Skip to main content

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 1))

Abstract

Training spiking neurons to output desired spike train is a fundamental research in spiking neural networks. The current article proposes a novel and efficient supervised learning algorithm for spiking neurons. We divide the running time of spiking neurons into two classes: desired output time and not desired output time. Our learning method makes the membrane potential equal to threshold at desired output time, and makes the membrane potential lower than threshold at not desired output time. For efficiency, at not desired output time, we just calculate the membrane potential at some special time points where the spiking neuron is most likely to output a wrong spike. The experimental results show that the learning performance of the proposed method is better than the existing methods in accuracy and efficiency.

This work was supported by National Science Foundation of China under Grant 61273308, 61370073 and the Fundamental Research Funds for Central Universities under Grant ZYGX2012J068.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reinagel, P., Reid, R.C.: Temporal coding of visual information in the thalamus. The Journal of Neuroscience 20(14), 5392–5400 (2000)

    Google Scholar 

  2. Wyeth, B., Koch, C.: Temporal precision of spike trains in extra striate cortex of the behaving macaque monkey. Neural Computation 8(6), 1185–1202 (1996)

    Article  Google Scholar 

  3. Mainen, Z.F., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)

    Article  Google Scholar 

  4. Wolfgang, M.: Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons

    Google Scholar 

  5. Xu, Y., Zeng, X., Han, L., Yang, J.: A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Networks 43, 99–113 (2013)

    Article  MATH  Google Scholar 

  6. Wulfram, G., Kistler, W.M.: Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press (2002)

    Google Scholar 

  7. Samanwoy, G.-D., Adeli, H.: Spiking neural network. International Journal of Neural Systems 19(04), 295–308 (2009)

    Article  Google Scholar 

  8. Wolfgang, M.: Networks of spiking neurons: the third generation of neural network models. Neural Networks 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  9. Hu, J., et al.: A spike-timing-based integrated model for pattern recognition. Neural computation 25(2), 450–472 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buhmann, J.M., Lange, T., Ramacher, U.: Image segmentation by networks of spiking neurons. Neural Computation 17(5), 1010–1031 (2005)

    Article  MATH  Google Scholar 

  11. Wade, J.J., McDaid, L.J., Santos, J.A., et al.: SWAT: a spiking neural network training algorithm for classification problems. IEEE Transactions on Neural Networks 21(11), 1817–1830 (2010)

    Article  Google Scholar 

  12. Kasabov, N., Feigin, V., Hou, Z.G., et al.: Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)

    Article  Google Scholar 

  13. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Computation 22(2), 467–510 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bohte, S.M., Kok, J.N., La, P.H.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1), 17–37 (2002)

    Article  MATH  Google Scholar 

  15. Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns. PloS One 8(11), e78318 (2013)

    Google Scholar 

  16. Florian, R.V.: The Chronotron: a neuron that learns to fire temporally precise spike patterns. PloS One 40233, e40233 (2012)

    Google Scholar 

  17. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal spike patterns. International Journal of Neural Systems 22(04) (2012)

    Google Scholar 

  18. Xu, Y., Zeng, X., Zhong, S.: A new supervised learning algorithm for spiking neurons. Neural Computation 25(6), 1472–1511 (2013)

    Article  MathSciNet  Google Scholar 

  19. Schreiber, S., Fellous, J.M., Whitmer, D., Tiesinga, P., Sejnowski, T.J.: A new correlation-based measure of spike timing reliability. Neurocomputing 52, 925–931 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, M., Qu, H., Li, J., Xie, X. (2015). A New Supervised Learning Algorithm for Spiking Neurons. In: Handa, H., Ishibuchi, H., Ong, YS., Tan, K. (eds) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13359-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13359-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13358-4

  • Online ISBN: 978-3-319-13359-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics