Skip to main content

Plant Responses to Soil Flooding

  • Chapter
Book cover Stress Responses in Plants

Abstract

The influence of various extent of soil moisture and its aeration status in the root zone of the plants on the physiological status and defensive system against oxidative destruction of the tolerant-to-soil-flooding maize Zea mays L. and sensitive pea Pisum sativum L. was investigated. The efficiency of the defensive system was evaluated by the activity of SOD as an enzyme neutralizing superoxide anion radicals, by MDA content indicating the rate of free radical lipid oxidation, and by the root and shoot biomass production and pigment concentration in the leaves. Plant resistance to the effects of soil flooding depends not only on the ability to survive at the action of soil hypoxia but also on the subsequent reoxygenation. The effects of prolonged soil hypoxia and subsequent re-aeration on the development of the stress-realizing system bean Vicia faba major L. cv. Bartom plants were investigated. In connection with the specificity of the effect of hypoxia on the plants, the specific and nonspecific plant responses to the effect of this stress factor were investigated. In this case special attention was paid to the changes connected with transformations of respiration pathways, with functioning of the root alcohol dehydrogenase in the spring rape Brassica napus L. Formation of the reactive oxygen species which appears to be a unspecific plant response to different stress factors, including hypoxia, was estimated by the intensity of oxidative destruction processes and activity of antioxidant enzymes in plant tissues. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADG:

Alcohol dehydrogenase

AsP:

Ascorbate peroxidase

Chl:

Chlorophyll

DW:

Dry weight

E g :

Air-filled porosity

E h :

Redox potential

GR:

Glutathione reductase

GPX:

Guaiacol peroxidase

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

ODR:

Oxygen diffusion rate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARs:

Thiobarbituric acid reactive substances

References

  • Albrecht G, Wiedenroth EM (1994) Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system. J Exp Bot 45:449–455

    Article  CAS  Google Scholar 

  • Alia Prasad KVSK, Saradhi PP (1995) Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39:45–475

    Article  Google Scholar 

  • Alia Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B 38:253–257

    Article  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W, Brändle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai TH, Li CY, Ma FW, Shu HR, Han MY (2008) Physiological responses and analysis of tolerance of apple root stocks to root-zone hypoxia stress. Sci Agric Sin 41:4140–4148

    CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Balakhnina TI, Gavrilov AB, Włodarczyk TM, Borkowska A, Nosalewicz M, Fomina IR (2009) Dihydroquercetin protects barley seeds against mould and increases seedling adaptive potential under soil flooding. Plant Growth Regul 57:127–135

    Article  CAS  Google Scholar 

  • Balakhnina T, Bennicelli R, Stępniewska Z, Stępniewski W, Fomina I (2010) Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil 327:293–301

    Google Scholar 

  • Balakhnina T, Bennicelli R, Stępniewska Z, Stępniewski W, Borkowska A, Fomina I (2012) Stress responses of spring rape plants to soil flooding. Int Agrophys 26:347–353

    CAS  Google Scholar 

  • Bach AN (1912) The chemistry of the respiratory processes. Russ J Phys Chem Soc 44(2):1–73

    Google Scholar 

  • Banach K, Banach AM, Lamers LPM, Kroon HD, Bennicelli RP, Smits AJM, Visser EJW (2009) Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Ann Bot 103:341–351

    Article  PubMed Central  PubMed  Google Scholar 

  • Baraboi VA (1991) Stress mechanisms and lipid peroxidation. Usp Sovr Biol 111(6):923–932

    CAS  Google Scholar 

  • Benz BR, Rhode JM, Cruzan MB (2007) Aerenchyma development and elevated alcohol dehydrogenase activity as alternative responses to hypoxic soils in the Piriqueta caroliniana complex. Am J Bot 94:542–550

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol 116:651–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennicelli RP, Stępniewski W, Zakrzhevsky DA, Balakhnina TI, Stępniewska Z, Lipiec J (1998) The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomatal diffusive resistance in maize seedlings. Environ Exp Bot 203:203–211

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2002) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  Google Scholar 

  • Braun AD, Mozhenok TP (1987) Nespetsificheskii Adaptivnii Sindrom Kletochnoi Sistemy (Nonspecific adaptive syndrome of cell systems). Nauka, Leningrad

    Google Scholar 

  • Britikov EA (1975) Biologicheskaya rol’ prolina (Biological role of proline). Nauka, Moscow

    Google Scholar 

  • Chan Y, Burton RS (1992) Variation in alcohol dehydrogenase activity and flood tolerance in white clover, Trifolium repens. Evolution 46:721–734

    Article  CAS  Google Scholar 

  • Chen H, Qualls RG (2003) Anaerobic metabolism in the roots of seedlings of the invasive exotic Lepidium latifolium. Environ Exp Bot 50:29–40

    Article  CAS  Google Scholar 

  • Chirkova TV (1978) Some regulatory mechanisms of plant adaptation to temporal anaerobiosis. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science, Ann Arbor, Michigan, pp 137–154

    Google Scholar 

  • Chirkova TV (1988) Puti adaptatsii rastenii k gipoksii i anoksii (Pathways of plant adaptation to hypoxia and anoxia). Leningrad State University, Leningrad

    Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    Article  CAS  Google Scholar 

  • Devkota A, Jha PK (2011) Influence of water stress on growth and yield of Centella asiatica. Int Agrophys 25:211–214

    Google Scholar 

  • Drew MC (1983) Plant injury and adaptation to oxygen deficiency in the root environment: A review. Plant Soil 75:179–199

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie und Medizin (Oxygen: biochemistry, biology and medicine). BI-Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Feofilova EP, Burlakova EV, Kuznetsova ES (1987) Significance of free-radical oxidation reactions for growth control and lipid production in eukaryotic and prokaryotic organisms. Prikl Biokhim Mikrobiol 23(1):3–13

    CAS  PubMed  Google Scholar 

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissues exposed to an atmosphere enriched in oxygen. Plant Physiol 66: 482–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garnczanska M (2002) Hypoxic induction of alcohol and lactate dehydrogenases in lupine seedlings. Acta Physiol Plant 24:265–272

    Article  Google Scholar 

  • Gliński J, Stepniewski W (1985) Soil aeration and its role for plants. CRC, Boca Raton

    Google Scholar 

  • Gliński J, Stepniewski W, Labuda S, Przywara G (1984) Graniczne wartosci ODR i Eh w Glebie dla wschodow wybranich roslin uprawnych. Poczniki Gleboznawcze. Warszawa 35(1):3

    Google Scholar 

  • Grineva GM (1975) Regulyatsiya metabolizma u rastenii pri nedostatke kisloroda (Plant metabolism regulation under oxygen deficiency). Nauka, Moscow

    Google Scholar 

  • Gulyaeva NV, Levshina IP, Obidin AV (1988) Free radical oxidation of lipids under stress conditions: The stage of inhibition precedes the activation stage. Dokl Akad Nauk SSSR 300(3):748

    CAS  Google Scholar 

  • Hunter MIS, Hetherington AM, Crawford RMM (1983) Lipid peroxidation—a factor in anoxia intolerance in Iris species. Phytochemistry 22:1145–1147

    Article  CAS  Google Scholar 

  • Kalashnikov YE, Zakrzhevsky DA, Balakhnina TI (1994) Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative damage in roots and leaves of Hordeum vulgare L. Russ J Plant Physiol 41:583–588

    CAS  Google Scholar 

  • Kefeli VI, Kof EM, Vlasov PV, Kislin EN (1989) Prirodnyi Ingibitor Rosta—Abstsizovaja Kislota (Abscisic acid: natural inhibitor of growth). Nauka, Moscow

    Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozlova AA (2009) Teaching practice on soil physics: textbook/AA Kozlovа—Irkutsk. Irkutsk. State University, 81 pp

    Google Scholar 

  • Lucassen ECHET, Smolders AJP, Roelofs JGM (2000) Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquatic Bot 66:321–327

    Article  CAS  Google Scholar 

  • Lucassen ECHET, Bobbink R, Smolders AJP, van der Ven PJM, Lamers LPM, Roelofs JGM (2002) Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecol 165:45–52

    Article  Google Scholar 

  • Merzlyak MN (1989) Activated oxygen and oxidative processes in plant cell membranes. Itogi Nauki I Tekhniki: Ser. Fizioligiya Rastenii (Advances in science and technology: plant physiology), Moscow: VINITI, 1989. 6, 164 pp

    Google Scholar 

  • Mommer L, Visser EJ (2005) Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot (Lond) 96:581–589

    Article  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1987) Superoxide dismutase as anaerobic polypeptide—a key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol 85:1016–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pederson O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58:147–156

    Article  Google Scholar 

  • Pezeshki SR (1991) Root responses of flood-tolerant flood-sensitive tree species to soil redox conditions. Trees 5:180–186

    Article  Google Scholar 

  • Preiszner J, VanToai T, Huynh L, Bolla RI, Yen HH (2001) Structure and activity of a soybean Adh promoter in transgenic hairy roots. Plant Cell Rep 20:763–769

    Article  CAS  Google Scholar 

  • Radyukina NL, Shashukova AV, Shevyakova NI, Kuznetsov VV (2008) Proline involvement in the common sage antioxidant system in the presence of NaCl and paraquat. Russ J Plant Physiol 55:649–656

    Article  CAS  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selye H (1974) Stress without distress. JB Lippincott, Philadelphia

    Google Scholar 

  • Shevyakova NI, Bakulina EA, Kuznetsov VV (2009) Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russian J Plant Physiol 56:663–669

    Article  CAS  Google Scholar 

  • Smith TH, Russel RS (1969) Occurrence of ethylene and its significance in anaerobic soil. Nature 222:769–771

    Article  CAS  Google Scholar 

  • Smith KA, Restall SWF (2006) The occurrence of ethylene in anaerobic soil. Eur J Soil Sci 22:430–443

    Article  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456

    Article  CAS  Google Scholar 

  • Snowden RE, Wheeler BD (1993) Iron toxicity to fen plant species. J Ecol 81:35–46

    Article  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiply roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325–346

    Article  Google Scholar 

  • Ushimaro T, Shibasaka M, Tsuji H (1992) Development of О2 −. detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol 33:1065–1071

    Google Scholar 

  • Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YL, Stepanova AY (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang K, Jiang Y (2007) Antioxidant responses of creeping bentgrass roots to waterlogging. Crop Sci 47:232–238

    Article  CAS  Google Scholar 

  • Wignarajah K, Greenway H, John CD (2010) Effect of waterlogging on growth and activity of alcohol dehydrogenase in barley and rice. New Phytol 77:585–592

    Article  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yordanova LY, Popova LP (2007) Flooding induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant 29:535–541

    Article  CAS  Google Scholar 

  • Zakrzhevsky DA, Balakhnina TI, Stepniewski W, Stępniewska S, Bennicelli RP, Lipiec J (1995) Oxidation and growth processes in roots and leaves of higher plants at different oxygen availability in soil. Russ J Plant Physiol 42:242–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara I. Balakhnina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balakhnina, T.I. (2015). Plant Responses to Soil Flooding. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_5

Download citation

Publish with us

Policies and ethics