Advertisement

Structurization of Design Space for Launch Vehicle with Hybrid Rocket Engine Using Stratum-Type Association Analysis

  • Kazuhisa ChibaEmail author
  • Masahiro Kanazaki
  • Shin’ya Watanabe
  • Koki Kitagawa
  • Toru Shimada
Conference paper
Part of the Proceedings in Adaptation, Learning and Optimization book series (PALO, volume 1)

Abstract

A single-stage launch vehicle with hybrid rocket engine has been conceptually designed by using design informatics, which has three points of view, i.e., problem definition, optimization, and data mining. The primary objective of the present design is that the down range and the duration time in the lower thermosphere are sufficiently secured for the aurora scientific observation, whereas the initial gross weight is held down to the extent possible. The multidisciplinary design optimization was performed by using a hybrid evolutionary computation. Data mining was also implemented by using the stratum-type association analysis. Consequently, the design information regarding the tradeoffs has been revealed. Furthermore, the hierarchical dendrogram generated by using the stratum-type association analysis indicates the structure of the design space in order to improve the objective functions. Thereupon, it has been revealed the versatility of the synthetic system as design informatics for real-world problems.

Keywords

Design informatics Evolutionary computation Data mining Stratum-type association analysis Application to real-world problems Single-stage launch vehicle for scientific observation Hybrid rocket engine using solid fuel and liquid oxidizer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arias-Montano, A., Coello, C.A.C., Mezura-Montes, E.: Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Transactions on Evolutionary Computation 16(5), 662–694 (2012)CrossRefGoogle Scholar
  2. 2.
    Arthur, W.: The emerging conceptual framework of evolutionary developmental biology. Nature 415(6873), 757–764 (2002)CrossRefGoogle Scholar
  3. 3.
    Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proceedings of the International Conference on Genetic Algorithms and their Applications, pp. 101–111. Lawrence Erlbaum Associates (1985)Google Scholar
  4. 4.
    Chiba, K.: Evolutionary hybrid computation in view of design information by data mining. In: Proceedings on IEEE Congress on Evolutionary Computation, pp. 3387–3394. IEEE (2013)Google Scholar
  5. 5.
    Chiba, K., Kanazaki, M., Nakamiya, M., Kitagawa, K., Shimada, T.: Conceptual design of single-stage launch vehicle with hybrid rocket engine for scientific observation using design informatics. Journal of Space Engineering 6(1), 15–27 (2013)CrossRefGoogle Scholar
  6. 6.
    Chiba, K., Kanazaki, M., Nakamiya, M., Kitagawa, K., Shimada, T.: Diversity of design knowledge for launch vehicle in view of fuels on hybrid rocket engine. Journal of Advanced Mechanical Design, Systems, and Manufacturing 8(3), JAMDSM0023, 1–14 (2014)Google Scholar
  7. 7.
    Chiba, K., Makino, Y., Takatoya, T.: Design-informatics approach for intimate configuration of silent supersonic technology demonstrator. Journal of Aircraft 49(5), 1200–1211 (2012)CrossRefGoogle Scholar
  8. 8.
    Chiba, K., Obayashi, S.: Knowledge discovery in aerodynamic design space for flyback-booster wing using data mining. Journal of Spacecraft and Rockets 45(5), 975–987 (2008)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann (1993)Google Scholar
  11. 11.
    Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and applications I. analysis. In: NASA Reference Publication RP-1311. NASA (1994)Google Scholar
  12. 12.
    Hervás-Martínez, C., Ortíz-Boyer, D., García-Pedrajas, N.: Theoretical analysis of the confidence interval based crossover for real-coded genetic algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 153–161. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Hirata, K., Sezaki, C., Yuasa, S., Shiraishi, N., Sakurai, T.: Fuel regression rate behavior for various fuels in swirling-oxidizer-flow-type hybrid rocket engines. In: AIAA Paper 2011-5677. AIAA (2011)Google Scholar
  14. 14.
    Jeong, S., Murayama, M., Yamamoto, K.: Efficient optimization design method using kriging model. Journal of Aircraft 42(2), 413–420 (2005)CrossRefGoogle Scholar
  15. 15.
    Karabeyoglu, M.A.: Advanced hybrid rockets for future space launch. In: Proceedings on 5th European Conference for Aeronautics and Space Sciences. EUCASS (2013)Google Scholar
  16. 16.
    Karabeyoglu, M.A., Altman, D., Cantwell, B.J.: Combustion of liquefying hybrid propellants: Part 1, general theory. Journal of Propulsion and Power 18(3), 610–620 (2002)CrossRefGoogle Scholar
  17. 17.
    Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA Journal 44(4), 879–891 (2006)CrossRefGoogle Scholar
  18. 18.
    Kosugi, Y., Oyama, A., Fujii, K., Kanazaki, M.: Multidisciplinary and multi-objective design exploration methodology for conceptual design of a hybrid rocket. In: AIAA Paper 2011-1634, AIAA (2011)Google Scholar
  19. 19.
    Oyama, A., Obayashi, S., Nakamura, T.: Real-coded adaptive range genetic algorithm applied to transonic wing optimization. Applied Soft Computing 1(3), 179–187 (2001)CrossRefGoogle Scholar
  20. 20.
    Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Saraniero, M.A., Caveny, L.H., Summerfield, M.: Restart transients of hybrid rocket engines. Journal of Spacecraft and Rockets 10(3), 215–217 (1973)CrossRefGoogle Scholar
  22. 22.
    Sasaki, D., Obayashi, S.: Efficient search for trade-offs by adaptive range multi-objective genetic algorithms. Journal of Aerospace Computing, Information, and Communication 2(1), 44–64 (2005)CrossRefGoogle Scholar
  23. 23.
    Simurda, L., Zilliac, G., Zaseck, C.: High performance hybrid propulsion system for small satellites. In: AIAA Paper 2013-3635. AIAA (2013)Google Scholar
  24. 24.
    Takahashi, M., Kita, H.: A crossover operator using independent component analysis for real-coded genetic algorithms. In: Proceedings of IEEE Congress on Evolutionary Computation 2001, pp. 643–649. IEEE (2001)Google Scholar
  25. 25.
    Watanabe, S., Chiba, Y., Kanazaki, M.: A proposal on analysis support system based on associate rule analysis for non-dominated solutions. In: Proceedings on IEEE World Congress on Computational Intelligence, Beijing, China, pp. E–14855. IEEE (2014)Google Scholar
  26. 26.
    Yuasa, S., Shiraishi, N., Hirata, K.: Controlling parameters for fuel regression rate of swirling-oxidizer-flow-type hybrid rocket engine. In: AIAA Paper 2012-4106. AIAA (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kazuhisa Chiba
    • 1
    Email author
  • Masahiro Kanazaki
    • 2
  • Shin’ya Watanabe
    • 3
  • Koki Kitagawa
    • 4
  • Toru Shimada
    • 4
  1. 1.Hokkaido University of ScienceSapporoJapan
  2. 2.Tokyo Metropolitan UniversityTokyoJapan
  3. 3.Muroran Institute of TechnologyHokkaidoJapan
  4. 4.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations