Skip to main content

Antigenotoxic Effect of Some Lichen Metabolites

  • Chapter
  • First Online:
Lichen Secondary Metabolites

Abstract

Naturally occurring compounds can have protective effects towards mutagens and carcinogens as shown by numerous studies. Several lichen species have taken quite much the attention of researchers since their extracts and compounds have been used on traditional medicine to cure different diseases such as ulcer, arthritis, tuberculosis and cancer throughout the ages. Although a wide variety of scientific investigations on the biological activities of lichen extracts and their constituent have been performed, there are quite less research on their genotoxicity/antigenotoxic activity. Up to date, most results for genotoxic/antigenotoxic activities of lichens have been obtained for lichen extracts using the Ames/Salmonella/microsome, the Escherichia coli WP2 microsome, chromosome aberration, micronucleus, sister chromatid exchange and the single-cell gel electrophoresis assays. In the present chapter, findings on the antigenotoxic/genotoxic activities and its mechanisms will be evaluated. By using the most common bacterial and nonbacterial assays, extracts of various lichen species have been shown to have promising antigenotoxic activity with quite less genotoxic activity. Lichen extracts may have a possible therapeutic potential and therefore this must be further investigated by other multiple in vitro bioassays for the development of therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AF:

2-Aminofluorene

4-NPD:

4-Nitrophenylenediamin

8-oxo-dG:

8-Oxo-2′-deoxyguanosine, 8-hydroxy-2′-deoxyguanosine

9-AA:

9-Aminoacridine

AFB1:

Aflatoxin B1

BrdU:

Bromodeoxyuridine

CA:

Chromosome aberration

CBS:

Colloidal bismuth subcitrate

COMET:

Single-cell gel electrophoresis

HPL:

Human peripheral blood lymphocytes

IMA:

Imazalil

MI:

Mitotic index

MMC:

Mitomycin C

MMS:

Methyl methanesulfonate

MN:

Micronucleus

MNNG:

N-methyl-N ′-nitro-N-nitrosoguanidine

SCE:

Sister chromatid exchange

SCGE:

Single-cell gel electrophoresis

References

  • Agar G, Gulluce M, Aslan A et al (2010) Mutation preventive and antigenotoxic potential of methanol extracts of two natural lichen. J Med Plants Res 4(20):2132–2137

    Google Scholar 

  • Agar G, Aslan A, Sarioglu EK et al (2011) Protective activity of the methanol extract of Usnea longissima against oxidative damage and genotoxicity caused by aflatoxin B(1) in vitro. Turk J Med Sci 41(6):1043–1049

    Google Scholar 

  • Al-Bekairi AM, Qureshi S, Chaudhry MA et al (1991) Mitodepressive, clastogenic and biochemical effects of (+)-usnic acid in mice. J Ethnopharmacol 33(3):217–220

    Article  CAS  PubMed  Google Scholar 

  • Alpsoy L, Aslan A, Kotan E et al (2011) Protective role of two lichens in human lymphocytes in vitro. Fresenius Environ Bull 20(7):1661–1666

    CAS  Google Scholar 

  • Alpsoy L, Orhan F, Nardemir G et al (2013) Antigenotoxic potencies of a lichen species, Evernia prunastri. Toxicol Ind Health. doi:10.1177/0748233712469655

    Google Scholar 

  • Anar M, Orhan F, Alpsoy L et al (2013) The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health. doi:10.1177/0748233713504805

    PubMed  Google Scholar 

  • Ari F, Celikler S, Oran S et al (2012) Genotoxic, cytotoxic, and apoptotic effects of Hypogymnia physodes (L.) Nyl. on breast cancer cells. Environ Toxicol. doi:10.1002/tox.21809

    PubMed  Google Scholar 

  • Aslan A, Agar G, Alpsoy L et al (2012a) Protective role of methanol extracts of two lichens on oxidative and genotoxic damage caused by AFB(1) in human lymphocytes in vitro. Toxicol Ind Health 28(6):505–512

    Article  PubMed  Google Scholar 

  • Aslan A, Gulluce M, Agar G et al (2012b) Mutagenic and antimutagenic properties of some lichen species grown in the Eastern Anatolia Region of Turkey. Cytol Genet 46(5):291–296

    Article  Google Scholar 

  • Aydin E, Türkez H (2011a) Antioxidant and genotoxicity screening of aqueous extracts of four lichens collected from North East Anatolia. Fresenius Environ Bull 20(8A):2085–2091

    CAS  Google Scholar 

  • Aydin E, Türkez H (2011b) Effects of lichenic extracts (Bryoria capillaris, Peltigera rufescens and Xanthoria elegans) on human blood cells: a cytogenetic and biochemical study. Fresenius Environ Bull 20(11A):2992–2998

    CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2006) Determination of antioxidative potential of lichen Usnea ghattensis in vitro. LWT Food Sci Technol 39:80–85

    Article  CAS  Google Scholar 

  • Cabrera C (1996) Materia Medica—Usnea spp. Eur J Herbal Med 2:11–13

    Google Scholar 

  • Cardarelli M, Serino G, Campanella L et al (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53(8):667–672

    Article  CAS  PubMed  Google Scholar 

  • Clare G (2012) The in vitro mammalian chromosome aberration test. Methods Mol Biol 817:69–91

    Article  CAS  PubMed  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261

    Article  CAS  PubMed  Google Scholar 

  • ECVAM (2012) http://ecvam.jrc.it/consulted. January 2012

  • Einarsdottir E, Groeneweg J, Björnsdottir GG et al (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76:969–974

    Article  CAS  PubMed  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  PubMed  Google Scholar 

  • Geyikoglu F, Türkez H, Aslan A (2007) The protective roles of some lichen species on colloidal bismuth subcitrate genotoxicity. Toxicol Ind Health 23(8):487–492

    Article  CAS  PubMed  Google Scholar 

  • Gökbayrak S, Sivas H (2011) Investigation of cytotoxic effects of pyridine in root meristem cells of Allium cepa. Biol Divers Conserv 4(2):92–98

    Google Scholar 

  • Gormez A, Karadayi M, Güllüce M et al (2013) Determination of genotoxic and antigenotoxic effects of Peltigera canica by the bacterial reverse mutation assays. Curr Opin Biotechnol 24S:S112

    Article  Google Scholar 

  • Guner A, Türkez H, Aslan A (2012) The in vitro effects of Dermatocarpon intestiniforme (a lichen) extracts against cadmium induced genetic and oxidative damage. Ekoloji 21(84):38–46

    Article  CAS  Google Scholar 

  • Halici M, Odabasoglu F, Suleyman H et al (2005) Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine 12:656–662

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2000) Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am J Clin Nutr 72(5):1082–1087

    CAS  PubMed  Google Scholar 

  • Hoshina MM, Marin-Morales MA (2014) Anti-genotoxicity and anti-mutagenicity of Apis mellifera venom. Mutat Res Genet Toxicol Environ Mutagen 762:43–48

    Article  CAS  PubMed  Google Scholar 

  • Huneck S (2001) New results on the chemistry of lichen substances. In: Falk H, Kirby GW, Moore RE (eds) Progress in the chemistry and organic natural products, vol 81. Springer, Wien, pp 1–276

    Google Scholar 

  • Ingolfsdottir K (2002) Molecules of interest usnic acid. Phytochemistry 61:729–736

    Article  CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Hjalmarsdottir MA, Guojonsdottir GA et al (1997) In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from Cetraria islandica. Antimicrob Agents Chemother 41:215–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingolfsdottir K, Lee SK, Bhat KPL et al (2000) Evaluation of selected lichens from iceland for cancer chemopreventive and cytotoxic activity. Pharm Biol 38:313–317

    Article  CAS  PubMed  Google Scholar 

  • Ipek E, Tuylu BA, Zeytinoglu H (2003) Effects of carvacrol on sister chromatid exchanges in human lymphocyte culture. Cytotechnology 43:145–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Ipek E, Zeytinoglu H, Okay S et al (2005) Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem 93:551–556

    Article  CAS  Google Scholar 

  • Jayaprakasha GK, Negi PS, Jena BS et al (2007) Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. J Food Compos Anal 20:330–336

    Article  CAS  Google Scholar 

  • Karunaratne V, Bombuwela K, Kathirgamanathar S et al (2005) Review lichens: a chemically important biota. J Natl Sci Found Sri Lanka 33(3):169–186

    Google Scholar 

  • Kayraldız A, Kocaman AY, Rencüzoğulları E et al (2010) The genotoxic and antigenotoxic effects of Aloe vera leaf extract in vivo and in vitro. Turk J Biol 34:235–246

    Google Scholar 

  • Kirsch-Volders M, Decordier I, Elhajouji A et al (2011) In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis 26(1):177–184

    Article  CAS  PubMed  Google Scholar 

  • Kristmundsdóttir T, Aradóttir HA, Ingólfsdóttir K et al (2002) Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture. J Pharm Pharmacol 54(11):1447–1452

    Article  PubMed  Google Scholar 

  • Koparal AT, Tüylü BA, Türk H (2006) In vitro cytotoxic activities of (+)-usnic acid and (−)-usnic acid on V79, A549, and human lymphocyte cells and their non-genotoxicity on human lymphocytes. Nat Prod Res 20(14):1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Kotan E, Alpsoy L, Anar M et al (2011) Protective role of methanol extract of Cetraria islandica (L.) against oxidative stress and genotoxic effects of AFB(1) in human lymphocytes in vitro. Toxicol Ind Health 27(7):599–605

    Article  CAS  PubMed  Google Scholar 

  • Kotan E, Agar G, Alpsoy L et al (2013) Anti-genotoxic and anti-oxidative effects of Cladonia rangiformis extracts against aflatoxin B-1 in vitro. Fresenius Environ Bull 22(4A):1139–1143

    Google Scholar 

  • Kumar SKC, Müller K (1999) Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism. J Nat Prod 62:817–820

    Article  CAS  PubMed  Google Scholar 

  • Leandro LF, Munari CC, Ferreira LS et al (2013) Assessment of the genotoxicity and antigenotoxicity of (+)-usnic acid in V79 cells and Swiss mice by the micronucleus and comet assays. Mutat Res Genet Toxicol Environ 753(2):101–106

    Article  CAS  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  PubMed  Google Scholar 

  • Mayer M, O’Neill MA, Murray KE et al (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drug 16(8):805–809

    Article  CAS  Google Scholar 

  • Mersch-Sundermann V, Kassie F, Böhmer S et al (2004) Extract of Toxicodendron quercifolium caused genotoxicity and antigenotoxicity in bone marrow cells of CD1 mice. Food Chem Toxicol 42:1611–1617

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic T, Stamenkoviç S, Cvetkovic V et al (2011) Lichens as source of versatile bioactive compounds. Biologica Nyssana 2(1):1–6

    Google Scholar 

  • Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C65:157–173

    Google Scholar 

  • Mortelmans K, Riccio ES (2000) The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res 455(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455(1–2):29–60

    Article  CAS  PubMed  Google Scholar 

  • Nieminen SM, Maki-paakkanen J, Hirvonen MR et al (2002) Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems. Mutat Res 520:161–170

    Article  CAS  PubMed  Google Scholar 

  • OECD (2012) http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-thetesting-ofchemicals-section-health-effects20745788consulted (January 2012), 4

  • Okai Y, Higashi-Okai K, Nakamura S et al (1996) Suppressive effects of retinoids, carotenoids and antioxidant vitamins on heterocyclic amine-induced Umu C gene expression in Salmonella typhimurium (TA 1535/Psk 1002). Mutat Res 368:133–140

    Article  CAS  PubMed  Google Scholar 

  • Perry P, Evans HJ (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258(5531):121–125

    Article  CAS  PubMed  Google Scholar 

  • Polat Z, Aydın E, Türkez H et al (2013) In vitro risk assessment of usnic acid compound. Toxicol Ind Health 1–8. doi: 10.1177/0748233713504811

  • Richardson DHS (1988) Medicinal and other economic aspects of lichens. In: Galun M (ed) CRC handbook of lichenology, vol 3. CRC, Boca Raton, pp 93–108

    Google Scholar 

  • Santos DB, Schiar VP, Ribeiro MC et al (2009) Genotoxicity of organoselenium compounds in human leukocytes in vitro. Mutat Res 676:21–26

    Article  CAS  PubMed  Google Scholar 

  • Scarpato R, Bertoli A, Naccarati A et al (1998) Different effects of newly isolated saponins on the mutagenicity and cytotoxicity of the anticancer drugs mitomycin C and bleomycin in human lymphocytes. Mutat Res 420:49–54

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T, Wei CI (1984) Mutagenicity of lichen constituents. Environ Mutagen 6(5):757–762

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Speit G, Vasquez M, Hartmann A (2009) The comet assay as an indicator test for germ cell genotoxicity. Mutat Res 681:3–12

    Article  CAS  PubMed  Google Scholar 

  • Tay T, Türk AÖ, Yılmaz M et al (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid and protocetraric acid constituents. Z Naturforsch 59c:384–388

    Google Scholar 

  • Tilford GL (1997) Edible and medicinal plants of the west. Mountain Press, Missoula

    Google Scholar 

  • Toyokuni S, Tanaka T, Hattori Y et al (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76:365–374

    CAS  PubMed  Google Scholar 

  • Türk AÖ, Yılmaz M, Kıvanç M et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch 58c:850–854

    Google Scholar 

  • Türkez H, Dirican E (2012) A modulator against mercury chloride-induced genotoxic damage: Dermatocarpon intestiniforme (L.). Toxicol Ind Health 28(1):58–63

    Article  PubMed  Google Scholar 

  • Türkez H, Geyikoglu F, Aslan A et al (2010) Antimutagenic effects of lichen Pseudevernia furfuracea (L.) Zoph. extracts against the mutagenicity of aflatoxin B-1 in vitro. Toxicol Ind Health 26(9):625–631

    Article  PubMed  Google Scholar 

  • Türkez H, Aydin E, Aslan A (2012a) Xanthoria elegans (Link) (lichen) extract counteracts DNA damage and oxidative stress of mitomycin C in human lymphocytes. Cytotechnology 64(6):679–686

    Article  PubMed Central  PubMed  Google Scholar 

  • Türkez H, Aydin E, Aslan A (2012b) An antidote for imazalil-induced genotoxicity in vitro: the lichen Dermatocarpon intestiniforme (Korber) Hasse. Acta Biol Hung 63(3):354–361

    Article  PubMed  Google Scholar 

  • Türkez H, Aydin E, Aslan A (2012c) Effects of lichenic extracts (Hypogymnia physodes, Ramalina polymorpha and Usnea florida) on human blood cells: cytogenetic and biochemical study. Iran J Pharm Res 11(3):889–896.

    Google Scholar 

  • Türkez H, Aydin E, Sisman T et al. (2012d) Role of Peltigera rufescens (Weis) Humb. (a lichen) on imazalil-induced genotoxicity analysis of micronucleus and chromosome aberrations in vitro. Toxicol Ind Health 28(6):492–498.

    Google Scholar 

  • Verschaeve L, Juutilainen J, Lagroye I et al (2010) In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 705:252–268

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar CS, Viswanathan S, Reddy MK et al (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 71:564–566

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM III, Thompson LH (2007) Molecular mechanisms of sister-chromatid exchange. Mutat Res 616(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Yılmaz M, Türk AÖ, Tay T et al (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch 59c:249–254

    Google Scholar 

  • Zeytinoglu H, Incesu Z, TuyluAyaz B et al (2008) Determination of genotoxic, antigenotoxic and cytotoxic potential of the extract from lichen Cetraria aculeata (Schreb.) Fr. in vitro. Phytother Res 22(1):118–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Zeytinoğlu Sivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sivas, H.Z. (2015). Antigenotoxic Effect of Some Lichen Metabolites. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-319-13374-4_6

Download citation

Publish with us

Policies and ethics