publication of ATTRA – national sustainable agricultural information service. www.attra.ncat.org

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory induced volatiles elicit defense genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WP Jr (1993) Microbial production of plant growth regulators. In: Metting FB (ed) Soil microbial ecology – application in agricultural and environmental management. Dekker, New York, pp 307–347

    Google Scholar 

  • Asensio D, Curiel J, Mattana S, Ribas A, Llusià J, Peñuelas J (2012) Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant Soil 360:163–174

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Zygadlo J, Valladares G (2005) Quantitative variations in the essential oil of Minthostachys mollis (Kunth.) Griseb. in response to insects with different feeding habits. J Agric Food Chem 53:6903–6906

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Bogino P, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    Article  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Bogino P, Santoro M, Torres L, Zygadlo J, Giordano W (2010) Systemic induction of monoterpene biosynthesis in Origanum majoricum by soil bacteria. J Agric Food Chem 58:650–665

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Cappellari L, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Article  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Craker LE (2007) Medicinal and aromatic plants—future opportunities. In: Janick J, Whipkey A (eds) New crops and new uses. ASHS Press, Alexandria, VA, pp 248–257

    Google Scholar 

  • De Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Deans SG, Svoboda KP (1990) The antimicrobial properties of Marjoram (Origanum majorana L.) volatile oil. Flav Fragrance J 5:187–190

    Article  Google Scholar 

  • Figueiredo MVB, Seldin L, de Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. doi:10.1007/978-3-642-13612-2_2

  • Ghera CM, Leon RJC (1999) Successional changes in the agroecosystems of the rolling pampas. In: Walker LR (ed) Ecosystems of disturbed ground. Amsterdam, Elsevier, pp 487–502

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 4:109–117

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guenther E (1948) The essential oil, vol 1. D van Nostrand Co., London, pp 1–342

    Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    Article  CAS  PubMed  Google Scholar 

  • Harrewijn P, Van Oosten AM, Piron PGM (2001) Natural terpenoids as messengers: a multidisciplinary study of their production, biological functions, and practical applications. Springer, Dordrecht, p 440

    Google Scholar 

  • Hartman Group Inc (2006) Trends to watch in 2007. www.harman-group.com.products/HB/2006_12_13.html

  • Kaul VK, Singh B, Singh V (2000) Damask rose and marigold: prospective industrial crops. J Med Aromat Plant Sci 22:313–318

    CAS  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alters the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology – applications in agricultural and environmental management. Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kogan M, Fischer DC (1991) Inducible defenses in soybean against herbivorous insects. In: Douglas WT, Raupp MJ (eds) Phytochemical induction by herbivores. Wiley, New York, pp 347–378

    Google Scholar 

  • Kusnierczyk A, Tran DHT, Winge P, Jorstad TS, Reese JC, Troczynska J, Bones AM (2011) Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid Brevicoryne brassicae attack. BMC Genomics 12:423

    Article  PubMed Central  PubMed  Google Scholar 

  • Kutchan TM (2001) Ecological arsenal and developmental dispatcher: the paradigm of secondary metabolism. Plant Physiol 125:58–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lan S, Jun-Jie Y, Denys C, Kequan Z, Moore J, Liangli Y (2007) Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem 100:990–997

    Article  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinal A (2006) Role of phenolics in the resistance mechanism of plant against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 23–67

    Google Scholar 

  • Lind K, Lafer G, Schloffer K, Innerhoffer G, Meister H (2004) Organic fruit growing. CABI Publishing, Wallingford

    Google Scholar 

  • Miller AE, Heyland A (2010) Endocrine interactions between plants and animals: implications of exogenous hormone sources for the evolution of hormone signaling. Gen Comp Endocrinol 166:455–461

    Article  CAS  PubMed  Google Scholar 

  • Mucciarelli M, Scannerini S, Bertea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol 158:579–591

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niranjan RS, Shetty HS, Reddy MS (2006) Plant growth promoting rhizobacteria: potential green alternative for plant productivity. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, The Netherlands, pp 197–216

    Chapter  Google Scholar 

  • O’Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95:1190–1194

    Article  PubMed  Google Scholar 

  • Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 114:87–91

    Article  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Ent S, Wees SCM (2009) Networking by small-molecules hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJ, Dicke M (2012) Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Plant Biol 14:83–90

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Soler R, Weldegergis BT, Shimwela MM, van Loon JJ, Dicke M (2013) Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant Cell Environ 36:393–404

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Ent S, Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  CAS  PubMed  Google Scholar 

  • Ramomoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plant against pest and diseases. Crop Prot 20:1–11

    Article  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Shahzadi I, Hassan A, Khan UW, Shah MM (2010) Evaluating biological activities of the seed extracts from Tagetes minuta L. found in Northern Pakistan. J Med Plant Res 4:2108–2112

    Google Scholar 

  • Shukla A, Farooqi AH, Shukla YN, Sharma S (1992) Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul 11:165–171

    Article  CAS  Google Scholar 

  • Simon JE, Quinn J, Murray RG (1990) Basil: a source of essential oils. In: Janick J, Simon JE (eds) Advances in new crops. Timber, Portland, pp 484–489

    Google Scholar 

  • Singh V, Singh B (2003) Domestication of wild marigolds as a potential economic crop in Western Himalaya and North Indian Plains. Econ Bot 57:535–544

    Article  Google Scholar 

  • Singh N, Luthra R, Sangwan RS (1990) Oxidative pathways of essential oil biosynthesis in the developing Cymbopogon flexuosus leaf. Plant Physiol Biochem 28:703–710

    CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Snoeren TAL, Van Poecke RMP, Dicke M (2009) Multidisciplinary approach to unravelling the relative contribution of different oxylipins in indirect defense of Arabidopsis thaliana. J Chem Ecol 35:1021–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabanca N, Ozek T, Baser KHC, Tumen G (2004) Comparison of the essential oils of Origanum majorana L. and Origanum majoricum Cambess. J Essent Oil Res 16:248–252

    Article  CAS  Google Scholar 

  • Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotechnol Biochem 71:1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Vági E, Rapavi E, Hadolin M, Vasarhelyine Peredi K, Balazs A, Blazovics A, Simandi B (2005) Phenolic, triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents. J Agric Food Chem 12:17–21

    Article  Google Scholar 

  • Van Loon LC (2007) Plant response to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Pelt JA, Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vikram A (2007) Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Res J Microbiol 2:550–559

    Article  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Werker E, Putievsky E, Ravid U, Dudai N, Katzir I (1993) Glandular hairs and essential oil in developing leaves of Ocimum basilicum L. (Lamiaceae). Ann Bot 71:43–50

    Article  CAS  Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. Stud Nat Prod Chem 21:3–122

    Article  CAS  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in plant defense. Curr Opin Plant Biol 5:300–307

    Article  CAS  PubMed  Google Scholar 

  • Yi H-S, Yang JW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheljazkov VD, Cantrell CL, Tekwani B, Khan S (2008) Content, composition, and bioactivity of the essential oil of three basil genotypes as a function of harvesting. J Agric Food Chem 56:380–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Consejo Nacional de Investigaciones Científicas y Tecnológicas. MS and LC have fellowships from Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET). EB and WG are Career Member of CONICET. The authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Banchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santoro, M.V., Cappellari, L., Giordano, W., Banchio, E. (2015). Systemic Induction of Secondary Metabolite Biosynthesis in Medicinal Aromatic Plants Mediated by Rhizobacteria. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_13

Download citation

Publish with us

Policies and ethics