Skip to main content

Drought Resistance in Crops: Physiological and Genetic Basis of Traits for Crop Productivity

  • Chapter
Stress Responses in Plants

Abstract

Drought is the most important environmental stress affecting agricultural productivity worldwide. Breeding of drought-tolerant crops is important in order to meet demands of food security in the face of an ever increasing world population, global warming and water shortage. Drought resistance (DR) is defined as the mechanism causing minimum loss of yield in a water deficit environment relative to the maximum yield in a water constraint free management of the crop. Plants have evolved several mechanisms to cope with water deficit stress which includes drought escape and drought tolerance. Plant breeders and physiologists have identified some important traits associated with DR in crop plants. Many of these traits relate to making appropriate use of water when it is available, often with the aim of ensuring reproductive success and grain yield. Traits associated with DR serve as important breeding tools in identifying stress-resistant genotypes and in introgressing the resistance traits into high yielding genotypes. Marker-assisted selection based around screening for desirable alleles at QTL for DR is an important approach for improving DR in crops. Dissecting these complex phenotypic traits into simpler heritable traits has led to the identification of genes associated with some QTLs for DR. Breeding for DR has met with limited success following either empirical or marker-assisted selection approach. It is essential to integrate crop physiology, functional genomics and breeding approaches to dissect complex DR traits, understand the molecular basis of DR and develop improved cultivars to adapt to the changing climate. This chapter focuses on the DR traits important for agricultural productivity in major crops, i.e. wheat and rice. The physiological and genetic basis of traits is discussed to highlight the complexity of the quantitative traits and the need to integrate this information in breeding drought-resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    PubMed Central  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Dolores SM (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    CAS  PubMed  Google Scholar 

  • Babu RC (2010) Breeding for drought resistance in rice: an intergrated view from physiology to genomics. Electron J Plant Breed 1:1133–1141

    Google Scholar 

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beltrano J, Marta GR (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Braz J Plant Physiol 20:29–37

    CAS  Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Verulkar S, Mandal NP, Sinha PK, Peeraju P, Dongre PR, Mahto RN, Atlin G (2009) Characterization of the effect of a QTL for drought resistance in rice qtl12.1 over a range of environments in the Philippines and eastern India. Euphytica 166:207–217

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency and yield potential—are they compatible, dissonant or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth and water uptake. J Exp Bot 65(21):6251. doi:10.1093/jxb/eru232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, Korff M (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199:1045–1059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jemstedt JA, Lagarias JC, Dubcovsky J (2014) PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A 111:10037–10044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    CAS  PubMed  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization and yield in wheat and barley. J Exp Bot 65(14):3783–3798. doi:10.1093/jxb/ert477

    PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dyck JA, Matus-Cádiz MA, Hucl P, Talbert L, Hunt T, Dubuc JP, Nass H, Clayton G, Dobb J, Quick J (2004) Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Sci 44:1976–1981

    Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    CAS  PubMed  Google Scholar 

  • Faricelli ME, Valarik M, Dubcovsky J (2010) Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice and Brachypodium. Funct Integr Genomics 10:293–306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foulkes MJ, Sylvester-Bradley R, Worland AJ, Snape JW (2004) Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 135:63–73

    CAS  Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gan SS (2014) Leaf senescence as an important target for improving crop production. Adv Crop Sci Technol 2:e116

    Google Scholar 

  • Gawroński P, Schnurbusch T (2012) High-density mapping of the earliness per se- 3Am (Eps-3Am) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol Breed 30:1097–1108

    Google Scholar 

  • Ghimire KH, Quiatchon LA, Vikram P, Swamy BP, Dixit S, Ahmed H, Hernandez JE, Borromeo TH, Kumar A (2012) Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Res 131:88–96

    Google Scholar 

  • Gomez D, Vanzetti L, Helguera M, Lombardo L, Fraschina J, Miralles DJ (2014) Effect of Vrn-1, Ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Res 158:73–81

    Google Scholar 

  • Graziani M, Maccaferri M, Royo C, Salvatorelli F, Tuberosa R (2014) QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop Pasture Sci 65:80–95

    Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    CAS  Google Scholar 

  • Gupta PK, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–162

    Google Scholar 

  • Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P (2000) Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron Crop Sci 185:275–280

    Google Scholar 

  • Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS (2011) Sugars in crop plants. Ann Appl Biol 158:1–25

    CAS  Google Scholar 

  • Han YY, Zhou S, Chen YH, Kong X, Xu Y, Wang W (2014) The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants. Plant Physiol Biochem 78:53–62

    CAS  PubMed  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    CAS  PubMed  Google Scholar 

  • Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynan J, Wild DL, Denby KJ, Ott S, Buchanan‐Wollaston V (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J J75:26–39

    Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering of breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    CAS  PubMed  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    CAS  PubMed  Google Scholar 

  • Ishimaru K, Kashiwagi T, Hirotsu N, Madoka Y (2005) Identification and physiological analyses of a locus for rice yield potential across the genetic background. J Exp Bot 56:2745–2753

    CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh NK (2012) Genomic association for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genomics 12:447–464

    CAS  PubMed  Google Scholar 

  • Kamran A, Iqbal M, Navabi A, Randhawa H, Pozniak C, Spaner D (2013) Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population. Theor Appl Genet 126:1965–1976

    CAS  PubMed  Google Scholar 

  • Kanagaraj P, Prince KSJ, Annie SJ, Biji KR, Babu SP, Senthil A, Babu RC (2010) Microsatellite markers linked to drought resistance in rice (Oryza sativa L.). Curr Sci 98:836–839

    CAS  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    CAS  PubMed  Google Scholar 

  • Khanna-Chopra R, Sinha SK (1998) Prospects of success of biotechnological approaches for improving tolerance to drought stress in crop plants. Crop Sci 74:25–34

    Google Scholar 

  • Khoshro HH, Taleei A, Bihamta MR, Shahbazi M, Abbasi A, Ramezanpour SS (2014) Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regul 74:165–176

    CAS  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Poulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    CAS  PubMed  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    CAS  PubMed  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping population of bread wheat. Mol Breed 19:163–177

    Google Scholar 

  • Kumar U, Joshi AK, Kumari M, Paliwal R, Kumar S, Röder MS (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica 174:437–445

    Google Scholar 

  • Landjeva S, Neumann K, Lohwasser U, Börner A (2008) Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant 52:259–266

    Google Scholar 

  • Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:1–15

    CAS  Google Scholar 

  • Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng YQ, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110:3167–3172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517

    CAS  PubMed  Google Scholar 

  • Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J (2011) LSD: a leaf senescence database. Nucleic Acids Res 39:1103–1107

    Google Scholar 

  • Liu S, Wang F, Gao LJ, Li JH, Li RB, Gao HL, Luo XJ (2012) Genetic analysis and fine mapping of LH1 and LH2, a set of complementary genes controlling late heading in rice (Oryza sativa L.). Breed Sci 62:310–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Li R, Chang X, Jing R (2013) Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189:51–66

    Google Scholar 

  • Livaja M, Flamm C, Pauk J, Schmolke M (2011) Characterization of a segregating winter wheat population regarding abiotic stress. Lehr-und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein. pp 55–59. ISBN:978-3-902559-74-6

    Google Scholar 

  • Luo PG, Deng KJ, Hu XY, Li LQ, Li X, Chen JB, Zhang HY, Tang ZX, Zhang Y, Sun QX, Tan FQ, Ren ZL (2013) Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional ‘stay‐green’ trait in wheat. Plant Cell Environ 36:683–696

    CAS  PubMed  Google Scholar 

  • MacWillium J (1989) The dimensions of drought. In: Baker F (ed) Drought resistance in cereals. CAB International, Wallingfore, pp 1–11

    Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, de Voil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840/Clark. Theor Appl Genet 112:688–698

    CAS  PubMed  Google Scholar 

  • Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y (2011) Ehd3, encoding a PHD finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612

    CAS  PubMed  Google Scholar 

  • Matsubara K, Hori K, Ogiso-Tanaka E, Yano M (2014) Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. Front Plant Sci 5:193. doi:10.3389/fpls.2014.00193

    PubMed Central  PubMed  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Drenth J, Ghaderi M, Reynolds M, Chapman SC, Shorter R (2010) Molecular detection of genomic regions associated with grain yield, yield components in an elite bread wheat cross evaluated under irrigated, rainfed conditions. Theor Appl Genet 120:527–541

    CAS  PubMed  Google Scholar 

  • McIntyre CL, Seung D, Casu RE, Rebetzke GJ, Shorter R, Xue GP (2012) Genotypic variation in the accumulation of water soluble carbohydrates in wheat. Funct Plant Biol 39:560–568

    CAS  Google Scholar 

  • Mir RR, Mainassara ZA, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    CAS  PubMed  Google Scholar 

  • Narayanan S, Mohan A, Gill KS, Prasad PV (2014) Variability of root traits in spring wheat germplasm. PLoS One 9:e100317

    PubMed Central  PubMed  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    CAS  PubMed  Google Scholar 

  • Penfold CA, Buchanan-Wollaston V (2014) Modelling transcriptional networks in leaf senescence. J Exp Bot. doi:10.1093/jxb/eru054

    PubMed  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    PubMed Central  PubMed  Google Scholar 

  • Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    PubMed Central  CAS  PubMed  Google Scholar 

  • Price AH, Steele KA, Moore BJ, Jones RGW (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res 76:25–43

    Google Scholar 

  • Qu YY, Mu P, Zhang HL, Chen CY, Gao YM, Tian YX, Wen F, Li ZC (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 2:187–200

    Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    CAS  PubMed  Google Scholar 

  • Rattey A, Shorter R, Chapman S, Dreccer F, van Herwaarden A (2009) Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci 60:717–729

    Google Scholar 

  • Rawson HM, Richards RA (1993) Effects of high temperature and photoperiod on floral development in wheat isolines differing in vernalisation and photoperiod genes. Field Crops Res 32:181–192

    Google Scholar 

  • Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnet DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res 52:1221–1234

    CAS  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183

    CAS  PubMed  Google Scholar 

  • Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates, associations with agronomic traits in wheat. Aust J Agric Res 59:891–905

    CAS  Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperature cereals: phenotyping, quantitative trait loci, markers and the selection environments. Funct Plant Biol 37:85–97

    Google Scholar 

  • Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CLD (2006) Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct Plant Biol 33:799–809

    CAS  Google Scholar 

  • Semwal VK, Singh B, Khanna-Chopra R (2014) Delayed expression of SAGs correlates with longevity in CMS wheat plants compared to its fertile plants. Physiol Mol Biol Plants 20:191–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen B, Yu WD, Zhu YJ, Fan YY, Zhuang JY (2012) Fine mapping of a major quantitative trait locus, qFLL6. 2, controlling flag leaf length and yield traits in rice (Oryza sativa L.). Euphytica 184:57–64

    Google Scholar 

  • Shukla S, Khanna-Chopra R (2010) Physiological, genetic and molecular basis of stem reserve mobilization: an important trait for drought tolerance in wheat. J Plant Biol 37:1–14

    Google Scholar 

  • Singh K, Khanna-Chopra R (2010) Physiology and QTL analysis of coleoptile length a trait for drought tolerance in wheat. J Plant Biol 37:1–9

    Google Scholar 

  • Singh K, Shukla S, Kadam S, Semwal VK, Singh NK, Khanna-Chopra R (2014) Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. J Plant Biochem Biotechnol 10:1–7. doi:10.1007/s13562-014-0277-3

    CAS  Google Scholar 

  • Sinha SK, Aggrawal PK, Chaturvedi GS, Singh AK, Kailasnathan K (1986) Performance of wheat and Triticale cultivar in a variable soil-water environment I. Grain yield stability. Field Crops Res 13:289–299

    Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    CAS  PubMed  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    CAS  PubMed  Google Scholar 

  • Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM, Virk DS (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126(1):101–108

    CAS  PubMed  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    CAS  Google Scholar 

  • Sýkorová B, Kurešová G, Daskalova S, Trčková M, Hoyerová K, Raimanová I, Motyka V, Travnickova A, Elliott MC, Kamínek M (2008) Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59:377–387

    PubMed  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98:7922–7927

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65(14):3889–900. doi:10.1093/jxb/eru037

    CAS  PubMed  Google Scholar 

  • Tian F, Gong J, Zhang J, Zhang M, Wang G, Li A, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Prasetiyono J, Thomson MJ, Cruz CMV, Moeljopawiro S, Pereira A (2014) Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Mol Breed 34:283–295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji H, Taoka KI, Shimamoto K (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol 16:228–235

    CAS  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    CAS  PubMed  Google Scholar 

  • Valluru R, Reynolds MP, Salse J (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor Appl Genet 127:1463–1489

    CAS  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    CAS  Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    CAS  Google Scholar 

  • Vikram P, Swamy BPM, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Ye G, Kumar A (2012) Bulk segregant analysis: an effective approach for mapping drought grain yield QTLs in rice. Field Crops Res 134:185–192

    Google Scholar 

  • Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    CAS  PubMed  Google Scholar 

  • Wang E, Xu X, Zhang L, Zhang H, Lin L, Wang Q, Li Q, Ge S, Lu BR, Wang W, He Z (2010) Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol Biol 10:1–13

    Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    CAS  PubMed  Google Scholar 

  • Wolf S, Mravec J, Greiner S, Mouille G, Hofte H (2012) Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22:1732–1737

    CAS  PubMed  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    CAS  PubMed  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Google Scholar 

  • Xing SC, Li F, Guo QF, Liu DR, Zhao XX, Wang W (2009) The involvement of an expansin gene TaEXPB23 from wheat in regulating plant cell growth. Biol Plant 53:429–434

    CAS  Google Scholar 

  • Xu JL, Lafitte HR, Gao YM, Fu BY, Torres R, Li ZK (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111:1642–1650

    CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    CAS  PubMed  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    CAS  PubMed  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quantitative trait loci, environmental interactions for accumulation, remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo S, Cho S, Zhang H, Paik H, Lee C, Li J, Yoo JH, Lee BW, Koh HJ, Seo HS, Paek NC (2007) Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol Cells 24:83–94

    CAS  PubMed  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Hansson M (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A 109:4326–4331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khanna-Chopra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanna-Chopra, R., Singh, K. (2015). Drought Resistance in Crops: Physiological and Genetic Basis of Traits for Crop Productivity. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_11

Download citation

Publish with us

Policies and ethics