Advertisement

TiO2 Properties and Deposition Techniques

  • Anouar HajjajiEmail author
  • Mosbah Amlouk
  • Mounir Gaidi
  • Brahim Bessais
  • My Ali El Khakani
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter deals with some physical properties of TiO2 used in various physical applications. Indeed, a brief review of the structural, optical and electronic properties of TiO2 films is presented; then some technical methods as well as fundaments and experimental features of this oxide are provided. Particular attention is paid to the effect of the microstructure and the incorporation of doping elements on the optoelectronic and sensing properties of TiO2 films.

Keywords

TiO2 Thin films Crystallographic structure Physical and chemical methods Band energy diagram 

References

  1. 1.
    Pighini C (2006) Syntheses de nanocristaux de TiO2 anatase a distribution de taille controlee. Influence de la taille descristallites sur le spectre Raman et etude des proprieties de surface. Thèse doctorat, Université de BourgognGoogle Scholar
  2. 2.
    Chatterjee S (2008) Titania-germanium nanocomposite as a photovoltaic material. Sol Energy 82:95Google Scholar
  3. 3.
    Cronemeyer DC (1952) Electrical and optical properties of rutile single crystals. Phys Rev 87:876Google Scholar
  4. 4.
    Florence BOSC (2004) Synthese et caracterisation des couches minces et de membranes photocatalytiques mésostructurees a base de TiO2 anatase. Thèse de doctorat, Montpellier IIGoogle Scholar
  5. 5.
    Černigoj U, Lavrenčič Štangar U, Trebše P, Rebernik Ribič P (2006) Comparison of different characteristics of TiO2 films and their photocatalytic properties. Acta Chim Slov 53:29–35Google Scholar
  6. 6.
    Vossen JL (ed) (1978) Thin film processes. In: Academic press; traite de la pulvérisation en général avec une liste de références très complète jusqu’à 1977Google Scholar
  7. 7.
    Bouchier D (1985) Thèse de doctorat, OrsayGoogle Scholar
  8. 8.
    Lakshmi BB, Dorhout PK (1997) Sol-gel template synthesis of semiconductor nanostructures. J Chem Mater 9:857Google Scholar
  9. 9.
    Long H, Yang G, Chen A, Li Y, Lu P (2008) Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 517:745Google Scholar
  10. 10.
    Zakrzewska K, Radecka M, Rekas M (1997) Effect of Nb, Cr, Sn additions on gas sensing properies of TiO2 thin films. Thin Solid Films 310:161–166Google Scholar
  11. 11.
    Demeestere K, Dewulf J, Ohno T, Salgado PH, Van Langenhove H (2005) Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl Catal B Environ 61:140–149Google Scholar
  12. 12.
    Lee K, Lee NH, Shin SH, Lee HG, Kim SJ (2006) Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols. Mater Sci Eng B 129:109Google Scholar
  13. 13.
    Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B Environ 37:91Google Scholar
  14. 14.
    Chen J, Ollis DF, Rulkens WH, Bruning H (1999) Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide. Water Res 33:1173Google Scholar
  15. 15.
    Yang P, Lu C, Hua N, Du Y (2002) Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett 57:794Google Scholar
  16. 16.
    Pr. Thierry Toupance (2008) Thèse doctorat, Université du BordeauxGoogle Scholar
  17. 17.
    Natsuhara H, Matsumoto K, Yoshida N, Itoh T, Nonomura S, Fukawa M, Sato K (2006) TiO2 thin films as protective material for transparent conducting oxides used in Si thin film solar cells. Sol Energy Mater Sol Cells 90:2867Google Scholar
  18. 18.
    Liu B-Q, Zhao X-P, Luo W (2008) The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells. Dyes Pigm 76:327Google Scholar
  19. 19.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 335:737Google Scholar
  20. 20.
    Tang X, Qian J, Wang Z, Wang H, Feng Q, Liua G (2009) Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells. J Colloid Interface Sci 330:386Google Scholar
  21. 21.
    Holec T, Chvojka T, Jelinek I, Jindřich J, Němec I, Pelant I, Valenta J, Dian J (2002) Determination of sensoric parameters of porous silicon in sensing of organic vapors. Mater Sci Eng C 19:251–254Google Scholar
  22. 22.
    Barillaro G, Nannini A, Pieri F (2003) APSFET: a new, porous silicon-based gas sensing device. Sens Actuators B Chem 93:263Google Scholar
  23. 23.
    Barillaro G, Diligenti A, Marola G, Strambini LM (2005) A silicon crystalline resistor with an adsorbing porous layer as gas sensor. Sens Actuators B Chem 105:278Google Scholar
  24. 24.
    Li Y et al (2002) Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sens Actuators B chem 83:160Google Scholar
  25. 25.
    Ruiz AM et al (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B Chem 93:509Google Scholar
  26. 26.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 37:238Google Scholar
  27. 27.
    Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem 81:1484Google Scholar
  28. 28.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33Google Scholar
  29. 29.
    Longo C, De Paoli M-A (2003) Dye-sensitized solar cells: a successful combination of materials. J Braz Chem Soc 14:889Google Scholar
  30. 30.
    Kontos AI, Kontos AG, Tsoukleris DS, Valchos GD, Falaras P (2007) Superhydrophilicity and photocatalytic property of nanocrystalline titania sol-gel films. Thin Solid Films 515:7370Google Scholar
  31. 31.
    Karuppuchamy S, Jeong JM (2005) Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. Mater Chem Phys 93:251Google Scholar
  32. 32.
    Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645Google Scholar
  33. 33.
    Schindler K-M, Kunst M (1990) Charge-carrier dynamics in TiO2 powders. J Phys Chem 94:8222Google Scholar
  34. 34.
    Maeda M, Watanabe T (2007) Effects of crystallinity and grain size on photocatalytic activity of titania films. Surf Coat Technol 201:9309Google Scholar
  35. 35.
    Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212:145Google Scholar
  36. 36.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669Google Scholar
  37. 37.
    Park SESE, Joo H, Kang JW (2004) Effect of impurities in TiO2 thin films on trichloroethylene conversion. Sol Energy Mater Sol Cells 83:39Google Scholar
  38. 38.
    Sarantopoulos C (2007) Thèse doctorat, Institut national de polytechnique ToulouseGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Anouar Hajjaji
    • 1
    • 2
    Email author
  • Mosbah Amlouk
    • 3
  • Mounir Gaidi
    • 4
  • Brahim Bessais
    • 2
  • My Ali El Khakani
    • 1
  1. 1.Énergie, Matériaux et TélécommunicationsInstitut National de la Recherche Scientifique (INRS)VarennesCanada
  2. 2.Laboratoire de PhotovoltaïqueCentre de Recherches et des Technologies de l’EnergieHammam-LifTunisia
  3. 3.Unité de Physique des Dispositifs à Semi-Conducteurs, Faculté des Sciences de TunisTunis El-Manar UniversityTunisTunisia
  4. 4.Department of Applied PhysicsUniversity of SharjahSharjahUAE

Personalised recommendations