Advertisement

Individual-Based Cooperative Coevolution Local Search for Large Scale Optimization

  • Can LiuEmail author
  • Bin Li
Conference paper
  • 1.5k Downloads
Part of the Proceedings in Adaptation, Learning and Optimization book series (PALO, volume 1)

Abstract

Decomposition methodology has been well studied and widely applied to Large Scale Global Optimization (LSGO). Cooperative Coevolution (CC) is an effective decomposition strategy and has made remarkable achievements on tackling LSGO problems. In recent studies, the role of Individual-based Local Search (ILS) has arose more and more attention, especially under the framework of Memetic Algorithms (MAs). In this paper, we investigate the validity and performance of incorporating Cooperative Coevolution strategy into Individual-based Local Search. For this purpose, a Solis and Wets’ algorithm with Cooperative Coevolution (SWCC) is presented, and a comparison is made between SWCC and SW via experiments on the LSGO test suite issued in CEC’2013. Then, SWCC is embedded into Simulated Annealing algorithm (SA) and Memetic framework to investigate its effectiveness as local search operator. Experiment results show the effectiveness of SWCC on fully-separable LSGO problems and poor performance on fully non-separable problems.

Keywords

Cooperative Coevolution Individual-based Local Search Solis and Wets’ algorithm Simulated Annealing algorithm Memetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vesterstrom, J., Thomsen, R.: A comparative study of differentialevolution, particle swarm optimization, and evolutionary algorithms onnumerical benchmark problems. In: Proc. Congr. Evol. Comput., vol. 2, pp. 1980–1987 (2004)Google Scholar
  2. 2.
    Storn, R.M., Price, K.V.: Differential Evolution – A Simple and Efficient Adaptive Scheme for GlobalOptimization over Continuous Spaces. International Computer Science Institute, Berkely, CA, USA, Tech. Rep.TR-95-012 (1995)Google Scholar
  3. 3.
    Posik, P.: Real-parameter optimization using the mutation stepco-evolution. In: Proceedings of 2005 IEEE Congress on Evol. Comput., pp. 872–879 (2005)Google Scholar
  4. 4.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution – A Practical Approach to Global Optimization. Natural Computing Series. Springer, New York (2005)zbMATHGoogle Scholar
  5. 5.
    Bellman, R.E.: Dynamic Programming. Dover Books on Mathematics. Princeton University Press (1957)Google Scholar
  6. 6.
    Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with cooperative coevolution. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 1101–1108 (2001)Google Scholar
  7. 7.
    Altus, S.S., Kroo, I.M., Gage, P.J.: A genetic algorithm for schedulingand decomposition of multidisciplinary design problems. ASME J. Mech. Des. 118, 486–489 (1996)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Li, S.: Analysis of decomposability and complexity fordesign problems in the context of decomposition. ASME J. Mech. Des. 127, 545–557 (2005)CrossRefGoogle Scholar
  9. 9.
    Kusiak, A., Wang, J.: Decomposition of the design process. ASME J. Mech. Des. 115, 687–693 (1993)CrossRefGoogle Scholar
  10. 10.
    Michelena, N.F., Yapalambros, P.: A network reliabilityapproach to optimal decomposition of design problems. ASME J. Mech. Des. 117, 433–440 (1995)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Li, B.: Two-stage based Ensemble Optimization for Large-Scale Global Optimization. In: Proc. the 2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, pp. 4488–4495 (2010)Google Scholar
  12. 12.
    Zhang, K.B., Li, B.: Cooperative Coevolution with Global Search for Large Scale Global Optimization. In: WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, pp. 10–15 (June 2012)Google Scholar
  13. 13.
    Potter, M.: The Design and Analysis of a Computational Model of CooperativeCoevolution. Ph.D. dissertation, George Mason University (1997)Google Scholar
  14. 14.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Searchfor Large Scale Global Optimization. In: Proceedings of the 10th IEEE Congresson Evolutionary Computation, pp. 3845–3852. IEEE Press (June 2008)Google Scholar
  15. 15.
    Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient: A measure to characterize genetic programming fitness landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Yang, Z., Tang, K., Yao, X.: Large Scale Evolutionary Optimization Using Cooperative Coevolution. Information Sciences 178(15), 2985–2999 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Potter, M., De Jong, K.: Cooperative Coevolution: An Architecturefor Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1–29 (2000)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up Fast Evolutionary Programming with Cooperative Coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 1101–1108 (2001)Google Scholar
  19. 19.
    Shi, Y.-j., Teng, H.-f., Li, Z.-q.: Cooperative co-evolutionary differential evolution for function optimization. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1080–1088. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670 (2008)Google Scholar
  21. 21.
    Tseng, L.Y., Chen, C.: Multiple Trajectory Search for LargeScale Global Optimization. In: Proceedings of the 10th IEEE Congress on Evolutionary Computation, CEC 2008, pp. 3052–3059. IEEE Press (June 2008)Google Scholar
  22. 22.
    Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: MemeticAlgorithm Based on Local Search Chains for Large Scale Continuous Global Optimization. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8 (2010)Google Scholar
  23. 23.
    LaTorre, A., Muelas, S., Pefia, J.-M.: Multiple Offspring Sampling In Large Scale Global Optimization. In: WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, pp. 10–15 (June 2012)Google Scholar
  24. 24.
    Solis, F.J., Wets, R.J.: Minimization by random search techniques. Mathematical Operations Research 6, 19–30 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kirkpatrick, S.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hart, W., Krasnogor, N., Smith, J.E.: MemeticEvolutionary Algorithms. Studies in Fuzziness and Soft Computing 166, 3–27 (2005)CrossRefGoogle Scholar
  27. 27.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts. Toward memetic algorithms. Tech. Rep. 826, California Institute of Technology (1989)Google Scholar
  28. 28.
    Mei, Y., Tang, K., Yao, X.: Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem. IEEE Trans. Evol. Comput. 15(2), 151–165 (2011)CrossRefGoogle Scholar
  29. 29.
    Ahn, Y., Park, J., Lee, C.-G., Kim, J.-W.: Novel Memetic Algorithm implemented With GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search) for Optimal Design of Electromagnetic System. IEEE Trans Magnetics 46(6), 1982–1985 (2010)CrossRefGoogle Scholar
  30. 30.
    Li, B., Zhou, Z., Zou, W., Li, D.: Quantum Memetic Evolutionary Algorithm-Based Low-Complexity Signal Detection for Underwater Acoustic Sensor Networks. IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(5), 626–640 (2012)CrossRefGoogle Scholar
  31. 31.
    Li, X., Tang, K., Omidvar, M., Yang, Z., Qin, K.: Benchmark Functions for the CEC’2013 Special Session and Competition on LargeScale Global Optimization, Technical Report, Evolutionary Computationand Machine Learning Group, RMIT University, Australia (2013)Google Scholar
  32. 32.
    Civicioglu, P.: Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by Using Differential Search Algorithm. Computers and Geosciences 46, 229–247 (2012)CrossRefGoogle Scholar
  33. 33.
    Civicioglu, P.: http://www.pinarcivicioglu.com/ds.html (accessed October 02, 2011)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nature Inspire Computation and Applications Lab (NICAL)University of Science and Technology of ChinaHefeiChina
  2. 2.USTC-Birmingham Research Institute of Intelligent Computation and Applications (UBRI)University of Science and Technology of ChinaHefeiChina

Personalised recommendations