Skip to main content

Future Directions in the Study of Pharmaceutical Potential of Lichens

  • Chapter
  • First Online:
Lichen Secondary Metabolites

Abstract

Lichens are a stable self-supporting symbiotic organism, composed of a fungal and an algal partner. In this symbiotic form, lichens produce a number of unique secondary metabolites through various biosynthetic pathways, namely, acetyl polymalonyl, shikimic acid and mevalonic acid pathways. Most of the lichen substances are phenolic compounds and are reported to have wide variety of biological actions: antioxidant, antimicrobial, antiviral, anti-inflammatory, analgesic, antipyretic, antiproliferative and cytotoxic effects. Acetyl polymalonyl-derived polyketide compounds, depsides, depsidones, dibenzofuranes, xanthones and naphthaquinones, are of great interest. Compounds from other pathways are esters, terpenes, steroids, terphenylquinones and pulvinic acid. Although manifold biological properties of lichen secondary metabolites have been recognized, their pharmaceutical potential has not been fully explored due to their slow growing nature and difficulties in their artificial cultivation. Many researchers are still working hard to discover and identify the novel lead compounds from lichens. In this chapter, attention has been given to bring in notice some pharmaceutically important lichens and their secondary metabolites and to provide a direction for the study of lichen prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1966) Lichens. In: Henry SM (ed) Symbiosis, vol I. Academic, New York, pp 36–97

    Google Scholar 

  • Ahmadjian V, Heikkila H (1970) The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist 4:256–267

    Google Scholar 

  • Airaksinen MM, Peura P, Ala-Fossi-Salokangas L et al (1986) Toxicity of plant material used as emergency food during famines in Finland. J Ethnopharmacol 18:273–296

    CAS  PubMed  Google Scholar 

  • Aleynik SI, Leo MA, Aleynik MA et al (1998) Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 22:192–196

    CAS  PubMed  Google Scholar 

  • Bailey SM, Patel VB, Young TA et al (2001) Chronic ethanol consumption alters the glutathione/glutathione-peroxidase-1 system and protein oxidation status in rat liver. Alcohol Clin Exp Res 25:726–733

    CAS  PubMed  Google Scholar 

  • Balkan J, Kanbagli O, Aykac-Toker G et al (2002) Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biol Pharm Bull 25:1231–1233

    CAS  PubMed  Google Scholar 

  • Bazin MA, Le Lamer AC, Delcros JG et al (2008) Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg Med Chem 16:8737–8744

    PubMed  Google Scholar 

  • Behera BC, Makhija U (2002) Inhibition of tyrosinase and xanthine oxidase by lichen species Bulbothrix setschwanesis. Curr Sci 82:61–66

    CAS  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2003) Inhibitory activity of xanthine oxidase and superoxide-scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine 10:536–543

    CAS  PubMed  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2004a) Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 87:83–87

    CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2004b) Determination of antioxidative and anti-tyrosinase potential of lichen Usnea ghattensis in-vitro. In: Reddy SM, Khanna S (eds) Biotechnological approaches for sustainable development. Allied, New Delhi, pp 94–103

    Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2005a) Antioxidant and antibacterial activities of lichen Usnea ghattensis in-vitro. Biotechnol Lett 27:991–995

    CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2005b) Evaluation of antioxidant potential of the cultured mycobiont of a lichen Usnea ghattensis. Phytother Res 19:58–64

    CAS  PubMed  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2006a) Tyrosinase—inhibitory activity in some species of the lichen family Graphidaceae. J Herb Pharmacother 6:55–69

    PubMed  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2006b) Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77:208–215

    CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2006c) Experimental studies on the growth and usnic acid production in lichen Usnea ghattensis in-vitro. Microbiol Res 161:232–237

    CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2006d) Determination of antioxidative potential of lichen Usnea ghattensis in-vitro. LWT Food Sci Technol 39:80–85

    CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2009a) Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol Biotechnol 47:7–12

    CAS  Google Scholar 

  • Behera BC, Sonone A, Makhija U (2009b) Protoplast isolation from cultured lichen Usnea ghattensis, their fusion with protoplasts of Aspergillus nidulans, fusant regeneration and production of usnic acid. Folia Microbiol 54:415–418

    CAS  Google Scholar 

  • Behera BC, Mahadik N, Morey M (2012) Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm Biol 50:968–979

    CAS  PubMed  Google Scholar 

  • Bezivin C, Tomasi S, Rouaud I et al (2004) Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med 70:874–877

    CAS  PubMed  Google Scholar 

  • Bhattarai HD, Paudel B, Hong SG et al (2008) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484

    PubMed  Google Scholar 

  • Biswas K (1956) Common medicinal plants of Darjeeling and the Sikkim Himalayas. M/S Bengal Govt. Press, Calcutta, p 90

    Google Scholar 

  • Borkowski B, Wozniak W, Gertig H et al (1964) Bacteriostatic action of some compounds from lichen Cetraria islandica and of usnic acid. Dissertationes Pharmaceuticae 16:189–194

    CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour Char Utiliz 3:273–283

    CAS  Google Scholar 

  • Brij L (1988) Traditional remedies for bone fracture among the tribals of Madhya Pradesh, India. Aryavaidyan 1:190–195

    Google Scholar 

  • Brij L, Upreti DK (1995) Ethnobotanical notes on three Indian lichens. Lichenologist 27:77–79

    Google Scholar 

  • Brij L, Upreti DK, Kalakoti BS (1985) Ethnobotanical utilization of lichen by the tribals of Madhya Pradesh. J Econ Taxon Bot 7:203–204

    Google Scholar 

  • Brooker SG, Cambie RC, Cooper RC (1987) New Zealand medicinal plants. Heinemann, Auckland, p 63

    Google Scholar 

  • Brunauer G, Stocker-Worgotter E (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38:187–201

    CAS  Google Scholar 

  • Bucar F, Schneider I, Ogmundsdottir H et al (2004) Antiproliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine 11:602–606

    CAS  PubMed  Google Scholar 

  • Burkholder PR, Evans AW, McVeigh I et al (1944) Antibiotic activity of lichens. Proc Natl Acad Sci USA 30:250–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burlando B, Ranzato E, Volante A et al (2009) Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med 75:607–613

    CAS  PubMed  Google Scholar 

  • Cardarelli MA, Serino G, Campanella L et al (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53:667–672

    CAS  PubMed  Google Scholar 

  • Chooi YH, Stalker DM, Davis MA et al (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112:147–161

    CAS  PubMed  Google Scholar 

  • Chopra RN, Chopra IC, Handa KL et al (1958) Indigenous drugs of India. Academic, Calcutta, p 816

    Google Scholar 

  • Choudhary MI, Saima Jalil A and Atta-ur-Rahman (2005) Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochem 66:2346–2350

    Google Scholar 

  • Cohen PA, Towers GHN (1995) The anthraquinones of Heterodermia obscurata. Phytochemistry 40:911–915

    CAS  Google Scholar 

  • Cohen PA, Hudson JB, Towers GHN (1996) Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 52:180–183

    CAS  PubMed  Google Scholar 

  • Crittenden PD, Porter N (1991) Lichen forming fungi: potential source of novel metabolites. Trends Biotechnol 9:409–414

    CAS  PubMed  Google Scholar 

  • Dayan FE, Romagni JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232

    CAS  Google Scholar 

  • Dayan FE, Romagni JG (2002) Structural diversity of lichen metabolites and their potential for use. In: Upadhyaya R (ed) Advances in microbial toxin research and its biotechnological exploitation. Kluwer Academic/Plenum, New York, pp 151–169

    Google Scholar 

  • De Carvahlo EAB, Andrade PP, Silva NH et al (2005) Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in-vitro: an ultrastructural study. Micron 36:155–161

    Google Scholar 

  • Devehat FLL, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Nat Prod 70:1218–1220

    CAS  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 154–180

    Google Scholar 

  • Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468

    CAS  PubMed  Google Scholar 

  • Endo T, Takahagi T, Kinoshita Y et al (1998) Inhibition of photosystem II of spinach by lichen-derived depsides. Biosci Biotechnol Biochem 62:2023–2027

    CAS  Google Scholar 

  • Ernst-Russell MA, Elix JA, Chai CLL et al (1999a) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett 40:6321–6324

    CAS  Google Scholar 

  • Ernst-Russell MA, Chai CLL, Hurne AM et al (1999b) Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283

    CAS  Google Scholar 

  • Ernst-Russell MA, Chai CLL, Wardlaw JH et al (2000) Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta. J Nat Prod 63:129–131

    CAS  PubMed  Google Scholar 

  • Esimone CO, Adikwn MU (1999) Antimicrobial activity of the cytotoxicity of Ramalina farinacea. Fitoterapia 7:428–431

    Google Scholar 

  • Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165

    CAS  Google Scholar 

  • Fazio AT, Adler MT, Bertoni MD et al (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C 62:543–549

    CAS  PubMed  Google Scholar 

  • Francolini I, Norris P, Piozzi A et al (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm and formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaikwad S, Verma N, Behera BC et al (2014) Growth promoting effects of some lichen metabolites on probiotic bacteria. J Food Sci Technol. 51:2624–2631

    CAS  PubMed  Google Scholar 

  • Gissurarson S, Sigurdsson S, Wagner H et al (1997) Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of Guinea Pig Taenia coli. J Pharmacol Exp Ther 280:770–773

    CAS  PubMed  Google Scholar 

  • Gulcin I, Oktay M, Kufrevioglu OI et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    PubMed  Google Scholar 

  • Hager A, Brunauer G, Turk R et al (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120

    CAS  PubMed  Google Scholar 

  • Hale ME (1973) Growth. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, London, pp 473–492

    Google Scholar 

  • Haraldsdottir S, Guolaugsdottir E, Ingolfsdottir K et al (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in-vitro. Planta Med 70:1098–1100

    CAS  PubMed  Google Scholar 

  • Hickey BJ, Lumsden AJ, Cole ALJ et al (1990) Antibiotic compounds from New Zealand plants: methyl haematommate, an anti-fungal agent from Stereocaulon ramulosum. N Z Nat Sci 17:49–53

    Google Scholar 

  • Hidalgo ME, Fernandez E, Quilhot W et al (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37:1585–1587

    CAS  PubMed  Google Scholar 

  • Higuchi M, Miura Y, Boohene J et al (1993) Inhibition of tyrosinase activity by cultured lichen tissues and bionts. Planta Med 59:253–255

    CAS  PubMed  Google Scholar 

  • Hirayama T, Fujikawa F, Kasahara T et al (1980) Anti-tumor activities of some lichen products and their degradation products. Yaku Zasshi 100:755–759

    CAS  Google Scholar 

  • Hu S-y, Kong YC, But PPH (1980) An enumeration of the Chinese materia medica. The Chinese University, Hong Kong, p 59

    Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    CAS  PubMed  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, p 493

    Google Scholar 

  • Hussain MS, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingolfsdottir K, Gudmundsdottir GF (2002) Effects of tenuiorin and methyl orsellinate from the lichen Peltigera leucophlebia on 5-/15-lipoxygenases and proliferation of malignant cell lines in-vitro. Phytomedicine 9:654–658

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Breu W, Huneck S et al (1994) In-vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetraria islandica. Phytomedicine 1:187–191

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Gissurarson SR, Muller-Jakic B et al (1996) Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in-vitro. Phytomedicine 2:243–246

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Hjalmarsdottir MA, Sigurdsson A et al (1997a) In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from the lichen Cetraria islandica. Antimicrob Agents Chem 41:215–217

    CAS  Google Scholar 

  • Ingolfsdottir K, Wiedemann B, Birgisdottir M et al (1997b) Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in-vitro. Phytomedicine 4:125–128

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Chung GAC, Skulason VG et al (1998) Antimycobacterial activity of lichen metabolites in-vitro. Eur J Pharm Sci 6:141–144

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Lee SK, Bhat KPL et al (2000) Evaluation of selected lichens from Iceland for cancer chemopreventive and cytotoxic activity. Pharm Biol 38:313–317

    CAS  PubMed  Google Scholar 

  • Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736

    CAS  PubMed  Google Scholar 

  • Ishii H, Kurose I, Kato S (1997) Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J Gastroenterol Hepatol 12(Suppl):S272–S282

    CAS  PubMed  Google Scholar 

  • Ivanova V, Schlegel R, Grafe U (2000) 2-Methoxy-4,5,7-trihydroxy-anthraquinone, a new lichen metabolite produced by Xanthoria parietina. Pharmazie 55:785–786

    CAS  PubMed  Google Scholar 

  • Jayaprakash GK, Jaganmohan RL (2000) Phenolic constituents from the lichen Parmotrema stuppeum hale and their antioxidant activity. Zeitsch Fur Naturf 55:1018–1022

    Google Scholar 

  • Karagoz A, Dogruoz N, Zeybek Z et al (2009) Antibacterial activity of some lichen extracts. J Med Plants Res 3:1034–1039

    Google Scholar 

  • Kari PR, Tanaina Plantlore, Denaina Ketuna (1987) An ethnobotany of the Denaina Indians of South-Central Alaska. USDI, National park service, Alaska Region, p 176

    Google Scholar 

  • Karunaratne V, Choudhary MI, Ali S et al (2009) Natural novel antioxidants. US Patent 20090048332. Publication info: http://www.fags.orglpatents/app/20090048332

  • Kim JW, Song KS, Chang HW et al (1996) Two phenolic compounds isolated from Umbilicaria esculenta as phospholipase A2 inhibitors. Hanguk Kyunhakhoechi 24:237–242

    CAS  Google Scholar 

  • Kokwaro JO (1976) Medicinal plants of East Africa. East African Literature Bureau, Lampala, Nairobi, Dar es Salaam. p 384

    Google Scholar 

  • Koyama M, Takahashi K, Chou T-C et al (1989) Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin. J Med Chem 32:1594–1599

    CAS  PubMed  Google Scholar 

  • Kranner I, Cram WJ, Zorn M et al (2005) Antioxidant and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kristmundsdottir T, Aradottir HA, Ingolfsdottir K et al (2002) Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture. J Pharm Pharmacol 54:1447–1452

    CAS  PubMed  Google Scholar 

  • Kumar KCS, Muller K (1999) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Prod 62:821–823

    CAS  PubMed  Google Scholar 

  • Kupchan SM, Kopperman HL (1975) L-Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625

    CAS  PubMed  Google Scholar 

  • Lauterwein M, Oethinger M, Belsner K et al (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavie G, Valentine F, Levin B et al (1989) Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin. Proc Natl Acad Sci USA 86:5963–5967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:11–122

    Google Scholar 

  • Lawrey JD (1995) The chemical ecology of lichen mycoparasites. Can J Bot 73:603–608

    Google Scholar 

  • Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical scavenging activity of Orsellinates. Chem Pharm Bull 56:1551–1554

    CAS  PubMed  Google Scholar 

  • Mahadik N, Morey MV, Behera BC et al (2011) Cardiovascular-protective, antioxidative and antimicrobial properties of natural thallus of lichen Usnea complanata. LAJP 30:220–228

    CAS  Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S et al (1998) Anthraquinones from the lichen Xanthoria parietina. J Serb Chem Soc 63:7–11

    CAS  Google Scholar 

  • Manojlovic NT, Novakovic M, Stevovic V et al (2005) Antimicrobial metabolites from three Serbian Caloplaca. Pharm Biol 43:718–722

    CAS  Google Scholar 

  • Matsubara H, Kinoshita K, Koyama K et al (1997) Antityrosinase activity of lichen metabolites and their synthetic analogues. J Hatt Bot Lab 83:179–185

    Google Scholar 

  • Mayer M, O’Neill MA, Murray KE et al (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16:805–809

    CAS  PubMed  Google Scholar 

  • Mc Naught A, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Royal Society of Chemistry, Cambridge, p 148

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    CAS  PubMed  Google Scholar 

  • Miao V, Coffet-LeGal MF, Brown D et al (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355

    CAS  PubMed  Google Scholar 

  • Mishchenko NP, Stepanenko LS, Krivoshchekova OE et al (1980) Anthraquinones of the lichen Asahinea chrysantha. Chem Nat Compd (English Translation) 16:117–121

    Google Scholar 

  • Mitrovic T, Stamenkovic S, Cvetkovic V et al (2011a) Lichens as source of versatile bioactive compounds. Biol Nyss 2:1–6

    Google Scholar 

  • Mitrovic T, Stamenkovic S, Cvetkovic V et al (2011b) Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci 12:5428–5448

    PubMed Central  PubMed  Google Scholar 

  • Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch 65:157–173

    CAS  Google Scholar 

  • Moskalenko SA (1986) Preliminary screening of far-Eastern ethnomedicinal plants for antibacterial activity. J Ethnopharmacol 15:221–259

    Google Scholar 

  • Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    CAS  PubMed  Google Scholar 

  • Muller K, Prinz H, Gawlik I et al (1997) Simple analogues of anthralin: unusual specificity of structure and antiproliferative activity. J Med Chem 40:3773–3780

    CAS  PubMed  Google Scholar 

  • Mutlu-Turkoglu U, Dogru-Abbasoglu S, Aykac TG et al (2000) Increased lipid and protein oxidation and DNA damage in patients with chronic alcoholism. J Lab Clin Med 136:287–291

    CAS  PubMed  Google Scholar 

  • Nash TH III (ed) (1996) Lichen biology, Cambridge University Press, Cambridge

    Google Scholar 

  • Nash TH III (ed) (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Nishitoba Y, Nishimura H, Nishiyama T et al (1987) Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181

    CAS  Google Scholar 

  • Nordmann R, Ribiere C, Rouach H (1992) Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Med 12:219–240

    CAS  PubMed  Google Scholar 

  • Novaretti R, Lemordant D (1990) Plants in the traditional medicine of the Ubaye Valley. J Ethnopharmacol 30:1–34

    CAS  PubMed  Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941

    PubMed  Google Scholar 

  • Ogmundsdottir HM, Zoega GM, Gissurarson SR et al (1998) Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol 50:107–115

    CAS  PubMed  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    CAS  PubMed  Google Scholar 

  • Okuyama E, Umeyama K, Yamazaki M et al (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    CAS  PubMed  Google Scholar 

  • Otsuka H, Komiya T, Tsukumi M et al (1972) Studies on anti-inflammatory drugs. Anti-inflammatory activity of crude drugs and plants. (II). J Takeda Res Lab 31:247–254

    CAS  Google Scholar 

  • Papadopoulou P, Tzakou O, Vagias C et al (2007) b-Orcinol metabolites from the lichen Hypotrachyna revoluta. Molecules 12:997–1005

    CAS  PubMed  Google Scholar 

  • Paudel B, Bhattarai HD, Lee JS et al (2008) Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol 31:605–608

    Google Scholar 

  • Paull KD, Zee Cheng RK, Cheng CC (1976) Some substituted naphthazarins as potential anticancer agents. J Med Chem 19:337–339

    CAS  PubMed  Google Scholar 

  • Pengsuparp T, Cai L, Constant H et al (1995) Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prod 58:1024–1031

    CAS  PubMed  Google Scholar 

  • Perry NB, Benn MH, Brennan NJ et al (1999) Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31:627–636

    Google Scholar 

  • Petrzik K, Vondrak J, Bartak M et al (2014) Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol 138:549–559

    CAS  Google Scholar 

  • Rankovic B, Misic M, Sukdolak S (2007a) Antimicrobial activity of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Br J Biomed Sci 64:143–148

    CAS  PubMed  Google Scholar 

  • Rankovic B, Misic M, Sukdolak S (2007b) Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa and Umbilicaria cylindrica. Microbiology 76:723–727

    CAS  Google Scholar 

  • Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, Vol II (1970–1979). Central Drug Research Institute, Lucknow and Publications and Information Directorate, CSIR, New Delhi, pp 169–170

    Google Scholar 

  • Rezanka T, Sigler K (2007) Hirtusneanoside, an unsymmetrical dimeric tetrahydroxanthone from the lichen Usnea hirta. J Nat Prod 70:1487–1491

    CAS  PubMed  Google Scholar 

  • Richardson DHS (1988) Medicinal and other economic aspects of lichens. In: Galun M (ed) CRC handbook of lichenology, vol III. CRS, Boca Raton, FL, pp 93–108

    Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU145 cells. Anticancer Drugs 17:1163–1169

    CAS  PubMed  Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric-oxide mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    CAS  PubMed  Google Scholar 

  • Saklani A, Upreti DK (1992) Folk uses of some lichens in Sikkim. J Ethnopharm 37:229–233

    CAS  Google Scholar 

  • Schinazi RF, Chu CK, Babu JR et al (1990) Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Res 13:265–272

    CAS  PubMed  Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B et al (2008) A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res 22:349–355

    CAS  PubMed  Google Scholar 

  • Schneider A (1904) A guide to the study of lichens. Knight and Miller, Boston, MA, p 234

    Google Scholar 

  • Schwendener S (1868) Uber die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung (Berlin)\Bot Zeitung 26:289–292

    Google Scholar 

  • Seo C, Yim JH, Lee HK et al (2008) Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett 49:29–31

    CAS  Google Scholar 

  • Seo C, Sohn JH, Ahn JS et al (2009) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803

    CAS  PubMed  Google Scholar 

  • Smith GW (1973) Arctic pharmacognosia. Arctic 26:328–333

    Google Scholar 

  • Stepanenko LS, Krivoshchekova OE, Dmitrenok PS et al (1997) Quinones of Cetraria islandica. Phytochemistry 46:565–568

    CAS  Google Scholar 

  • Stocker-Worgotter E (2005) Approaches to a biotechnology of lichen forming fungi: induction of polyketide pathways and the formation of chemosyndromes in axenically cultured mycobionts. Recent Res Dev Phytochem 9:115–131

    Google Scholar 

  • Stocker-Worgotter E, Turk R (1988) Culture of the cyanobacterial lichen Peltigera didactyla from soredia under laboratory conditions. Lichenologist 20:369–376

    Google Scholar 

  • Stubler D, Buchenauer H (1996) Antiviral activity of the glucan lichenan (poly-β{1→3, 1→4} D-anhydroglucose) 1. Biological activity in tobacco plants. J Phytopathol 144:37–43

    Google Scholar 

  • Tay T, Turk AO, Yılmaz M et al (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid and protocetraric acid constituents. Z Naturforsch 59c:384–388

    Google Scholar 

  • Taylor TN, Hass H, Remy W et al (1995) The oldest fossil lichen. Nature 378:244–1

    CAS  Google Scholar 

  • Turk AO, Yilmaz M, Kivanc M et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch C 58:850–854

    PubMed  Google Scholar 

  • Upreti DK, Chatterjee S (2007) Significance of lichens and their secondary metabolites: a review. In: Ganguli BN, Deshmukh SK (eds) Fungi multifaceted microbes. Anamaya, New Delhi, pp 169–188

    Google Scholar 

  • Vartia KO (1973) Antibiotics in lichens. In: Ahmadjiian V, Hale ME (eds) The lichens, 3rd edn. Academic, New York, pp 547–561

    Google Scholar 

  • Verma N (2011) Studies on antioxidant activities of some lichen metabolites developed in-vitro, Shodh ganga, Indian ETD Repository, Issue 2 Sept 2011

    Google Scholar 

  • Verma N, Behera BC, Makhija U (2008a) Antioxidant and hepatoprotective activity of a lichen Usnea ghattensis in-vitro. Appl Biochem Biotechnol 151:167–181

    CAS  PubMed  Google Scholar 

  • Verma N, Behera BC, Sonone A et al (2008b) Cell aggregates derived from natural lichen thallus fragments: antioxidant activities of lichen metabolites developed in-vitro. Nat Prod Commun 3:1911–1918

    CAS  Google Scholar 

  • Verma N, Behera BC, Sonone A et al (2008c) Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in-vitro. Afr J Biochem Res 2:225–231

    Google Scholar 

  • Verma N, Behera BC, Parizadeh H et al (2011) Bactericidal activity of some lichen secondary compounds of Cladonia ochrochlora, Parmotrema nilgherrensis and Parmotrema sancti-angelii. Int J Drug Dev Res 3:222–232

    CAS  Google Scholar 

  • Verma N, Behera BC, Sharma BO (2012a) Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe J Biol Chem 40:7–21

    Google Scholar 

  • Verma N, Behera BC, Joshi A (2012b) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57:107–114

    CAS  Google Scholar 

  • Yamamoto Y, Mizuguchi R, Yamada Y (1985) Tissue culture of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Higuchi M et al (1993) Using lichen tissue culture in modern biology. Bryologist 96:384–393

    Google Scholar 

  • Yamamoto Y, Miura Y, Kinoshita Y et al (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter induced Epstein-Barr virus activation. Chem Pharm Bull 43:1388–1390

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Matsubara H et al (1998) Screening of biological activities and isolation of biological active compounds from lichens. Recent Res Dev Phytochem 2:23–24

    CAS  Google Scholar 

  • Yoshimura I, Kurokawa T, Nakno T et al (1987) A preliminary report of cultures of Cladonia vulcani and the effects of the hydrogen ion concentration on them. Bull Kochi Gakuen Coll 18:335–343

    Google Scholar 

  • Yoshimura I, Kurokawa T, Nakno T et al (1989) Production of secondary metabolic substances by cultured tissue of Usnea flexilis. Bull Kochi Gakuen Coll 20:535–540

    Google Scholar 

  • Yoshimura I, Kurokawa T, Kanda H (1990a) Tissue culture of some Antarctic lichens preserved in the refrigerator. Proc NIPR Symp Polar Biol 3:224–228

    Google Scholar 

  • Yoshimura I, Kurokawa T, Yamamoto Y et al (1990b) Thallus formation of Usnea rubescens and Peltigera praetextata in-vitro. Bull Kochi Gakuen Coll 21:565–576

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the various financial supports by the Department of Biotechnology (DBT), Govt. of India, New Delhi [grant nos. BT/PR3133/BCE/08/237/2002; BT/PR8551/NDB/52/15/2006]; Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi [grant nos. 09/670(034)/2006-EMR-I; 09/670(0046)2010/EMR-I]; and Science and Engineering Research Board (SERB), Govt. of India, New Delhi [grant no. SR/FT/LS-170/2009]. We are also thankful to the director of Agharkar Research Institute, Pune, for research facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verma, N., Behera, B.C. (2015). Future Directions in the Study of Pharmaceutical Potential of Lichens. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-319-13374-4_8

Download citation

Publish with us

Policies and ethics