Skip to main content

Lichen Secondary Metabolites as Potential Antibiotic Agents

  • Chapter
  • First Online:

Abstract

It is well known that pathogenic microbes pose serious threats to human health and are increasing in prevalence in institutional health-care settings due to the growing resistance that infectious agents have developed against antibiotics. Therefore, new alternatives for combating the spread of infection through antibiotic-resistant microbes are necessary for keeping pace with the evolution of “super” pathogens. Natural products are proposed as a therapeutic alternative to conventional antimicrobial treatment. Among them, lichen-derived product and their antibiotic properties are of special interest to scientists as up to 50 % of all lichens have been reported to possess antibiotic activities. A great number of reports concerning the antimicrobial screening of lichens have appeared in the literature. According to published data, the lichens and their secondary metabolites exhibited the activity against a great number of microorganisms. Therefore, the present study represents lichens as very interesting source of bioactive compounds which provide unlimited opportunities for new antimicrobial agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah ST, Hamid H, Ali M et al (2007) Two new terpenes from the lichen Parmelia perlata. Ind J Chem 46B:173–176

    CAS  Google Scholar 

  • Abo-Khatwa AN, al-Robai AA, al-Jawhari DA (1996) Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat Toxins 4:96–102

    CAS  PubMed  Google Scholar 

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    CAS  Google Scholar 

  • Bačkor M, Hudák J, Repčák M et al (1998) The influence of pH and lichen metabolites (vulpinic acid and (+) usnic acid) on the growth of lichen photobiont Trebouxia irregularis. Lichenologist 30:577–582

    Google Scholar 

  • Balaji P, Hariharan GN (2007) In vitro antimicrobial activity of Parmotrema praesorediosum thallus extracts. Res J Bot 2:54–59

    Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2005) Antimicrobial activity of various solvent extracts of lichen Usnea ghattensis. Agharkar Research Institute, Pune, India

    Google Scholar 

  • Bouaid K, Vicente C (1998) Chlorophyll degradation effected by lichen substances. Ann Bot Fenn 35:71–74

    CAS  Google Scholar 

  • Buçukoglu TZ, Albayrak S, Gökhan Halici M et al (2013) Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria Species from Central Anatolia, Turkey. J Food Process Preserv 37:1103–1110

    Google Scholar 

  • Burkholder PR, Evans AW (1945) Further studies on the antibiotic activity of lichens. Bull Torrey Bot Club 72:157–164

    Google Scholar 

  • Burkholder PR, Evans AW, McVeigh I et al (1944) Antibiotic activity of lichens. Proc Natl Acad Sci USA 30:250–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byron F, Brehm S, Eric AJ (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids. Antimicrob Agents Chemother 47:3357–3360

    Google Scholar 

  • Candan M, Yilmaz M, Tay T et al (2006) Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents. Z Naturforsch 61:319–323

    CAS  Google Scholar 

  • Candan M, Yýlmaz M, Tay T et al (2007) Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z Naturforsch 62:619–621

    CAS  Google Scholar 

  • Chauhan R, Abraham J (2013) In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iran J Basic Med Sci 16:882–885

    PubMed Central  PubMed  Google Scholar 

  • Cowan MM (1999) Plants products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Culberson CF (1970) Supplement to chemical and botanical guide to lichen products. Bryologist 73:1–28

    Google Scholar 

  • Dickert H, Machka K, Braveny I (1981) The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection 9:18–24

    Google Scholar 

  • Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468

    CAS  PubMed  Google Scholar 

  • Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds. Biochim Biophys Acta 1768:2500–2509

    CAS  PubMed  Google Scholar 

  • Esimone CO, Adikwn MU (1999) Antimicrobial activity of the cytotoxicity of Ramalina farinacea. Fitoterapia 7:428–431

    Google Scholar 

  • Farkaš V (2003) Structure and biosynthesis of fungal cell walls: methodological approaches. Folia Microbiol 48:469–478

    Google Scholar 

  • Francolini I, Norris P, Piozzi A et al (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goel M, Dureja P, Rani A et al (2011) Isolation, characterization and antifungal activity of major constituents of the Himalayan lichen Parmelia reticulate Tayl. J Agric Food Chem 59:2299–2307

    CAS  PubMed  Google Scholar 

  • Gomes AT, Honda NK, Roese FM et al (2002) Bioactive derivatives obtained from lecanoric acid, a constituent of the lichen Parmotrema tinctorum (Nyl.). Hale (Parmeliaceae). Rev Bras Farm 12:74–75

    Google Scholar 

  • Gomes AT, Smania A Jr, Seidel C et al (2003) Antibacterial activity of orsellinates. Braz J Microbiol 34:194–196

    CAS  Google Scholar 

  • Gulluce M, Aslan A, Sokmen M et al (2006) Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine 13:515–521

    CAS  PubMed  Google Scholar 

  • Halama P, van Haluwin C (2004) Antifungal activity of lichen extracts and lichenic acids. Biocontrol 49:95–107

    CAS  Google Scholar 

  • Hauck M, Jurgens SR (2008) Usnic acid controls the acidity tolerance of lichens. Environ Pollut 156:115–122

    CAS  PubMed  Google Scholar 

  • Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25–36

    Google Scholar 

  • Honda NK, Pavan FR, Coelho RG et al (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17:328–332

    CAS  PubMed  Google Scholar 

  • Ingólfsdóttir K, Bloomfield SF, Hylands PJ (1985) In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives. Antimicrob Agents Chemother 28:289–292

    PubMed Central  PubMed  Google Scholar 

  • Ingolfsdottir K, Chung GAC, Skulason VG et al (1998) Antimycobacterial activity of lichen metabolites in vitro. Eur J Pharm Sci 6:141–144

    CAS  PubMed  Google Scholar 

  • Ivanova V, Aleksieva K, Kolarova M et al (2002) Neuropogonines A, B and C, new depsidon-type metabolites from Neuropogon sp., an Antarctic lichen. Pharmazie 57:73–74

    CAS  PubMed  Google Scholar 

  • Ivanova V, Graefe U, Schlegel B et al (2004) Usnic acid, metabolite from Neuropogon sp., an Antarctic lichen isolation, structure elucidation and biological activity. Biotechnol Biotechnol Equip 18:66–71

    CAS  Google Scholar 

  • Javeria S, Shahi SK, Shahi MP et al (2013) Parmotrema nilgherrense: potential antimicrobial activity against drug resistant pathogens. Int J Microb Res Technol 2:36–40

    Google Scholar 

  • Karagoz A, Dogruoz N, Zeybek Z et al (2009) Antibacterial activity of some lichen extracts. J Med Plants Res 3:1034–1039

    Google Scholar 

  • Karthikaidevi G, Thirumaran G, Manivannan K et al (2009) Screening of the antibacterial properties of lichen Roccella belangeriana (Awasthi) from Pichavaram Mangrove (Rhizophora sp.). Adv Biol Res 3:127–131

    Google Scholar 

  • Karthikai Devi G, Anantharaman P, Kathiresan K et al (2011) Antimicrobial activities of the lichen Roccella belangeriana (Awasthi) from mangroves of Gulf of Mannar. Indian J Geo-Mar Sci 40:449–453

    Google Scholar 

  • Kekuda PTR, Vinayaka KS, Swathi D et al (2011) Mineral composition, total phenol content and antioxidant activity of a macrolichen Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). E-J Chem 8:1886–1894

    Google Scholar 

  • Kim JS, Kim YH (2007) The inhibitory effect of natural bioactives on the growth of pathogenic bacteria. Nutr Res Pract 1:273–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita K, Matsubara H, Koyama K et al (1994) Topics in the chemistry of lichen compounds. J Hattori Bot Lab 76:227–233

    Google Scholar 

  • Klancnik A, Piskernik S, Jersek B et al (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81:121–126

    CAS  PubMed  Google Scholar 

  • Kosanić M, Ranković B (2011) Antioxidant and antimicrobial properties of some lichens and their constituents. J Med Food 14:1624–1630

    PubMed  Google Scholar 

  • Kosanić M, Ranković B, Slobodan S (2010) Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr J Microbiol Res 4:885–890

    Google Scholar 

  • Kosanić M, Manojlović N, Janković S et al (2013) Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118

    PubMed  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T et al (2014a) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT Food Sci Technol 59:518–525

    Google Scholar 

  • Kosanić M, Seklic D, Markovic S et al (2014b) Antimicrobial and anticancer properties of selected lichens from Serbia. Dig J Nanomater Biostruct 9:273–287

    Google Scholar 

  • Kumar KC, Müller K (1999) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and difractaic acids on human keratinocyte growth. J Nat Prod 62:821–823

    CAS  PubMed  Google Scholar 

  • Kumar PSV, Kekuda PTR, Vinayaka KS et al (2010) Studies on proximate composition, antifungal and anthelmintic activity of macrolichen Ramalina hoss H. Magn and G. Awasthi. Int J Biotechnol Biochem 6:193–203

    Google Scholar 

  • Clinical and Laboratory Standards Institute (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-eighth edition M07-A8. National Committee for Clinical Laboratory Standards 29

    Google Scholar 

  • Land CJ, Lundstrom J (1998) Inhibition of fungal growth by water extracts from the lichen Nephroma arcticum. Lichenologist 30:259–262

    Google Scholar 

  • Lauterwein M, Oethinger M, BeIsner K et al (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)- usnic acid and against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Byrologist 89:111–122

    CAS  Google Scholar 

  • Maciąg-Dorszyńska M, Węgrzyn G, Guzow-Krzemińska B (2014) Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol Lett 353:57–62

    PubMed  Google Scholar 

  • Madamombe IT, Afolajan AJ (2003) Evaluation of antimicrobial activity of extracts from South African Usnea barbata. Pharm Biol 41:199–202

    Google Scholar 

  • Manojlović N, Solujić S, Sukdolak S (2002) Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri. Lichenologist 34:83–85

    Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S et al (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 76:244–246

    CAS  PubMed  Google Scholar 

  • Manojlovic NT, Vasiljevic PJ, Markovic ZS (2010) Antimicrobial activity of extracts and various fractions of chloroform extract from the lichen Laurera benguelensis. J Biol Res Thessalon 13:27–34

    Google Scholar 

  • Manojlović N, Ranković B, Kosanić M et al (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172

    PubMed  Google Scholar 

  • Martins MCB, Gonçalves de Lima MJ, Silva FP et al (2010) Cladia aggregata (lichen) from Brazilian northeast, chemical characterization and antimicrobial activity. Braz Arch Biol Technol 53:115–122

    CAS  Google Scholar 

  • Micheletti AC, Beatriz A, de Lima DP et al (2009) Constituintes quımicos de Parmotrema lichexanthonicum Eliasaro & Adler—Isolamento, Modificacoes estruturais e avaliacao das atividades antibiotica e citotoxica. Quim Nova 32:12–20

    CAS  Google Scholar 

  • Mitrović T, Stamenković S, Cvetković V et al (2011) Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci 12:5428–5448

    PubMed Central  PubMed  Google Scholar 

  • Mohammed SG (2013) Comparative study of in vitro antibacterial activity of miswak extracts and different toothpastes. Am J Agric Biol Sci 8:82–88

    Google Scholar 

  • Moreno S, Scheyer T, Romano CS et al (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40:223–231

    CAS  PubMed  Google Scholar 

  • Nostro MP, Germano V, D’Angelo A et al (2000) Extraction methods and bioautography for evaluation of medical plant antimicrobial activity. Lett Appl Microbiol 30:379–384

    CAS  PubMed  Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941

    PubMed  Google Scholar 

  • Ofokansi KC, Esimone CO (2005) Evaluation of the in vitro antimicrobial activity and release behaviour of ointments and applications containing extract of lichen Ramalina farinacea. Plant Prod Res J 9:6–10

    Google Scholar 

  • Oloke JO, Kolawole DO (1998) The antibacterial and antifungal activities of certain components of Aframomum melegueta fruits. Fitoterapia 59:384–388

    Google Scholar 

  • Paudel B, Bhattarai HD, Lee JS et al (2008) Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol 31:605–608

    Google Scholar 

  • Paudel B, Bhattarai HD, Lee HK et al (2010) Antibacterial activities of Ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. Z Naturforsch C 65:34–38

    CAS  PubMed  Google Scholar 

  • Perry NB, Benn MH, Brennan NJ et al (1999) Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31:627–636

    Google Scholar 

  • Piovano M, Garbarino JA, Giannini FA et al (2002) Evaluation of antifungal and antibacterial activities of aromatic metabolites from lichens. Bol Soc Chil Quím 47:235–240

    CAS  Google Scholar 

  • Ramos DF, Almeida da Silva PE (2010) Antimycobacterial activity of usnic acid against resistant and susceptible strains of Mycobacterium tuberculosis and non-tuberculous mycobacteria. Pharm Biol 48:260–263

    CAS  PubMed  Google Scholar 

  • Ramos DBM, Gomes Francis S, Napoleo Thiago H et al (2014) Antimicrobial activity of Cladonia verticillaris lichen preparations on bacteria and fungi of medical importance. Chin J Biol ID 219392

    Google Scholar 

  • Ranković B, Mišić M (2007) Antifungal activity of extract of the lichens Alectoria sarmentosa and Cladonia rangiferina. Mikol Fitopatol 41:276–281

    Google Scholar 

  • Ranković B, Mišić M (2008) The antimicrobial activity of the lichen substances of the lichens Cladonia furcata, Ochrolechia androgyna, Parmelia caperata and Parmelia conspresa. Biotechnol Biotechnol Equip 22:1310–2818

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S et al (2007a) Antimicrobial activity of the lichens Aspicilia cinerea, Collema cristatum, Ochrolechia androgyna, Physcia aipolia and Physcia caesia. Ital J Food Sci 19:461–469

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S (2007b) Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa and Umbilicaria cylindrical. Microbiology 76:723–727

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Microbiol Biotechnol 24:1239–1242

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S (2009) Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Biologia 64:53–58

    Google Scholar 

  • Ranković B, Ranković D, Kosanić M et al (2010) Antioxidant and antimicrobial properties of the lichen Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Cent Eur J Biol 5:649–665

    Google Scholar 

  • Ranković B, Kosanić M, Stanojković T (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement Altern Med. doi:10.1186/1472-6882-11-97

    PubMed Central  PubMed  Google Scholar 

  • Ranković B, Kosanić M, Stanojković T et al (2012) Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int J Mol Sci 13:14707–14722

    PubMed Central  PubMed  Google Scholar 

  • Ranković B, Kosanić M, Manojlović N et al (2014) Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res 23:408–416

    Google Scholar 

  • Renzaka T, Sigler K (2007) Hirtusneanoside, an unsymmetrical dimeric tetrahydroxanthone from the lichen Usnea hirta. J Nat Prod 70:1487–1491

    Google Scholar 

  • Rundel PW (1978) The ecological role of secondary lichen substances. Biochem Syst Ecol 6:157–170

    CAS  Google Scholar 

  • Saenz MT, Garcia MD, Rowe JG (2006) Antimicrobial activity and phytochemical studies of some lichens from south of Spain. Fitoterapia 77:156–159

    CAS  PubMed  Google Scholar 

  • Santiago KA, Borricano JN, Canal JN et al (2010) Antibacterial activities of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philipp Sci Lett 3:18–28

    Google Scholar 

  • Santos PS, Lat B, Palo M (1964) The antibiotic activities of some Philippine lichens. Philipp J Sci 93:325–335

    Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B et al (2008) A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res 22:349–355

    CAS  PubMed  Google Scholar 

  • Sharma BC, Kalikotay S, Rai B (2012) Assessment of antimicrobial activity of extracts of few common lichens of Darjeeling hills. Ind J Fund Appl Life Sci 2:120–126

    Google Scholar 

  • Sheldon AT (2005) Antibiotic resistance: a survival strategy. Clin Lab Sci 18:170–180

    PubMed  Google Scholar 

  • Shrestha G, Raphael J, Leavitt SD et al (2014) In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharm Biol 27:1–5

    Google Scholar 

  • Sinha SN, Biswas M (2011) Evaluation of antibacterial activity of some lichen from Ravangla, Sikkim, India. Int J Pharm Bio Sci 2:B23–B28

    Google Scholar 

  • Sisodia R, Geol M, Verma S et al (2013) Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat Prod Res 27:2235–2239

    CAS  PubMed  Google Scholar 

  • Srivastava P, Logesh AR, Upreti DK et al (2013) In-vitro evaluation of some Indian lichens against human pathogenic bacteria. Mycosphere 4:734–743

    Google Scholar 

  • Stocker-Wörgötter E, Elix JA, Grube M (2004) Secondary chemistry of lichen-forming fungi: chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina farinacea complex. Bryologist 107:152–162

    Google Scholar 

  • Sundset MA, Kohn A, Mathiesen SD et al (2008) Usneabacteria rangiferina, a novel usnic-acid resistant bacterium isolated from the reindeer rumen. Die Naturwissenschaften 95:741–749

    CAS  PubMed  Google Scholar 

  • Stoll A, Brack A, Renz J (1950) The effect of lichenic substances on the tubercle bacillus and certain other microorganisms; seventh article on antibacterial substances. Schweiz Z Pathol Bakteriol 13:729–751

    CAS  PubMed  Google Scholar 

  • Tasdemir D, Franzblau SG (2007) In vitro antituberculotic activity of several lichen metabolites. Planta Med 73:174

    Google Scholar 

  • Tay T, Özdemir Türk A, Yılmaz M et al (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Z Naturforsch 59c:384–388

    Google Scholar 

  • Tiwari P, Rai H, Upreti DK et al (2011) Assessment of antifungal activity of some Himalayan foliose lichen against plant pathogenic fungi. Am J Plant Sci 2:841–846

    Google Scholar 

  • Tomasi S, Picard S, Lainé C et al (2006) Solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound. J Comb Chem 8:11–14

    CAS  PubMed  Google Scholar 

  • Türk OA, Yılmaz M, Kıvanc M et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch 58c:850–854

    Google Scholar 

  • Turk H, Yilmaz M, Tay T et al (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudoevernia furfuracea and their physodic acid, chloroatratorin, atratorin and olivetoric acid constituents. Z Naturforsch C 61:499–507

    CAS  PubMed  Google Scholar 

  • Vartia KO (1973) Antibiotics in lichens. In: Ahmadjian V, Hale ME Jr (eds) The lichens. Academic, New York, pp 547–561

    Google Scholar 

  • Verma N, Behera BC, Parizadeh H et al (2011) Bactericidal activity of some lichen secondary compounds of Cladonia ochrochlora, Parmotrema nilgherrensis and Parmotrema sancti-angelii. Int J Drug Dev Res 3:222–232

    CAS  Google Scholar 

  • Vivek MN, Yashoda Kambar, Manasa M et al (2014) Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. J Appl Pharm Sci 4:086–091

    Google Scholar 

  • Whiton JC, Lawrey JD (1982) Inhibition of Cladonia cristatella and Sordaria fimicola ascospore germination by lichen acids. Bryologist 85:222–226

    CAS  Google Scholar 

  • Yilmaz Y, Turk AO, Tay T et al (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin and fumarprotocetraric acid constituents. Z Naturforsch 59c:249–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Kosanić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kosanić, M., Ranković, B. (2015). Lichen Secondary Metabolites as Potential Antibiotic Agents. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-319-13374-4_3

Download citation

Publish with us

Policies and ethics